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Abstract

Acquired mutations are pervasive across normal tissues. However, our understanding of the 

processes that drive transformation of certain clones to cancer is limited. Here we study this 

phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related 

myeloid neoplasms (tMN). We find mutations are selected differentially based on exposures. 

Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with 

radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA 

damage response (DDR) genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive 

evidence that DDR clones outcompete other clones when exposed to certain therapies. Among 

cases where CH was previously detected, the CH mutation was present at tMN diagnosis. We 

identify the molecular characteristics of CH that increase risk of tMN. The increasing 

implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at 

risk of tMN for prevention strategies.
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MAIN

The multistage model of carcinogenesis suggests that the successive acquisition of somatic 

mutations predates cancer development1. Each mutation contributes to a clone’s fitness 

advantage, resulting in clonal expansions that culminate in malignant transformation, in a 

process that parallels Darwinian evolution2. This evolutionary process results from a 

complex interplay between the mechanisms that drive mutagenesis, the genetic targets of 

selection and the contexts in which these mutations contribute to differential clonal fitness.

Systematic cancer sequencing studies have delivered a detailed understanding of the 

processes that lead to mutations, the resulting mutation signature, and the genetic drivers of 

malignant disease.3,4 However, our understanding of the evolutionary trajectories that 

underlie cancer development is primarily based on retrospective modeling of clonal 

structures observed at diagnosis5 or disease progression6. Such approaches do not allow 

characterization of the genetic and clonal dynamics of early oncogenesis. Recent sequencing 

studies of normal tissues show that acquisition of somatic mutations is pervasive with 

aging7–16. Our understanding of the environmental factors that drive a subset of these 

mutated clones towards malignant transformation is limited and largely based on in vitro and 

animal studies17–19. Progress in this regard has been challenged by the paucity of 

longitudinal genetic and clonal studies with detailed annotation of intervening exposures.

Studies of clonal hematopoiesis (CH) present a unique opportunity to study the evolutionary 

process underlying malignant transformation in blood. Non-invasive sampling enables 

acquisition of statistically powered cohorts and longitudinal samples that permit assessment 

of the transition from normal to transformed disease. Population studies show that 

individuals with CH are at increased risk of transformation to myeloid neoplasms (MN)20,21. 

However, only a small proportion of CH subjects progress to MN. Cancer patients are at 

heightened risk of subsequent therapy-related myeloid neoplasms (tMN) such as AML and 

MDS22,23. tMN was traditionally thought to develop from the mutagenic effects of cancer 

therapy23. However, recent studies show that tMN-initiating mutations can predate cancer 

therapy19, consistent with CH24. Here, we sought to characterize the relationships between 

CH and environmental exposures and determine how cancer therapy shapes patterns of 

selection that contribute towards progression to overt leukemia.

Molecular characteristics and clinical determinants of CH

Utilizing prospective targeted sequencing data (MSK-IMPACT) from 24,146 cancer patients 

representing a wide range of primary tumor types (n=56) and ages (Extended Data Table 1), 

we established a stringent variant calling and filtration workflow to detect CH variants in 

blood, with a minimum variant allele frequency (VAF) of 2% (see Methods and 

Supplementary Notes). We identified 11,076 unique CH mutations in 7,216 individuals, 

representing 30% of patients in our cohort. The median VAF of CH mutations was 5.0% 

(range, 2–78%). Among individuals with CH, 69% (n=4952) had one mutation and 31% 

(2264) had two or more. The spectrum of CH mutations followed expected patterns of 

positive selection for truncating variants and missense mutations in tumor suppressors and 

oncogenes, respectively (Supplementary Figure 1). As the design of our panel limits 

interrogation to bona fide cancer genes, we annotated each mutation on the basis of its 
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putative role in cancer pathogenesis using OncoKB25 and recurrence in an in-house dataset 

of myeloid neoplasms26–28 (see Methods). Over half of the CH mutations that we detected 

were classified as putative cancer-driver mutations (CH-PD, 52%, n=5810). Almost all CH-

PD variants (91%, n=5301) were recurrent mutations in myeloid neoplasms (CH-myeloid 

PD) (Supplementary Figure 2).

Overall, mutations in myeloid driver genes (median=0.047) and CH-PD (0.050) showed 

higher VAFs than non-myeloid (0.038) and non-PD (0.038) mutations, respectively 

(Supplementary Figure 3a-b, Extended Data Table 2). Similarly, hotspot mutations at R882 

within DNMT3A had higher VAFs compared to non-hotspot mutations, even after 

accounting for total number of mutations (Supplementary Figure 4). The VAF of mutations 

within individuals who harbored multiple mutations were higher compared to individuals 

with one mutation (Extended Data Table 2, Supplementary Figure 3c). Consistent with prior 

literature13,14,24, CH mutations were most frequently identified in DNMT3A, TET2 and 

ASXL1. Overall, 48% of CH mutations identified were in myeloid driver genes, while only 

20% of genes on the MSK-IMPACT panel are myeloid driver genes. The strong enrichment 

of myeloid variants highlights the strength of the fitness advantage imparted on 

hematopoietic stem and progenitor cells (HSPCs) by mutations in genes implicated in 

myeloid pathogenesis as compared to bona fide oncogenic mutations in other cancer driver 

genes (Supplementary Figure 2).

To assess the role of cancer therapy alongside other factors in driving selection of CH 

clones, we extracted and curated detailed clinical data for 10,138 patients who had received 

all their cancer care at Memorial Sloan Kettering (MSK) (see Supplementary Notes). These 

patients’ demographic characteristics and solid tumor primary site did not differ from those 

who received treatment outside of MSK or whose treatment information was unavailable 

(n=14,008) (Supplementary Table 1). As previously reported24, older age strongly correlated 

with the presence of CH clones in cancer patients (OR=1.9, p<10−6) (Extended Data Table 

3). CH was less common in patients of Asian ancestry relative to Caucasian descent 

(OR=0.7, p=1×10−3) (Extended Data Table 3), consistent with recent reports 29.

Overall, a total of 5,978 patients (59%) were exposed to cancer therapy (including cytotoxic 

therapy, radiation therapy, targeted therapy and immunotherapy) prior to blood draw 

(Extended Data Figure 1), whereas 4,160 (41%) were treatment-naive. Patients who had 

received prior cancer treatment were more likely to have CH compared to treatment-naive 

patients at time of testing (OR=1.3, p=1×10−6). The same was true for current and former 

smokers (OR=1.1, p=5×10−3), and effect sizes were similar between current (n=729, 

OR=1.2, p=0.10) and former smokers (n=4260, OR=1.1, p=8×10−3). The number of CH 

mutations in each patient was positively associated with cancer therapy and smoking, and 

clone size was also positively associated with smoking (Extended Data Tables 2, 4). The 

association between age, therapy and CH was stronger for CH-PD compared to mutations 

not known to be putative cancer drivers (Extended Data Table 2). All subsequent analyses 

were limited to CH-PD.

The odds of having CH among cancer patients differed by primary tumor type even after 

adjustment for age (Extended Data Figure 2). The overall mutational spectrum of CH was 
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similar across cancer types, with the exception of DDR gene mutations being more frequent 

in patients with ovarian and endometrial cancers. This enrichment was most striking for 

mutations in PPM1D, which were found in 13% of patients with ovarian cancer and 7% of 

patients with endometrial cancer as compared to <5% in other cancer subgroups (Extended 

Data Figure 3). However, among patients who received no cancer therapy prior to blood 

draw, 8% of women with ovarian cancer and 0% of women with endometrial cancer had CH 

in PPM1D, suggesting that differences in the spectrum of CH mutations across tumor type 

could be explained by interactions with specific classes of cancer therapy and/or specific 

oncologic context.

