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Abstract
Objectives: Wilson disease (WD) is a rare autosomal recessive genetic disorder as-
sociated with various mutations in the ATP7B gene and leads to significant disability 
or death if untreated. Early diagnosis and proper therapy usually predict a good prog-
nosis, especially in pre-symptomatic WD. Genetic testing provides an accurate and 
effective diagnostic method for the early diagnosis of WD.
Methods: We recruited 18 clinically diagnosed WD patients from 16 unrelated fami-
lies and two independent individuals. The next-generation sequencing of the ATP7B 
gene was performed. The 293T cell lines were divided into wild-type (WT) ATP7B 
and mutated ATP7B groups. Cell proliferation was determined by Cell Counting Kit-8 
(CCK-8) assay and apoptosis was detected by Annexin V/propidium iodide (PI) assays.
Results: Pedigree analysis showed that compound heterozygous variants (17/18, 
94.44%) were present in the majority of WD patients. A total of 33 ATP7B gene 
variants were identified, including three variants with uncertain significance (VUS) 
[two splice mutations (c.51+2T>G, c.1543+40G>A) and one frameshift mutation 
(c.3532_3535del)]. The CCK-8 and apoptosis assays demonstrated that the VUS of 
ATP7B could significantly affect the transportation of copper.
Conclusions: The study revealed genetic defects of 16 Chinese families and two in-
dependent individuals with WD, which enriched the mutation spectrum of the ATP7B 
gene worldwide and provided valuable information for studying the mutation types 
of ATP7B in the Chinese populations. Genetic testing in WD patients is necessary 
to shorten the time to initiate therapy, reduce damage to the liver and improve the 
prognosis.
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1  |  INTRODUC TION

Wilson disease (WD), first reported by Kinnear Wilson in 1912, is a 
rare autosomal recessive inherited disease involving copper metab-
olism disturbance due to the mutations of ATP7B gene that encodes 
the P-type ATPase.1,2 Defects of ATP7B will reduce the ceruloplas-
min (CP) plasma levels and affect the transport of copper to plasm 
CP with pathological copper accumulation in different organs (liver, 
kidney, and other tissues). 3,4 Excess copper exposure in these tis-
sues can lead to secondary organ damage, including liver cirrhosis, 
limbal Kayser–Fleischer (K-F) ring, neurologic degeneration, and 
other clinical symptoms.2-5

Early diagnosis and intervention of WD are critical to limit dis-
ease progression, and the disease is lethal if the patients is not 
treated early.  The diagnosis of WD is usually conducted by com-
bining the signs, symptoms, laboratory, and imaging information.5-7 
However, each of the diagnostic strategies has its limitations.2 It is 
reported that due to the clinical heterogeneity of WD, only about 
30% of WD patients were accurately diagnosed of the beginning 
medical consultation.8

The detection of ATP7B gene mutation may be powerful tools 
for WD accurately diagnosis, especially for patients who have mild-
to-moderate disease.8,9 The frequency of p.r778l (c.2333g>t, exon 
8) reported by China is 17.3%–31.9%, which is the most common 
of ATP7B mutations.10-12 However, because some studies have re-
ported that the frequency of heterozygotes is much higher than that 
of homozygotes, WD disease shows genetic heterogeneity.10,13,14

Previous studies have usually focused on unrelated individu-
als,10,15,16 case reports,17,18 or a limited number of pedigrees.19-21 
In addition, the functional consequences of these mutations still 
lack direct experimental evidence. Therefore, we recruited 18 WD 
Chinese patients and their 43 first-degree relatives from 16 families 
and two independent individuals for DNA sequencing to systemat-
ically analyze the genotypes of Chinese WD patients. We also con-
ducted a series of experiments to elucidation of possible functional 
consequences of these ATP7B mutations.

2  |  METHODS

2.1  |  Patients and diagnostic criteria

Patients with WD or suspected WD and their first-degree rela-
tives were recruited from the Shanghai Eastern Hepatobiliary 
Surgery Hospital (EHBH) and Yueyang Hospital of Integrated 
Traditional Chinese and Western Medicine of Shanghai University 
of Traditional Chinese Medicine between January 2019 and June 
2021. The diagnosis of WD was established according to the scor-
ing system provided by the 8th International Meeting on Wilson 
disease and Menkes disease5 and the EASL Clinical Practice 
Guidelines for Wilson disease.22  The biochemical parameters, 
clinical presentation, and medical history were recorded in the 
Department of Laboratory Medicine of EHBH. All the patients 

and their relatives provided written informed consent, and 
this study was approved by the Ethics Committee of the EHBH 
(EHBHKY2020-02–013).

