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Dear Editor,
Primary immunodeficiency diseases (PIDs) are a group of over

400 rare and diverse hereditary disorders that affect the immune
system’s ability to combat infections. PIDs are caused by genetic
mutations and are present from birth, as opposed to secondary
immunodeficiency disorders, which are acquired later in life as a
result of infections, medicines, or other medical issues[1]. Over the
past three decades, significant advancements in the technology
and practices of gene therapy have been made. PIDs have been
successfully treated with gene therapy on a large scale (Fig. 1). A
working copy of the problematic gene is inserted or altered into
the patient’s own Hematopoietic Stem Cells (HSCs) in this
innovative procedure. Gene therapy, in conjunction with hema-
topoietic cell transplantation (HCT), offers the potential to treat
persons with PIDs. HCT entails supplying healthy donor HSCs
that can grow into fully functioning immune cells in PID patients.
During 1999–2000, was use of integrating gamma-retroviral
vectors (murine derived) during the initial studies concerning
gene therapy for PIDs. Clinical efficiency was shown by these
studies in several instances. However, genotoxicity as well as
lymphoproliferative disorders in various patients are caused by
the vectors used in these studies. Thus, the most recent research
use lentiviral vectors wherein enhancer elements of long terminal
repeats (LTRs) could self-inactivate in reverse transcription [self-
inactivating (SIN) vectors]. It has been seen that the safety profiles

of these SIN vectors are excellent and any genotoxicity of clinical
significance is not caused by these vectors[2]. Researchers are
always working to enhance the safety and efficacy of vector sys-
tems to reduce possible dangers to gene therapy patients. The use
of SIN lentiviral vectors is one method for improving the safety of
gene therapy applications. However, assessing safety in clinical
trials is a complicated and continuing procedure[3].

For a wide variety of PIDs, an approach of curative therapy is
provided by allogenic hematopoietic stem cell transplantation
(allo-HSCT) that has shown a very high success rate when there is
the availability of a suitable donor. However, it is unfortunate
that a very limited number of donors (human leukocyte antigen/
HLA-matched) are available for a large number of patients and
the results of allo-HSCT transplant are unsatisfactory when there
is the use of HLA-mismatched donor. In this regard, there has
been the development of gene therapy with the HSCs of the
patients that can act as an alternative way helping in the elim-
ination of the chances of graft-versus-host disease, which is pri-
marily responsible for mortality as well as morbidity following
allo-HSCT. In theHSCs of the recipient, replacement of the faulty
genes and the transplantation (autologous) of cells that are cor-
rected genetically rather than the replacement of the stem cells of
the recipient with that of the donor is important in offering an
alternative for various PIDs that proves to be lifesaving[4–7].

Adenosine deaminase severe combined immunodeficiency
(ADA SCID) was the first condition for which gene therapy was
used in humans. In this situation, a normal ADA gene introduc-
tion was targeted into peripheral blood cells. Following gene
therapy, the survival of lymphocytes designated by the ADA gene
lasted for over a decade, indicative of the lifetime of cells in spite
of ex vivo modification[8].

In the recent past, various studies (preclinical) have been
published on the use of editing of genome mediated by Cas9 and
homology-directed repair (HDR) in PID models. The safety of
therapy directed against X-SCID by editing of the genome has
been established and its efficiency in the cells of the patients
in vitro in preclinical models has also been confirmed. Editing of
interleukin-2 receptor common γ-chain (IL2RG) in HSCs has
been achieved efficiently by the use of very specific zinc finger
nucleases or clustered regulatory interspaces short palindromic
repeats (CRISPR)/Cas9. Determination of the threshold propor-
tion of editing of IL2RG in repopulating cells has been done by
use of mouse models that are immunodeficient in nature and
gene-edited HSCs of patients and has been predicted to be
essential for immune reconstitution. Another study showed that
in long-term (LT)-HSCs, 20% integration frequencies targeted
can be achieved with a strategy based on CRISPR-Cas9/adeno-
associated virus type 6 (AAV6). Such achievement is possible in
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preclinical models without any trace of toxicity or abnormal
hematopoiesis. This strategy has led to the rescue of lympho-
poietic defects in HSCs derived from patients that are gene-cor-
rected. Encouraging proofs have been obtained with other
preclinical studies for various other PIDs that include X-linked
hyper-IgM (X-HIGM) syndrome as well as chronic granuloma-
tous disease (CGD)[9]. For Fabry disease, a lysosomal storage
disorder due to a mutation in gene responsible for alpha-
galactosidase A (-Gal A) enzyme production, FLT190 as a syn-
thetic capsid (AAVS3) containing a genetic construct made up of
a codon-optimized human GLA cDNA controlled by liver-
specific promoter FRE1 (AAV2/S3-FRE1-GLAco) has been
investigated for use in gene therapy. Animal research using
pseudo-typed AAV8 vectors to effectively transport FLT190
produced positive results, with -Gal A expression levels in NHPs
equivalent to hGLA mRNA levels in the liver. Importantly, any
FLT190-related toxicities or adverse effects were not observed,
signifying preclinical potential of FLT190-directed gene therapy
for treating Fabry disease[10].