Clinical parameters shape the fitness landscape of CH

We next sought to determine how specific external exposures might influence the fitness 

landscape of CH mutations and found that age, treatment and smoking correlated with 

specific molecular subtypes of CH (Figure 1a-b, Supplementary Figure 5). For example, 

mutations in the spliceosome genes SRSF2 and SF3B1 were less common in our cohort 

relative to other CH mutations, but showed the strongest association with age (ORSRSF2 = 

3.6, q (FDR-corrected p-value)=7×10−6; ORSF3B1 = 5.0, q=<10−6) (Figure 1b-c). Overall, in 

tests of heterogeneity, DNMT3A showed significantly weaker associations with age than 

other mutations, including spliceosome genes (Supplementary Figure 5). CH mutations in 

the DDR genes TP53, PPM1D and CHEK2 were most strongly associated with prior 

exposure to cancer therapy (ORTP53 = 2.8, q=2×10−4; ORPPM1D = 4.3, q=<10−6; ORCHEK2 

=4.5, q= 6×10−6, Figure 1c). Besides differences in the frequency of DDR mutations, CH 

mutational features were otherwise similar between treated and untreated individuals 

(Supplementary Figure 6). Mutations in ASXL1 were significantly associated with smoking 

history (OR=2.5, q=1×10−4, Figure 1c). Current smokers had a stronger association with CH 

in ASXL1 (OR=3.1, p=1×10−3) compared to former smokers (OR=2.4, p=1×10−4) although 

the OR did not significantly differ (p=0.4). While CH was more frequent overall among 

patients who received cancer-specific therapy, CH defined by mutations in epigenetic 

modifiers (DNMT3A, TET2) or splicing regulators (SRSF2, SF3B1, U2AF1) was not 

strongly affected by exposure to therapy (Figure 1b-c). Together, these observations provide 

evidence that the relative fitness of acquired mutations in HSPCs is modulated by 

environmental factors such as cancer treatment, smoking or the aging microenvironment in a 

gene-dependent manner.

Given the variety of cancer therapies, different therapeutic classes may impart distinct 

effects on CH. In our study, subjects were exposed to 490 different agents (Supplementary 

Notes and Supplementary Table 2). To this point, we found evidence of heterogeneity in the 

strength of association between class agent and CH gene mutations. For example, of all 

treatment modalities, external beam radiation therapy (OR=1.4, p<10−6), cytotoxic 

chemotherapy (OR=1.2, p=2×10−3) and radionuclide therapy (OR=1.6, p=0.01) were most 

strongly associated with CH-PD (global test of heterogeneity phet=0.03). With respect to 

subclasses of cytotoxic therapy, CH-PD was most strongly associated with prior exposure to 

topoisomerase II inhibitors (OR=1.3, p=0.01) and platinum agents (OR=1.2, p=0.02), and of 

the platinum agents, carboplatin (OR=1.4, 0.001) was associated with CH, unlike cisplatin 
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(OR=1.1, p=0.10) and oxaliplatin (OR=0.98, p=0.88) (Figure 2a). Targeted therapies and 

immunotherapeutic agent exposure were not significantly associated with CH (Figure 2a).

Associations with therapy exposure also varied by gene.—Mutations in PPM1D 
were most strongly associated with prior exposure to platinum (OR=3.2, q<10−6) or 

radionuclide therapy (OR=6.2, q=7×10−6) and also showed associations with topoisomerase 

II inhibitors (OR=2.0, q=0.002), taxanes (OR=1.8, q=0.003), topoisomerase I inhibitors 

(OR=1.7, q=0.002) and external beam radiation therapy (OR=1.8, q=0.04) (Figure 2b). 

Mutations in TP53 were associated with prior platinum (OR=2.1, q=0.03), radiation therapy 

(OR=1.8, q=0.04) and taxane (OR=1.9, q=0.05) exposure, whereas CHEK2 was associated 

with platinum (OR=2.4, q=0.02) and topoisomerase II inhibitors (OR=2.2, q=0.02) (Figure 

2b). The strength of the association between DDR CH and cytotoxic therapy differed by 

cytotoxic therapy subclass (p=4×10−6) and platinum subclass (p=0.03).

To evaluate whether treatment dose modulated these relationships, we calculated each 

patient’s relative cumulative exposure to specific therapy classes (see Supplementary Notes 

and Supplementary Figure 7). Increasing exposure to platinum chemotherapy was associated 

with CH-PD (p-trend=0.04). Among platinum agents, CH-PD was associated with higher 

cumulative doses of carboplatin (p-trend=3×10−5) and cisplatin (p-trend=0.04) (Figure 2c). 

Evidence of dose-response further supports a possible causal relationship between the 

associated exposures and CH.

Clonal dynamics of CH in response to cancer therapy

Our retrospective analysis suggests that exposure to cancer therapy results in a higher 

likelihood of CH, particularly in patients with mutations in DDR genes, following exposure 

to specific therapies. To definitively characterize how treatment affects mutational 

presentation and clonal dominance of CH across time, we collected sequential blood 

samples from 525 patients with solid tumors (median sampling interval time = 23 months, 

range: 6–53 months), of whom 61% received cytotoxic therapy or external beam radiation 

therapy and 39% received either targeted or immunotherapy or were untreated (see Methods 

and Supplementary Figure 8). None of these patients developed secondary hematologic 

malignancies during follow-up. Of these patients, 389 (74%) had CH, defined as a mutation 

present at a VAF of ≥2%, at the time of first sampling. The majority of CH mutations were 

present at both time points (n=590/620, 95%), allowing us to examine how clones evolved in 

the presence or absence of therapy and whether the clone-defining mutations influenced 

these trajectories.

We found evidence of both positive and negative changes in clone size across treatment 

modalities (Figure 3a). Among mutations detected at both time-points, the majority (62% 

(n=367) of CH mutations remained stable, 28% (n=164) had evidence of growth, and 10% 

(n=59) decreased in clonal size. Among patients receiving external beam radiation therapy 

or cytotoxic therapy, growth was most pronounced for CH with mutations in DDR genes 

TP53, CHEK2 and PPM1D (Figure 3b-c). Similar to our retrospective series, increasing 

cumulative exposure to these therapies resulted in faster clone growth in patients whose CH 

was defined by DDR mutations (Figure 3d). We did not see evidence of a significant 
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association between change in VAF and time from end of cytotoxic therapy to the second 

blood sampling. Future studies with sequential sampling before, during and after therapy 

will be needed to characterize the kinetics of CH. Patients with multiple mutations exhibited 

faster CH growth30 as compared to those with one mutation (p=0.03) irrespective of 

mutation type and treatment status (Supplementary Figure 9). This likely reflects the greater 

competitive advantage of a subset of clones harboring multiple mutations, although this 

cannot be determined with certainty in the absence of single-cell sequencing. The proportion 

of patients with newly detected mutations among those who received interval cytotoxic/

radiation therapy (4%, n=13) was non-significantly higher as compared to those who did not 

(1%, n=2, p=0.06) (Supplementary Figure 10). Thus, in addition to therapy selecting for CH, 

therapy may have mutagenic effects on HSPCs.