2.2  |  Identification of ATP7B gene variants

2.2.1  |  DNA extraction and sequencing

Blood DNA Extraction Kit (Cwbio, CWY049S) was used for isolating 
genomic DNA from peripheral blood. In the presence of high salt, 
DNA binds to the surface of silicon-coated magnetic beads. The 
isolated DNA concentration was determined by the Qubit dsDNA 
HS Assay Kit (Life Technologies). For each serum ATP7B gene of 
the samples, ATP7B was sequenced through the MiSeq sequencer 
using the Illumina paired-end sequencing protocol using the MiSeq 
Reagent Kit, V3 (Illumina, San Diego, CA, USA), as we previously 
established and optimized.23 The reads were aligned with the hg19 
(UCSC) reference genome. All codes for WGBS data analysis are 
available on GitHub (https://GitHub.com/cemor​darun/​Wilso​nDise​
aseEp​igenome).

2.2.2  |  Variant identification

The sequencing results were aligned to referred ATP7B sequence 
(NM_000053.3) to figure out the mutations. When a genetic vari-
ation meets all the following criteria, the variation with uncertain 
significance (VUS) is identified: (1) no reports in PubMed literatures; 
(2) no records in Human Gene Mutation Database (HGMD, http://
www.hgmd.org/) and WD Mutation Database (http://www.wilso​
ndise​ase.med.ualbe​rta.ca/datab​ase.asp).

2.3  |  The experiment of functional consequences

2.3.1  |  Cell culture

The 293T cell lines were obtained from the National Collection of 
Authenticated Cell Cultures (Shanghai, China) and cultured in basic 
DMEM (GIBCO, California, USA) supplemented with 10% fetal bo-
vine serum and 100 U / ml penicillin/streptomycin (Invitrogen). All 
cultures were stored in a humidified incubator at 37 ℃ and 5% CO2.

2.3.2  |  Lentiviral transduction

The construction of lentivirus vector expressing ATP7B and ATP7B 
mutation is the same as previous studies.24,25 Then, the 293T cell 
lines were transfected with GV341-ATP7B and ATP7B mutant ex-
pression vectors. The relative expression of the ATP7B gene was 
detected by quantitative real-time PCR. The expression of ATP7B 
protein in 293T cells was detected by Western blot. The 293T cells 

https://GitHub.com/cemordarun/WilsonDiseaseEpigenome
https://GitHub.com/cemordarun/WilsonDiseaseEpigenome
http://www.hgmd.org/
http://www.hgmd.org/
http://www.wilsondisease.med.ualberta.ca/database.asp
http://www.wilsondisease.med.ualberta.ca/database.asp
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transfected with naked GV341 vector without ATP7B sequence and 
non-transfected 293T cell lines were used as controls.

2.3.3  |  ATP7B protein secretion assays

The total protein of 293T cell line was extracted using sample load-
ing buffer (Cat No. P0015; beyotime Biotechnology Institute), and 
the proteins were determined using BCA Protein Assay Kit (Cat 
No. P0010S; beyotime Biotechnology Institute). The proteins were 
separated by SDS-PAGE (10% separation gel and 4% concentrated 
gel) and transferred to a polyvinylidene fluoride membranes. After 
blocking with non-fat milk dissolved in Tris-buffered saline with 
Tween-20 buffer (Tris HCl, NaCl, and Tween-20) at 37℃ for 1h, the 
membrane was incubated with anti-ATP7B (1:1000) antibody at 4℃ 
overnight. The membrane was then incubated with 15 mL of horse-
radish peroxidase-labeled secondary antibody (1:2000, Cat No: 
31490, Thermo Fisher Scientific, Inc.) at room temperature for 1 h. 
Signals were visualized with the Odyssey Infrared Imaging System 
(LI-COR® Odyssey® 700 or 800 channels).