Wiskott–Aldrich syndrome (WAS), an X-linked disorder
linked to WAS gene failure, affects the immunohematologist
system, resulting in microthrombocytopenia and malfunctioning
lymphoid and myeloid cells. Early gene therapy experiments
using gamma-retroviral vectors has shown therapeutic advan-
tages but were accompanied with high rates of insertional
mutagenesis and the development of hematologic malignancies in
the majority of patients later on. Researchers have focused on
lentiviral-based gene therapy for patients without a properly
matched donor. These investigations found positive results, such
as improved thrombocytopenia, decreased susceptibility to
infections, remission of eczema symptoms, and no evidence of
lymphoproliferative diseases[11].

Gene therapy is also being explored as a prospective choice for
treating Gaucher disease type 1 (GD1), which is characterized by
mutations in GBA1 gene that result in glucocerebrosidase
(GCase) enzyme deficiency. FLT201 is an experimental gene

therapy that utilizes AAVS3 containing a unique variant of
GCase (GCase-85). FLT201 has shown promising preclinical
results, GCase-85 demonstrating improved stability at physiolo-
gical pH as compared to wild-type GCase along with efficient
transport to tissues targeted[12].

In the case of familial hemophagocytic lymphohistiocytosis
(FHLH) 2, the mutated gene is PRF1, which encodes for perforin.
Perforin is released into the immunological synapse in healthy
people, producing a hole in target cells. This permits granzymes
to enter the cytoplasm, causing apoptosis to begin. In a mouse
model, mixed chimerism experiments have revealed that wild-
type cells at low levels can cause restoration of the immune reg-
ulation, which is indicative of the fact that a suitable approach
can be gene therapy. Construction of lenti virus (LV) vectors has
been done. A PGK promoter (constitutive) or a portion of the
PRF1 promoter was used to drive transgenic expression. In
mouse models, gene expression was restored, as was cytotoxicity
to natural killer (NK) and T cells. In addition, a T cell method
(gene-corrected) has been investigated, and this technique may
give a bridge-to-transplant therapy in patients[13,14].

FHLH3 is also a target for gene therapy. The cause of this
condition is a mutation inUNC13D that encodes unc-13 homolog
D protein that is required to prime vesicles that contain perforin
for the process of exocytosis. Cells that lack the functional protein
cannot undergo proper degranulation, which gives rise to cyto-
toxic defects. Gene correction has been investigated by several
groups by the use of self-inactivating gamma retrovirus (SIN γRV),
SIN alpha retrovirus or LV vectors. Such gene modifications
employing these vectors have aided in the functional restoration of
degranulation activity in mouse models both in vitro and in vivo.
As an alternative therapeutic approach, investigations regarding
gene-corrected T cells are encouraging[15]. Hemophilia A and B are
X-linked recessive diseases caused by gene abnormalities affecting
blood clotting factors VIII (FVIII) and IX (FIX). A small increase in
blood factor (5% of normal levels) may alleviate bleeding phe-
notype in severely ill individuals, wherein gene therapy is a feasible

Figure 1. Overview of gene therapy in in-vivo and in-vitro preparations.
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therapeutic option for these illnesses. In patients with severe
hemophilia B, St. Jude/UCL phase 1/2 experiment found a dose-
dependent rise in FIX levels after a single delivery of AAV vectors.
Over a 7-year period, persistent expression of transgenic FIX at
5% of normal levels in the high-dose group resulted in a sub-
stantial reduction in spontaneous bleeding and a reduced necessity
for anticoagulation. For the FIX protein without causing any
harm, following advancements in gene therapy for hemophilia
A and B, the clotting factor actions returned to normal or near to
normal, resulting in ‘zero bleed rates’ in formerly seriously afflicted
patients. These amazing advances in AAV gene treatments are
projected to transform the therapy landscape for hemophilia A
and B[16]. Both hemophilia and PIDs affect the blood clotting and
immune systems; however, they are treated differently. Both dis-
eases result from changes in genes, and there may be some shared
genetic underpinnings between them even though they are not
causally linked[17,18].

In certain PIDs, restriction of the defect may be there in the T
cell compartment or lymphocyte subsets, viz., regulatory T cells.
Thus, it may become possible that the autologous T cells (gene-
corrected), when transferred, may become enough to control the
manifestations of the disease condition clinically, thereby leading
to benefit significantly. Investigations of such an approach
have been done in preclinical models for various PIDs that
include immune dysregulation, Polyendocrinopathy, entero-
pathy, X-linked (IPEX) syndrome, X-linked lymphoproliferative
disease (XLP), deficiency of perforin, Mammalian Unc-13-4, and
CD-40 ligand. The safety profile of T cell gene therapy has been
established with several patients being treated to date for malig-
nancies of the hematopoietic system in immunotherapy trials.
Interestingly, transformational events have not been reported in
such instances[19,20].

With the introduction of graft manipulation techniques that
are more sophisticated in nature, there has been an improvement
in the outcomes following hematopietic stem cell treatment
(HSCT), even in the haploidentical as well as mismatched donor
setting. The clinical trials involving gene therapy are generating
more efficacy data (long-term). Thus, it will be relatively easier for
physicians to know about the type of patients to benefit from the
various options of treatment available.
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