Many parameters likely influence evolutionary trajectories of emerging CH clones. To study 

competing clonal dynamics in patients, we identified 34 subjects in our prospective serial 

sampling series with one mutation in a DDR gene and one in a non-DDR gene (Figure 3e). 

The presence of these distinct classes of gene mutations within the same patient controls for 

any confounding parameters. In patients receiving interval cytotoxic therapy or radiation 

therapy, CH clones with DDR mutations grew faster compared to clones with other CH 

mutations in the same patient. However, the reverse was true in untreated patients: clones 

with mutations in non-DDR CH genes (e.g. DNMT3A) outcompeted clones with DDR 

mutations (Figure 3e). In summary, our serial sampling data provide direct evidence in 

patients that cancer therapy selects for clones with mutations in the DDR genes TP53, 

PPM1D and CHEK2 and that these clones have lower competitive fitness relative to non-

DDR gene mutations in the absence of cytotoxic or radiation therapy.

Genetic and clonal evolution to tMN

Recent studies have shown that tMN-initiating mutations can predate cancer therapy19, 

challenging the traditional hypothesis that tMN develops from the mutagenic effects of 

cancer therapy31 and suggesting a relationship with CH. We hypothesized that tMN 

development is at least in part mediated by therapeutic selection of mutant clones in a gene-

dependent manner.

To study the molecular events defining progression of CH to tMN, we analyzed 35 cases for 

which paired samples were available at the time of molecular profiling for primary cancer 

and at time of leukemic transformation for tMN (median inter-sampling time of 24 months, 

range:5–90 months) (Supplementary Table 3). We called mutations present at a VAF of ≥2% 

in at least one time-point. We detected disease-defining events at time of tMN in 34 patients. 

Strikingly at least one of these mutations was present at the time of CH (with at least one 

supporting read) in 19 patients (59%), with 13 (41%) harboring two or more. In all of these 

cases, the CH mutation was present at the time of tMN diagnosis (Extended Data Figure 4). 

However, these mutations are unlikely sufficient for leukemic transformation. In 91% of 

cases, transformation was associated with acquisition of additional somatic mutations, 

including chromosomal aneuploidies or mutations in genes (e.g. FLT3, KRAS, NRAS) 

known to drive late progression to myeloid disease27,32–34 (Supplementary Figure 11).
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Nearly half (n=14, 40%) of the tMN patients had mutations in TP53. Overall, 10/14 TP53 
mutations were detectable at time of CH testing. Of these, four cases had a concomitant 

TP53 mutation and another non-DDR mutation at time of CH. In agreement with 

prospective serial sequencing, in the presence of therapy the TP53 clone had consistently 

attained dominance by the time of tMN (Extended Data Figure 4). At transformation, in 

12/13 (92%) cases with available karyotype, TP53 mutations co-occurred with isolated 

chromosomal aneuploidies or complex karyotype. This provides a direct mechanistic link, 

whereby cells carrying mutations in TP53 are positively selected when exposed to oncologic 

therapy and attain clonal dominance with further genetic diversification, such as the 

acquisition of chromosomal aneuploidies.

Clinical implications of CH in cancer patients

Based on the direct evidence that CH mutations lead to tMN transformation in our paired 

sample data, we sought to identify risk factors associated with tMN. By combining patient 

data from our cohort with detailed clinical histories and three previously published 

studies35–37, we created a cohort of 9,437 cancer patients exposed to cancer therapy, of 

whom 75 developed tMN (Supplementary Table 2, see Supplementary Notes). Cause-

specific Cox proportional hazards analysis (Supplementary Table 2) showed that CH present 

at a VAF of >2% was positively associated with tMN risk (HR=6.9, p<10−6), and increased 

with the total number of mutations and clone size (Figure 4a). The strongest associations 

were observed for mutations in TP53, further validating the relevance of TP53 in tMN, and 

for mutations in spliceosome genes (SRSF2, U2AF1 and SF3B1). Future studies using error-

corrected sequencing methods will clarify the relationship between CH and tMN at VAFs 

<2%. Comparison of HRs for tMN and AML risk showed similar effect sizes 

(Supplementary Figure 12) in our cohort as in recent studies of healthy individuals30,38. 

These data suggest that the relative risk of myeloid neoplasms associated with CH and 

related parameters (gene, VAF and mutation number) is similar between healthy individuals 

and cancer patients.

We next sought to evaluate how CH, in combination with clinical parameters such as age 

and peripheral blood counts, might help stratify tMN risk for cancer patients. For example, 

in solid tumor patients undergoing surgical resection, adjuvant cancer therapy can improve 

overall survival by reducing cancer recurrence. However, in some situations, the absolute 

survival benefit of adjuvant therapy is modest and is countered, at least in part, by the risk 

for subsequent tMN, which is almost universally fatal, with a 5-year survival of 10%39. In 

the absence of prospective clinical studies, we performed an exploratory analysis using a 

synthetic model to quantify the absolute risk of AML/MDS following a breast cancer 

diagnosis. Using previously established methodology40,41, we combined estimates of HR 

parameters obtained from our multivariable analysis with the distribution of CH mutational 

features and blood count parameters from untreated patients at MSK and external sources to 

model the 10-year cumulative absolute AML/MDS risk distribution for women with breast 

cancer aged 50–75 in the United States. This risk model assumes a multiplicative effect of 

CH mutational features and cancer therapy on risk of tMN, based on the similarity between 

risk estimates for CH mutational features in AML that develops in individuals never exposed 

to therapy and tMN (Supplementary Figure 12). We determined how the risk distribution 

Bolton et al. Page 7

Nat Genet. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



would change with receipt of adjuvant therapy by shifting the population between receiving 

and not receiving adjuvant chemotherapy.

In our model, the majority (96%) of breast cancer patients have a low 10-year absolute risk 

(< 1%) for MN (Figure 4b) and for these patients, deferment of adjuvant chemotherapy 

would not impact their absolute MN risk (Figure 4c). However, for women at the highest 

risk of MN based on CH and blood count parameters in our synthetic model (top 1%), 

adjuvant chemotherapy increased the absolute risk of MN by approximately 9%. This would 

exceed the predicted absolute benefit in overall survival of chemotherapy in many women 

with early-stage breast cancer42. While not appropriate for clinical implementation, our 

findings may inform the design and provide a rationale for future studies to formally 

estimate the benefits of risk-adapted treatment decisions in cancer patients with CH.

DISCUSSION

Longitudinal studies of CH present a unique opportunity to study the patterns of early 

mutagenesis and the dynamics of clonal selection in the progression towards malignant 

transformation. Here, by combining epidemiologic and genetic approaches, we provide 

insights into the mechanisms that drive the transition of a normal HSPC to a cell with a 

considerably stronger proliferation advantage, and study how the ensuing trajectories are 

shaped by host and environmental exposures including age, ethnicity, smoking and cancer 

therapy. We provide evidence that the fate of CH mutations is dictated by a complex 

interplay between the inherent fitness advantage of the mutation(s) in HSPCs and parameters 

that preferentially select for specific mutations, i.e. aging for spliceosome mutations, 

smoking for mutations in ASXL1, and cancer therapy for specific genes involved in DDR 

(Extended Data Figure 5). These relationships provide insight into disease biology and may 

inform early detection and prevention strategies in cancer. We refine the relevance of CH as 

a predictor and precursor of tMN in cancer patients and show that CH mutations detected 

prior to tMN diagnosis were consistently part of the dominant clone at transformation. We 

demonstrate that cancer therapy directly favors growth of clones with mutations in genes 

such as TP53, which is associated with chemo-resistant disease and is strongly enriched in 

tMN. This provides a direct mechanistic link between genetic subtypes of CH, receipt of 

subsequent cancer therapy, and how these modulate the transition from CH to attainment of 

clonal dominance and, for a subset of cases, development of tMN.