2.3.4  |  Cytotoxicity assay

Cytotoxicity of CuCl2 in 293T cell line was assessed using the Cell 
Counting Kit-8 (CCK-8, Dojindo Molecular Technologies Inc., Rockville, 
MD, USA). Briefly, 4×103 cells were seeded into 96 well plates and al-
lowed to rest for 24 h. CuCl2 was diluted to concentrations ranging 
from 300 to 500 μM. Cells were incubated with increasing doses of 
CuCl2 and after 48, 72, and 96 h, cell viability was measured using the 
CCK-8 kit according to the manufacturer's protocol.

2.3.5  |  Visible assay of apoptosis

According to the manufacturer's instructions, the apoptosis of 239T 
cell lines was analyzed by Annexin V-APC propidium iodide (PI) 
staining (Invitrogen). Briefly, the cells were washed with PBS and re-
suspended in 1 × binding buffer at a 1 × 106 cells/mL concentration. 
Two hundred microliters of the cell suspension, 10  μl of Annexin 
V-APC, and 5 μl of PI were added. After 15 min of incubation, the 
cells were analyzed by flow cytometry. Living cells (Annexin V-APC-/
PI-), early apoptotic cells (Annexin V-APC+/PI-), late apoptotic cells 
(Annexin V-APC+/PI+), and necrotic cells (Annexin V-APC-/PI+) 
were distinguished and quantified. The apoptotic ratio refers to 
the percentage of cells with Annexin V-APC+/PI- fluorescence and 
Annexin V-APC+/PI+fluorescence.

2.4  |  Statistical analysis

Continuous variables were reported as mean ±standard devia-
tion (SD). The unpaired two-tailed t-test was used for comparison 

between the two groups. P values <0.05 were considered statisti-
cally significant. The data were analyzed using Prism 8.0 (GraphPad, 
USA) and R language for Windows (http://www.r-proje​ct.org/).

3  |  RESULTS

3.1  |  Variants identified in the ATP7B Gene

By detecting the ATP7B mutation of patients and their immedi-
ate family members, 18 WD patients and 43 first-degree relatives 
(including 33 males and 28 females) were recruited. They were re-
cruited from 16 unrelated families and two independent individuals 
aged from 2 to 78 years. Table 1 and Figure 1 summarized the clini-
cal characteristics of these patients. Among these, 11 patients had 
some clinical manifestations of hepatic origin, such as hepatomeg-
aly, splenomegaly, thrombocytopenia, and elevation of serum bili-
rubin. Three patients had different neurological abnormities, such 
as tremor, dysarthria, dystonia, epilepsy, or muscle weakness. Nine 
patients had K-F rings. All patients had decreased serum ceruloplas-
min levels.

3.2  |  Mutation analysis

By performing the genetic screening on the 18 WD probands and 
their relatives, a total of 33 ATP7B gene variants were identified, 
including 24 missense mutation (c.695C>T, c.1168A>G, c.2111C>T, 
c.2267C>T, c.2333G>T, c.2605G>A, c.2621C>T, c.2662A>C, 
c.2804C>T, c.2924C>A, c.2930C>T, c.2975C>T, c.3074T>G, 
c.3104G>T, c.3316G>A, c.3443T>C, c.3459G>T, c.3517G>A, 
c.3532A>G, c.3646G>A, c.3836A>G, c.3889G>A, c.3956G>A, 
c.3960G>C), four splice mutation (c.51+2T>G, c.1543+1G>T, 
c.1543+40G>A, c.1708-1G>C), four frameshift mutation 
(c.2304dupC, c.3532_3535del, c.3767_3768insCA, c.525dupA), and 
one large fragment deletion (c. 52544898_52558635del defined as 
delEXON2), showed in Table 1. Seventeen patients harbored com-
pound heterozygous variants and one patient had one homozygous 
variant (c.3074T>G).