Previous murine and in vitro modelling studies have provided evidence supporting an 

association between cancer therapy and increased fitness of DDR clones in CH. However, 

these observations have not been verified in human subjects, nor do they define how therapy 

enables the transition of CH to MN. Here we show that clones with DDR mutations are 

positively selected in the presence of cancer therapy but not in its absence. We also show 

that beyond clonal dominance the transition to tMN is most parsimoniously associated with 

the acquisition of further genetic lesions. Our detailed treatment information including agent 

class, dose and mechanism of action allowed us to refine the specificity and strength of the 

association between cancer therapy and CH and characterize distinct gene-treatment effects. 

We show that radiation therapy and cytotoxic therapy are significantly associated with CH, 

with regimens containing platinum and topoisomerase II inhibitors most strongly correlating 
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with CH in specific DDR pathway genes including TP53, PPM1D and CHEK2. Serial 

sampling before and after therapy provided clear, definitive evidence that therapy induces 

gene-specific clonal expansion, whereby clones with mutations in DDR genes outcompete 

other clones in the setting of cancer therapy, but not in its absence. Last, the dose-response 

relationships observed in both our cross-sectional arm and longitudinal study further support 

a causal relationship between platinum and CH and the cumulative effect of therapy on 

selection.

The specificity of the associations at a genetic and exposure level (i.e. therapeutic subclasses 

and agents such as carboplatin) sets a framework for future correlative and mechanistic 

studies into early oncogenesis for blood disorders. The specific mechanisms and pathways 

through which chemotherapeutic agents induce HSC injury may be agent-specific43,44. 

Further work will be needed to elucidate the mechanisms responsible for the differential 

fitness effects of cancer therapy and other environmental exposures such as smoking on CH 

both during and after exposure, and how this relates to tMN risk. Beyond the most frequent 

cancer genes surveyed here, comprehensive genome studies such as deep whole exome or 

whole genome analyses in cohorts linked to detailed registries of environmental exposures 

are warranted to uncover the full repertoire of selection in CH.

We find overlap in the types of cancer therapy associated with selection of DDR CH and 

those linked to tMN risk (carboplatin, topoisomerase II inhibitors and radiation). Selection 

of TP53 is only one mechanism driving tMN and may be distinct from the processes driving 

initiation and selection for other tMN-associated alterations including chromosomal 

aneuploidies and genomic rearrangement (i.e. MLL fusion genes). Our work adds to early 

evidence45,46 that external stressors are critical in shaping gene-dependent selection of 

clonal mosaicism. Characterization of the complex interplay between genotype, fitness 

challenges, and environmental factors will be key to understanding age-associated clonal 

mosaicism and the associated exposures that result in malignant transformation. These 

insights would provide the premise for risk stratification and prevention strategies.

Our observations provide a rationale for clinical therapeutic intervention, including the 

development of therapies aimed to target high-risk CH clones and modulation of the use of 

adjuvant systemic cancer therapy in patients at highest risk of subsequent myeloid neoplasm. 

The latter could entail deferring adjuvant cytotoxic therapy or substituting therapies shown 

to promote high-risk CH with alternative agents when clinically appropriate. We showcase 

this with a prototype synthetic model; however, development and validation of risk 

prediction models for specific clinical scenarios are needed prior to implementation. The 

realization of precision medicine is reliant upon the development of evidence-based 

guidelines that consider molecular biomarkers alongside standard clinical criteria to inform 

clinical care. The decreasing cost of prospective clinical sequencing assays and the high 

frequency of CH in cancer patients suggest that screening for CH prior to initiation of cancer 

therapy may be feasible, and may enable molecularly based early detection and interception.
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METHODS

MSK-IMPACT Cohort

The study population included patients with non-hematologic cancers at MSKCC that 

underwent matched tumor and blood sequencing using the MSK-IMPACT panel on an 

institutional prospective tumor sequencing protocol (ClinicalTrials.gov number, 

NCT01775072) before July 1st, 2018; all patients enrolled on this protocol provided 

informed consent. This study was approved by the MSKCC Institutional Review Board 

(IRB). A subset of patients that underwent tumor-genomic profiling as standard of care were 

not directly consented, in which case an IRB waiver was obtained to allow for inclusion into 

this study.

We extracted data on ethnicity, smoking, date of birth and cancer history through the MSK 

cancer registry. Subjects who had a hematologic malignancy diagnosed within three years 

prior to blood collection for MSK-IMPACT testing or who had an active hematologic 

malignancy at the time of blood draw were excluded. Subjects who were diagnosed with a 

hematologic malignancy less than three months following MSK-IMPACT were considered 

to have an active hematologic malignancy at the time of MSK-IMPACT and were also 

excluded. When unavailable through the cancer registry, we extracted data on ethnicity and 

smoking through structured fields in clinician medical notes if available. Subjects for which 

age was not available were excluded. Blood indices were taken from clinical labs closest to 

the date of blood collection for MSK-IMPACT, within one year before or after blood 

collection (median 0 days). The 8,810 individuals included in the previous MSK-IMPACT 

publication studying CH are included in the current manuscript. A major difference between 

the two studies, in addition to an expanded sample size, is the comprehensiveness of the 

clinical data, including therapeutic exposure data, that was obtained as detailed in the 

supplementary notes section.

Serial Sampling Cohort

In order to study the growth rate of clonal hematopoiesis mutations over time we collected 

additional blood samples on patients sequenced using MSK-IMPACT for repeat CH 

mutation testing. These came from three sources: first, from 372 patients with CH in whom 

we obtained a second blood sample at least 18 months after initial MSK-IMPACT blood 

collection, second, from 21 samples from patients with clonal hematopoiesis on MSK-

IMPACT who had a blood sample banked at least 12 months prior to MSK-IMPACT testing, 

and third, from 132 samples that were taken for repeat MSK-IMPACT testing for clinical 

purposes at least six months after the first MSK-IMPACT testing irrespective of clonal 

hematopoiesis status (Supplementary Figure 8). For all patients who had sequential 

sampling data, we manually reviewed their medical records to capture receipt of cancer 

therapy received at outside institutions during the follow-up period. If subjects received 

therapy outside MSK during the follow-up period, we excluded them from analyses of dose-

response relationships since cumulative dose of therapy could not be consistently collected 

from outside records. This study was approved by the MSKCC IRB.
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Targeted Capture-Based Sequencing

Subjects had a tumor and blood sample (as a matched normal) sequenced using MSK-

IMPACT, a FDA-authorized hybridization capture-based next-generation sequencing assay 

encompassing all protein-coding exons from the canonical transcript of 341, 410, or 468 

cancer-associated genes (Supplementary Table 4). MSK-IMPACT is validated and approved 

for clinical use by New York State Department of Health Clinical Laboratory Evaluation 

Program and is used to sequence cancer patients at Memorial Sloan Kettering. Genomic 

DNA is extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue and patient 

matched blood sample, sheared and DNA fragments were captured using custom probes47. 

MSK-IMPACT contains most of the commonly reported CH genes with few exceptions. 

Earlier versions of the panel did not contain PPM1D or SRSF2. Additionally, three genes 

commonly reported to be observed in patients with malignancies, SRCAP, BRCC3 and 

ZNF318 were not included, the former two belonging to the DNA damage response 

pathway.

The blood samples in the serial sampling cohort that were obtained for repeat CH testing 

were sequenced using a comparable capture-based custom panel using 163 genes implicated 

in myeloid pathogenesis, which included the most commonly mutated genes in our MSK-

IMPACT study, with the exception of ATM. The median sequencing depth was 665X 

(range=111–1987X) which was comparable to that obtained in the blood using MSK-

IMPACT. For all subsequent analyses using the serial sampling cohort we only considered 

mutations that were present in both the initial and follow-up panel.

Variant Calling

Pooled libraries were sequenced on an Illumina HiSeq 2500 with 2×100bp paired-end reads. 

Sequencing reads were aligned to human genome (hg19) using BWA (0.7.5a). Reads were 

re-aligned around indels using ABRA (0.92), followed by base quality score recalibration 

with Genome Analysis Toolkit (GATK) (3.3–0). Median coverage in the blood samples was 

497x, and median coverage in the tumors was 790x. Variant calling for each blood sample 

was performed unmatched, using a pooled control sample of DNA from 10 unrelated 

individuals as a comparator. Single nucleotide variants (SNVs) were called using Mutect and 

VarDict. Insertions and deletions were called using Somatic Indel Detector (SID) and 

VarDict. Variants that were called by two callers were retained. Dinucleotide substitution 

variants (DNVs) were detected by VarDict and retained if any base overlapped a SNV called 

by Mutect. All called mutations were genotyped in the patient matched tumor sample. 

Mutations were annotated with VEP (version 86) and OncoKb.

Post-Processing Filters for Clonal Hematopoiesis Calling

We applied a series of post-processing filters to further remove false positive variants caused 

by sequencing artifacts and putative germline polymorphisms. We removed variants that 

were found (with a VAF of >2% at least once) in a panel of sequencing data from 300 blood 

samples obtained from persons under 20 years of age and without evidence of clonal 

hematopoiesis. We further filtered single nucleotide deletions within a homopolymer stretch 

of (≥3 base repetition) of the same deleted base pair, single nucleotide substitutions 

completing a stretch of a ≥5 bp-long homopolymer (E.g. GGCGG -> GGGGG) in-frame 
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deletions or insertions in a highly repetitive region (DUST48 algorithm score of ≥5), and 

variants with unequal proportions of forward/reverse direction supporting reads based on a 

fisher test. We performed manual review in IGV of recurrent mutations not previously 

reported in public databases. We required a variant allele fraction of at least 2% and at least 

10 supporting reads. All genotypes were calculated using sequencing reads and bases with a 

quality value of at least 20. Because somatic mutations in the blood would be expected to be 

detected in the blood but not other tissue compartments, we compared the variant allele 

fraction (VAF) of mutations in the blood compared to the matched tumor. Variant calls that 

were present in the blood with a VAF of at least twice that in the tumor or 1.5 times the VAF 

if the tumor biopsy site was a lymph node were considered somatic. This ratio was chosen 

based on minimizing sensitivity and specificity of CH calls through simulations of leukocyte 

contamination in the tumor (see Supplementary Notes and Supplementary Figures 11 and 

12). To further filter putative germline polymorphisms that passed the blood/tumor solid 

tissue ratio due to allelic imbalance in the tumor specimen, we removed any variant reported 

in any population in the gnomAD database at a frequency greater than 0.005.

Validation of Calls

To test the reproducibility of our clonal hematopoiesis mutation calling, we compared the 

mutational calling results from 1,173 samples, where the same DNA library for a blood 

sample was sequenced and analyzed twice using MSK-IMPACT. We detected 91% of 

variants in both samples using our calling criteria with a correlation coefficient of 0.98 for 

the variant allele fraction between the two calls indicating that the reproducibility of our 

calls was high. In 10 cases with CH, we obtained a second blood sample and re-sequenced 

using a custom capture based panel with unique molecular identifiers and found that this 

independent method confirmed all 18 of our CH calls using MSK-IMPACT.

Variant Annotation

Variants were annotated according to evidence for functional relevance in cancer (putative 

driver or CH-PD) and for relevance to myeloid neoplasms specifically (CH-myeloid-PD). 

We annotated variants as oncogenic in myeloid disease (CH-myeloid-PD) if they were in a 

gene hypothesized to drive myeloid/hematologic malignancies (Supplementary Table 5) and 

if they fulfilled any of the following criteria: 1) truncating variants in NF1, DNMT3A, 
TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, ASXL1, RUNX1, BCOR, 
KDM6A, STAG2, PHF6, KMT2C, PPM1D, ATM, ARID1A, ARID2, ASXL2, CHEK2, 
CREBBP, ETV6, EZH2, FBXW7, MGA, MPL, RB1, SETD2, SUZ12, ZRSR2 or in CALR 
exon 9; 2) translation start site mutations in SH2B3; 3) TERT promoter mutations; 4) FLT3-

ITDs; 5) in-frame indels in CALR, CEBPA, CHEK2, ETV6, EZH2; 6) any variant occurring 

in the COSMIC “haematopoietic and lymphoid” category greater than or equal to 10 times; 

7) any variant noted as potentially oncogenic in an in-house dataset of 7,000 individuals with 

myeloid neoplasm greater than or equal to 5 times. We annotated variants as oncogenic (CH-

PD) if they fulfilled any of the following criteria: 1) any variant noted as oncogenic or likely 

oncogenic in OncoKB25; 2) any truncating mutations (nonsense, essential splice site or 

frameshift indel) in known tumor suppressor genes as per the Cancer Gene Census, 

OncoKB, or the scientific literature; 3) any variant reported as somatic at least 20 times in 

COSMIC49; 4) any variant meeting criteria for CH-Myeloid-PD as above. All missense 
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variants not meeting the above criteria were individually reviewed for potential oncogenicity 

as previously described50.

Calculation of dN/dS Ratios

We used the dNdScv (https://github.com/im3sanger/dndscv) package to quantify the dN/dS 

ratios for missense and truncating mutations at the gene level as well as on the panel level. 

Due to the difference in the gene panel between different MSK-IMPACT panel versions, we 

excluded all MSK-IMPACT-341 samples and only included genes that were present on both 

MSK-IMPACT-410 and MSK-IMPACT-468 panels in the analysis. Finally, to generate the 

overall dN/dS landscape in CH, we only presented genes that reached a significance level of 

q<0.1 after multiple testing correction and contained more than 25 variants.

Modeling the Association Between CH and Prior Exposure to Cancer Therapy

We used multivariable logistic regression to evaluate for an association between clonal 

hematopoiesis (including gene and variant specific factors) and therapy, age, gender and 

smoking history. In addition to these variables, we also adjusted for time from cancer 

diagnosis to blood draw for MSK-IMPACT testing because trends in preferred oncologic 

agents vary over time and CH is known to associate with survival. We did not adjust for 

primary tumor type since we hypothesized that most of the difference in CH-PD rates 

reflected differences in treatment regimens. Indeed, among untreated patients, a global Wald 

test for differences in CH-PD prevalence by tumor type was not significant (p=0.98). 