As shown in the Table  1, the mutations located in different 
protein domains, including the ATP bind domains (p.V1216  M, 
p.D1279G, p.Q1256Hfs*74, p.R1320S, p.V1106I, p.I1148T, 
p.W1153C, p.E1173K, p.T1178Pfs*12, p.T1178A, p.V1297I), Cu+-
binding domains (p.V176Sfs*27, delEXON2, p.P232L, p.I390V), 
phosphorylation domain (p.M1025R, p.G1035V), transduction 
domain (p.G869R, p.A874V, p.T888P), and the transmembrane 
domains (p.T704I, p.A756V, p.M769Hfs*25, p.R778L, p.T935  M, 
p.S975Y, p.T977 M, p.P992L). We reviewed HGMD, WD Mutation 
Database, and PubMed literatures in our WD cohort, the two splice 
mutations (c.51+2T>G, c.1543+40G>A) and one frameshift muta-
tion (c.3532_3535del), being reported for the first time, were de-
fined as variants with uncertain significance (VUS) according to the 
American College of Medical Genetics and Genomics (Table 1).26

http://www.r-project.org/
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3.3  |  Effect of mutations on copper transport

However, the functional and clinical relevance of many VUS iden-
tified through clinical genetic testing is unclear. In order to de-
termine the effect of mutation on ATP7B transport function, we 
analyzed the biological consequences of the ATP7B variant by 
constructing lentivirus vector expression plasmid containing wild-
type (WT) ATP7B or its mutant variant. It is difficult to construct 
the lentiviral vector expression plasmids with the splice muta-
tions. Therefore, the fragment deletion mutation of p.T1178fs was 
used to evaluate the functional consequences of ATP7B variants. 
The known pathogenic variant delEXON2 was selected as positive 
control.27

The expression of ATP7B from 293T cell line transformed mu-
tant strains was confirmed by Western blot. ATP7BdelEXON2 and 
ATP7BT1178fs showed weaker expression compared with the WT 
ATP7B (Figure 2A). The CCK-8 assay was used to determine whether 
CuCl2 caused cytotoxicity in 293T cells after 48, 72, and 96 hours of 
CuCl2 exposure, respectively. CuCl2 did not cause cytotoxicity in the 
CCK-8 assay after 96 hours at a concentration of 300 μM. When ex-
posed to 500 μM CuCl2 for the same amount of time, ATP7B

delEXON2 
and ATP7BT1178fs significantly reduced the viability of cultured cells 
when compared to WT groups for 72 and 96 hours (Figure 2B).

To clarify the mechanism of CuCl2-induced 293T cell death, 
annexin V/PI staining was performed to determine quantitatively 
the apoptotic cell percent by flow cytometry (Figure  2C). The 
early apoptotic cell rate in the WT group was 2.90 ± 0.17%t after 
72 hours at 300 μM concentrations. In contrast to the WT group, the 
ATP7BdelEXON2 (4.37 ± 0.23) and ATP7BT1178fs (5.45 ± 0.21%) groups 
had higher rates of early apoptotic cells (p < 0.05). Similarly, in the 
300 μM concentrations, the rate of late apoptotic cells was signifi-
cantly higher in the ATP7BdelEXON2 (5.60 ± 0.26%) and ATP7BT1178fs 
(6.30 ± 0.00%) groups compared to the WT group (3.37 ± 0.15%; 
p < 0.05). The CuCl2 at concentrations of 500 μM induced early apop-
totic and late apoptosis of the 293T cells at a higher proportion com-
pared with the CuCl2 at concentrations of 300 μM (early apoptotic 
cell of ATP7BdelEXON2: 11.20 ± 0.44%, ATP7BT1178fs: 12.30 ± 0.28%; 
late apoptotic cell of ATP7BdelEXON2: 21.67 ± 0.86%, ATP7BT1178fs: 
15.20±0.28%). These results show that CuCl2 caused a remarkable 
increase in cellular apoptosis in a concentration-dependent manner.

4  |  DISCUSSION

WD is a treatable monogenic disease.15 Its main symptoms include 
liver and nervous system diseases, ranging from mild abnormali-
ties to severe progression.28,29  Traditionally, the diagnosis of WD 
mainly depends on clinical manifestations and routine biochemical 
indexes, including hepatic copper content, 24-hour elevated urinary 
copper, and decreased serum CP.30 However, patients with mild 
symptoms may be misdiagnosed, resulting in delayed treatment.20 
Gene detection of ATP7B gene mutation may lead to reliable early 
diagnosis and treatment to prevent copper accumulation and tissue Pa
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damage.31,32 Nowadays, ATP7B gene detection is suitable for prena-
tal diagnosis and neonatal screening.33