Analyses stratified by the time since start and by completion of external beam radiation and 

chemotherapy showed no clear evidence of a time-dependence/latency between CH-PD and 

cumulative exposure to therapy. Thus, the time from start or stop of therapy was not adjusted 

for. While considering exploratory analyses, we performed multiple hypothesis correction 

using the false discovery rate (FDR) q-values for gene-specific analyses to control for 

inflation of type I error. We did not perform multiple hypothesis correction for analyses 

testing an association between subclasses of cancer therapy and CH because the association 

between cancer therapy and CH is known and our goal was to define the relative strength of 

these associations with subtypes of therapy rather than hypothesis testing. Heterogeneity p-

values to test for differences in the strength of the association between subclasses of CH and 

clinical variables were calculated through logistic regression models limited to CH-positive 

individuals testing for a difference in the odds of having CH with the mutational feature of 

interest (e.g. CH-PD) vs. having CH without the mutational feature (e.g. non-CH-PD). 

Generalized estimating equations were used to test for an association between CH VAF and 

selected clinical and mutational features among CH positive individuals accounting for 

correlation between the VAF of mutations in the same person. Ordinal logistic regression 

among CH positive individuals was used to test for an association between clinical 

characteristics and increasing CH mutation number. A test for trend between increasing 

cumulative exposure to cancer therapy and the odds of CH-PD was performed using 

multivariable logistic regression limited to individuals exposed to the therapy of interest.
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Modeling the Effect of Cancer Therapy on Mutation Growth Rate

For each mutation in each individual with sequential sequencing data available, we modeled 

the growth rate of the mutation between the two time points according to the following 

formula:

α = log V / V0 / T − T0

Where T and T0 indicates the age of the individual (in days) at the two measurement time 

points and V and V0 correspond to the VAF at T and T0 respectively. We also classified 

mutations as having increased, decreased or remained constant during the follow-up period 

based on a binomial test comparing the two VAFs. Generalized estimating equations were 

used to test for an association between exposure to cytotoxic therapy and external beam 

radiation therapy and CH growth rate adjusting for age, gender and smoking status 

accounting for correlation between the growth rate of mutations in the same person. Among 

patients with at least one mutation in a DDR CH gene and another non-DDR CH gene, we 

calculated the difference in the growth rate between mutations. When patients had more than 

two mutations in the same gene category, we used the highest growth rate for that category. 

A paired t-test was used to test for significance in the difference between growth rates of 

DDR mutations compared to non-DDR mutations within individuals who received cytotoxic 

therapy and/or external beam radiation therapy and within those who were untreated during 

the follow-up period.

Combined Analysis for AML/MDS Risk

We combined data from MSK and three previously published studies, Gillis et al., 

abbreviated MOF (n=68), Takahashi et al., abbreviated MDA (n=67), Gibson et al., 

abbreviated DFC (n=401) studying the effect of CH on tMN risk in cancer patients. We 

defined tMN as an MDS or AML diagnosed following exposure to therapeutic radiation or 

cytotoxic therapy as per the WHO criteria51. For all samples, uniform post processing filters 

were applied to ensure retention of variants in accordance with the QC standards of the 

MSK cohort including a universal 2% minimum VAF cutoff. We only included mutations 

within genes that are present on the panel from all centers and on all panel versions from 

each center (Supplementary Table 6). The only exceptions were SRSF2 which the 

IMPACT-341 sequencing panel did not cover and PPM1D which was not sequenced in 

IMPACT-341, MDA or MOF. We performed mean imputation of missing clinical data for 

blood counts. Only mutations that we classified as CH-PD were included in analyses. We 

performed univariate cause-specific Cox proportional hazards regression for the effect of 

maximum VAF, total number of CH mutations, CH in specific genes and blood count 

parameters adjusted for age and gender and stratified by study site. Interaction terms 

between study and CH were used to test for heterogeneity between studies on the effect of 

CH on tMN risk. The proportional hazards assumption was tested through visual inspection 

of residual plots and through the inclusion of time-varying covariates. We performed a 

multivariable analysis including age, gender and all variables that were significant in the 

univariate analysis with the exception of the genes not included in all studies to prevent 

reduction of sample size, PPM1D and SRSF2. Because our sample set was limited to 
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individuals who received cancer therapy, we were unable to study gene-treatment 

interactions in the risk of myeloid neoplasm. Thus, in our combined model CH and cancer 

therapy are modeled as having multiplicative effects, i.e. no multiplicative interaction on 

myeloid neoplasm risk. We think this is a reasonable assumption for an exploratory analysis 

such as the one presented in our study. Much larger studies (including solid tumor patients 

who did and did not receive any cancer therapy besides surgery) would be needed to define 

the magnitude of CH-treatment interactions.

We also combined data from two studies investigating the effect of CH on AML risk in 

healthy individuals, Abelson et al., abbreviated PMC (n=969) and Young et al., abbreviated 

WSU (n=103), with data from MSK and applied uniform processing to mutation data from 

different centers. As in the solid tumor combined analysis, the same post processing filters 

used in the main MSK cohort including a universal 2% minimum VAF cutoff were applied 

to these studies and only mutations that we classified as CH-PD were included in analyses. 

We performed a multivariable Cox regression adjusted for age and gender including the 

variables used in the multivariable tMN risk analysis in solid tumor patients.

Modeling Absolute Risk of AML/MDS

We used the iCARE R package40,41 to build a model for absolute risk of AML/MDS in 

women with breast cancer aged 50–75 in the United States (U.S) by combining 1) the 

multivariate HR estimates from our study that were significant in the univariate model 

including maximum VAF of CH, gene specific effects and peripheral blood count indexes 

(RDW, hemoglobin); 2. Age-specific AML/MDS rates in breast cancer using data provided 

by the National Comprehensive Cancer Network (NCCN)52; 3. Competing hazards for 

mortality in women with breast cancer in the U.S aged 50–75 as reported in SEER53; 4. 

Previously published HR estimates for chemotherapy on the risk of tMN in women with 

breast cancer from the NCCN52; 5. The distribution of CH VAF, number of mutations, CH 

gene and peripheral blood count indexes using our cohort of MSK solid tumor cancer 

patients aged 50–75 who were untreated prior to blood draw; 6. The proportion of women 

who receive adjuvant chemotherapy for breast cancer in the U.S from SEER53. While our 

IMPACT cohort is not representative of the general breast cancer population in the U.S, 

since the distribution of CH mutational features is largely driven by age and since we do not 

see major differences in rates of CH between gender or untreated tumor types, we believe 

that the distribution of CH mutational features in untreated solid tumor patients sequenced 

on IMPACT reasonably approximates an age-matched untreated breast cancer population. 

While blood count indexes are known to differ by sex and we chose to use the distribution of 

blood counts from the entire treatment-naive IMPACT population (both male and female) to 

capture the inter-relationship between blood count indexes and CH mutational features. 

Sensitivity analyses using the distribution of blood count parameters from female IMPACT 

patients only produced similar results. This risk model assumes an additive association on 

the log scale of CH mutational features and cancer therapy for risk of tMN. This assumption 

is supported by the similarity between risk estimates for CH mutational features between 

AML in healthy individuals never exposed to therapy and tMN (Supplementary Figure 10).
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All the statistical analyses were performed using the R statistical package (www.r-

project.org). The code used in statistical analysis is provided in the Supplementary Notes.

Extended Data

Extended Data Figure 1. Distribution of cancer therapy received prior to blood collection for 
sequencing.
A) Frequency of patients receiving systemic therapy or external beam radiation therapy by 

primary tumor type. B) Frequency of patients receiving specific classes of systemic therapy 
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by primary tumor type. C) Frequency of patients receiving top ten subclasses of cytotoxic 

therapy. Most patients (91%) who received at least one of these cytotoxic therapy classes 

received multiple classes.

Extended Data Figure 2. Association between primary tumor site and CH-PD.
Odds ratios (circle) and 95% confidence intervals for CH-PD in selected primary tumor 

types with at least 100 subjects compared to breast cancer (n=3540) in a logistic regression 

model adjusted for age. * p<0.05, ** p<0.01, *** p<0.001.
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Extended Data Figure 3. 
Proportion of patients with common CH-PD mutations by primary tumor sites. Genes 

mutated in at least 75 individuals and the top 12 primary tumor sites are shown.
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Extended Data Figure 4. Variant frequencies (VAF) at time of pre-tMN testing and tMN 
diagnosis.
Plots show changes in mutational frequencies in relation to cancer therapy exposure in 19 

CH cases. Below each graph are listed treatments received prior to pre-tMN testing and the 

number of days between the end of treatment and the pre-tMN sample.
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Extended Data Figure 5. Differences in the fitness effect of CH mutations and the environment 
shape clonal dominance over an individual’s lifetime.
Conceptual graph illustrating how associations between specific exposures and CH 

mutations may shape clonal dominance over an individual’s lifetime. AML, acute myeloid 

leukemia; cyclophosph, cyclophosphamide; MDS, myelodysplastic syndrome.

Extended Data Table 1.

Clinical characteristics of solid tumor patients assessed for CH.

CH− CH+

Total 16930 (70%) 7216 (30%)

Smoking status

 Non-smoker 8979 (74%) 3086 (26%)

 Current/former 7255 (65%) 3894 (35%)

 Missing 696 (75%) 236 (25%)

Gender

 Male 7710 (70%) 3315 (30%)

 Female 9220 (70%) 3901 (30%)

Age

 0–10 324 (96%) 13 (3.9%)

 10–20 284 (96%) 13 (4.4%)

 20–30 672 (95%) 36 (5.1%)

 30–40 1398 (92%) 121 (8%)

 40–50 2757 (87%) 420 (13%)

 50–60 4490 (78%) 1298 (22%)

 60–70 4499 (64%) 2575 (36%)

 70–80 2127 (50%) 2092 (50%)

 80–90 379 (37%) 648 (63%)

Ethnicity

 White 12628 (69%) 5802 (31%)

 Asian 1274 (78%) 356 (22%)

 Black 1081 (73%) 410 (27%)

 Other 1175 (77%)  355 (23%)

 Unknown 772 (72%) 293 (28%)

Therapy

 Treated 4193 (70%) 1785 (30%)

 Untreated 3027 (73%) 1133 (27%)

 Unknown 9710 (69%) 4298 (31%)

Primary tumor subtype

Ampullary carcinoma 47 (76%) 15 (24%)

Anal cancer 38 (67%) 19 (33%)

Appendiceal cancer 128 (79%) 34 (21%)
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CH− CH+

Biliary cancer 351 (69%) 157 (31%)

Bladder cancer 445 (62%) 267 (38%)

Breast carcinoma 2610 (74%) 930 (26%)

Cancer of unknown primary 484 (67%) 239 (33%)

Cervical cancer 91 (77%) 27 (23%)

Chondroblastoma 1 (100%) 0 (0%)

Chondrosarcoma 42 (78%) 12 (22%)

Chordoma 27 (75%) 9 (25%)

Choroid plexus tumor 3 (100%) 0 (0%)

Colorectal cancer 1625 (75%) 528 (25%)

Embryonal tumor 153 (89%) 18 (11%)

Endometrial cancer 510 (61%) 321 (39%)

Ependymomal tumor 26 (90%) 3 (10%)

Esophagogastric carcinoma 464 (70%) 196 (30%)

Ewing sarcoma 66 (89%) 8 (11%)

Gastrointestinal neuroendocrine tumor 73 (68%) 34 (32%)

Gastrointestinal stromal tumor 200 (70%) 84 (30%)

Germ cell tumor 352 (91%) 35 (9%)

Gestational trophoblastic disease 10 (77%) 3 (23%)

Glioma 834 (76%) 260 (24%)

Head and neck carcinoma 252 (69%) 111 (31%)

Hepatocellular carcinoma 134 (71%) 55 (29%)

Melanoma 612 (69%) 269 (31%)

Meningothelial tumor 52 (79%) 14 (21%)

Mesothelioma 146 (65%) 78 (35%)

Miscellaneous brain tumor 22 (85%) 4 (15%)

Miscellaneous neuroepithelial tumor 11 (65%) 6 (35%)

Nerve sheath tumor 43 (88%) 6 (12%)

Non-small cell lung cancer 2235 (63%) 1324 (37%)

Osteosarcoma 98 (90%) 11 (10%)

Ovarian cancer 411 (62%) 254 (38%)

Pancreatic cancer 964 (68%) 452 (32%)

Penile cancer 7 (78%) 2 (22%)

Pheochromocytoma 6 (86%) 1 (14%)

Pineal tumor 1 (25%) 3 (75%)

Prostate cancer 971 (65%) 523 (35%)

Renal cell carcinoma 445 (78%) 128 (22%)

Retinoblastoma 38 (95%) 2 (5%)

Salivary carcinoma 161 (76%) 52 (24%)
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CH− CH+

Sellar tumor 53 (88%) 7 (12%)

Sex cord stromal tumor 29 (81%) 7 (19%)

Skin cancer, non-melanoma 137 (60%) 91 (40%)

Small bowel cancer 66 (77%) 20 (23%)

Small cell lung cancer 128 (60%) 84 (40%)

Soft tissue sarcoma 751 (76%) 233 (24%)

Thymic tumor 35 (70%) 15 (30%)

Thyroid cancer 267 (62%) 165 (38%)

Uterine sarcoma 124 (73%) 46 (27%)

Vaginal cancer 10 (67%) 5 (33%)

Wilms tumor 23 (96%) 1 (4.2%)

Unknown 75 (69%) 34 (31%)

Extended Data Table 2.
Association between variant allele fraction (VAF) of CH 
mutations and clinical characteristics.

Generalized estimating equations were used to test for association between VAF of CH 

mutations (among those with a mutation) and selected clinical and mutational features, 

accounting for correlation between the VAF of mutations in the same person. Age expressed 

in decile.

Variable (ref) OR 95% CI p

Age - 1 1–1.1 0.0011

Ethnicity (white) Asian 1 0.94–1.2 0.42

Black 0.9 0.82–1 0.053

Other 0.93 0.83–1 0.24

Unknown 0.92 0.8–1.1 0.22

Smoking status (non-smoker) Smoker 1.1 1.1–1.2 0.000023

Therapy (untreated) Treated 1 0.96–1.1 0.8

PD status (Non-PD non-myeloid) Myeloid PD 1.3 1.3–1.4 < 1 × 10−6

Non-myeloid PD 1.3 1.2–1.5 0.000052

Non-PD myeloid 0.99 0.92–1.1 0.8

Number of mutations (1) ≥ 2 1.1 1.1–1.2 0.0000038
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Extended Data Table 3.
Association among clinical characteristics and CH 
mutational characteristics.

Myeloid PD, genes mutated in myeloid neoplasms; non-myeloid, genes not linked to 

myeloid neoplasms; myeloid PD, variants known to be myeloid drivers or putative somatic 

driver mutations in myeloid neoplasms; myeloid non-PD, mutations within genes linked to 

myeloid neoplasms but that are not putative drivers; non-myeloid PD, mutations that are 

putative somatic driver mutations of cancer in genes not linked to myeloid neoplasms; non-

myeloid non-PD, mutations within genes not linked to myeloid neoplasms that are not 

putative drivers of cancer. Associations were evaluated using multivariable logistic 

regression models to generate heterogeneity p-values. Sensitivity analyses restricted to 

individuals with only one mutation yielded similar results. Age expressed in decile.

Variable (reference) OR 95% CI p

Age - 1 1–1.1 0.0011

Ethnicity (white)

Asian 1 0.94–1.2 0.42

Black 0.9 0.82–1 0.053

Other 0.93 0.83–1 0.24

Unknown 0.92 0.8–1.1 0.22

Smoke (non-smoker) Smoker 1.1 1.1–1.2 0.000023

Therapy (untreated) Treated 1 0.96–1.1 0.8

PD status (non-PD non-myeloid)

Myeloid PD 1.3 1.3–1.4 < 1 × 10−6

Non-myeloid PD 1.3 1.2–1.5 0.000052

Non-PD myeloid 0.99 0.92–1.1 0.8

Number of mutations (1) ≥ 2 1.1 1.1–1.2 0.0000038

Extended Data Table 4.
Association between CH mutation number and clinical 
characteristics.

Ordinal logistic regression was used to test for association between clinical characteristics 

and mutation number in patients with clonal hematopoiesis in a multivariable model. Age 

expressed in decile.

Variable (reference) OR 95% CI p

Age (0–10) > 10 2.3 2–2.6 < 1 × 10−6

Gender (male) Female 1.1 0.94–1.3 0.2

Ethnicity (white) Non-white 0.83 0.67–1 0.087

Smoke (non-smoker) Smoker 1.2 1–1.4 0.027

Therapy (untreated) Treated 1.2 1.1–1.5 0.011
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Figure 1. Specific molecular subtypes of CH-PD correlate with age, prior therapy exposure and 
smoking history.
(A) Proportion of patients with CH-PD mutations in specific genes among treated and 

untreated patients. Multivariable logistic regression was used to test whether the odds of 

having a specific gene mutated differed between treated (n=5,978) and untreated (n=4,160) 

patients after adjustment for age, gender, smoking and ethnicity. * p<0.05, ** p<0.01, *** 

p<0.001 (B) Among patients with CH-PD, the proportion with mutations in specific genes, 

by age group and treatment status. (C) Odds ratio with 95% confidence interval for CH-PD 

mutation in the ten most commonly mutated genes with top, increasing age (n=10,138); 

middle, for patients previously exposed to cancer therapy (n=5,978) compared to those with 

no exposure (n=4160); bottom, for current/former smokers (n=4,989) compared to non-

smokers (n=5,145) in multivariable logistic regression models adjusted for therapy, smoking, 

ethnicity, age, gender and time from diagnosis to blood draw. *, q-value (FDR-corrected p-

value) <0.05, ** q<0.01, *** q<0.001. Age is expressed as the mean centered values.
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Figure 2. Association between CH-PD and prior exposure to cancer therapy.
(A) Odds ratios (OR) and 95% confidence intervals for CH-PD and specific classes of 

cancer therapy in multivariable logistic regression adjusted for each other, smoking, 

ethnicity, gender and time from diagnosis to blood draw. Top, OR for broad classes of cancer 

therapy; middle. OR between CH-PD and prior exposure to subclasses of cytotoxic therapy; 

bottom, OR between CH-PD and exposure to specific platinum-based drugs. (B) OR 

between prior receipt of cancer therapy and CH-PD stratified by tertile of cumulative 

exposure for the agent. Multivariable logistic regression was used adjusted as in (A) but with 

cumulative weight-adjusted dose of systemic therapy classes and cumulative radiation dose 

(as expressed in EQD2. The p-trend was calculated to test for association between CH and 

increasing tertiles of cumulative cancer therapy exposure among those who received the 

therapy in the multivariable model. Shaded bands indicate 95% confidence intervals. (C) 

Heatmap showing the log(OR) between CH-PD in specific genes and prior exposure to the 

major classes of cytotoxic therapy and radiation therapy in logistic regression models 

adjusted for therapy subclass, smoking, ethnicity, gender and time from diagnosis to blood 

draw. * q (FDR-corrected p-value) <0.05, ** q<0.01, *** q<0.001.
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Figure 3. Clonal evolution of CH mutations under the selective pressure of cancer therapy.
(A) Change in VAF for CH mutations from initial to follow-up sequencing for patients 

stratified by type of therapy received during the follow-up period. XRT, external beam 

radiation. (B) Change in growth rate for DDR and non-DDR CH mutations among those 

who received XRT (n=167) or cytotoxic therapy (n=285) during the follow-up period. 

Shown are the p-values generated from t-tests comparing the growth rate of CH mutations 

among patients exposed to either of these therapies compared to untreated patients. (C) 

Change in growth rate for specific CH mutations stratified by whether patients received 
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cytotoxic or radiation therapy (n=268) or no therapy (n=177) during the follow-up period. 

Shown are the FDR-corrected p-values (q-value) from a t-test comparing the growth rate of 

mutations in treated and untreated patients. (D) Change in growth rate for DDR and non-

DDR CH mutations stratified by tertile of cumulative exposure to cytotoxic therapy and 

XRT. Shown are the p-values for a trend test for increasing growth rate of CH with 

increasing tertile of therapy exposure using generalized linear regression adjusted for age, 

gender and smoking. Shaded bands indicate interquartile ranges. Intra-subject competition 

between DDR and non-DDR CH mutations. Connecting lines show the difference in growth 

rate between DDR vs. other genes in patients who received XRT or cytotoxic therapy vs. 

those who did not receive such therapy during the follow-up period. A paired t-test was used 

to test for significance in the difference between growth rates of DDR and non-DDR CH 

mutations within individuals. All p-values are two-sided.
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Figure 4. Risk of AML or MDS by clinical and CH-PD mutational characteristics in patients 
with solid tumors.
(A) Hazard ratio and 95% confidence intervals from Cox regression for blood count indexes, 

and CH-PD mutational characteristics for therapy-related myeloid neoplasms (tMN; AML 

or MDS, n=75). All models were adjusted for age and gender and stratified by study center. 

Blood counts are expressed as the mean centered score (the OR is per 1 SD of the blood 

count). * p<0.05, ** p<0.01, *** p<0.001. (B) Projected distribution of absolute 10-year risk 

of AML or MDS for women after a breast cancer diagnosis in the United States aged 50–75 

at presentation based on our synthetic model. (C) Comparison of distribution of absolute 10-

year risk of AML or MDS among women at the top percentiles of risk between those who 

go on to receive adjuvant cytotoxic chemotherapy and those who receive surgery only. 

n=9,437.
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