At present, more than 500 mutations of ATP7B have been de-
scribed.34 In our study, when we finished sequencing, a total of 33 
different mutations were identified in 18 Chinese WD patients, 
including VUS [two splice mutations (c.51+2T>G, c.1543+40G>A) 
and one frameshift mutation (c.3532_3535del)]. The mutations were 
characterized by pervasive compound heterozygous and rare homo-
zygous, and common missense and point mutations.34 In general, the 

mutation frequency of exon 8 was 12.00% (9 / 75), ranking the first, 
followed by exon 16, 10.67% (8 / 75). This result is consistent with 
the previous study.34 The p.R778L mutation on exon 8 was the most 
common in our study populations, accounting for 9.33% (7/75) of the 
alleles studied. Most studies have shown that p.R778L is the first hot 
spot mutation in the Chinese population.35-38 Exon 8 is located in the 
transmembrane domain (TM4) of the ATP7B gene.16 Therefore, the 
p.R778L may destroy the proper anchoring of transporters in the 
membrane and eventually damage copper transport.39

F I G U R E  1 Representative pedigree 
analysis of 16 families

F I G U R E  2 Effect of mutations on copper transport. (A) Western blot analysis and quantification of ATP7B in 297T cell lines. 
ATP7BdelEXON2 and ATP7BT1178fs showed weaker expression compared with the WT ATP7B. (B) Effect of the mutations in ATP7B on the 
proliferation of 293T cell lines, as determined by CCK-8 assay. (C) Effect of the mutations in ATP7B on the apoptosis of 293T cell lines
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The second hotspot mutations remained controversial in 
Chinese populations.35,36 Our study demonstrated that p.V1106I on 
exon 15 was the second frequent mutation, accounting for 6.67% 
(5/75). Nevertheless, Wu et al. suggested that the p.T935 M was the 
second hotspot.35,36 A study of 62 Chinese WD patients showed 
that p.P992L was the second most frequent mutation instead of 
p.T935 M.11 Another study also demonstrated that p.P992L was the 
second hotspot through a study of 65  southern Chinese WD pa-
tients.37 Our study also found a high mutation frequency of p.P992L 
on exon 13, accounting for 5.33% (4/75). Li et al. sequenced the 
DNA from 114 WD patients from northern Chinese populations and 
showed that p.R778L(21.5%), p.A874V (7.5%), and p.P992L (6.1%) 
were the most frequent mutations.38

The c.51+2T>G, c.1543+40G>A, and c.3532_3535del 
(p.T1178Pfs) mutations were newly found. The VUS of 
c.3532_3535del (p.T1178Pfs) on exon 16 and the known pathogenic 
variant of delEXON227 were used to evaluate the functional conse-
quences of ATP7B variants. The mutation of p.T1178Pfs occurred 
in the ATP loop region and presumably disrupted ATP binding to 
affect the transport of copper.16 Similarly, the dexEXON2 located in 
the copper-binding domain from ATP7B is implicated in WD.

The CCK-8 assays showed that the mutations of ATP7B groups, 
including ATP7BdelEXON2 and ATP7BT1178fs, could significantly inhibit 
the proliferation than WT control cells when treated with 500μM 
CuCl2 for more than 72 h. Apoptosis is a complicated process that 
involves multiple genes.40 Our results indicated that the mutations 
of ATP7B could induce 293T cell apoptosis with the treatment of 
CuCl2 (300 μM and 500 μM) for 72 h. The results matched with the 
outcome with CCK-8 assays.

In conclusion, this study revealed the genetic pattern of WD in 
16 Chinese families and summarized the pathogenic genotypes. 
Compound heterozygous mutations of different alleles are the most 
common genotype in WD patients. Three VUS [two splice muta-
tions (c.51 + 2T > G, c.1543 + 40g > A) and one frameshift mutation 
(c.3532_3535del)] were found, and the functional changes associated 
with the new ATP7B mutation were evaluated by CCK-8 and apopto-
sis analysis. Our study enriches the mutation spectrum of the ATP7B 
gene worldwide and provides valuable reference data for studying 
the mutation type and genetic mode of ATP7B in the Chinese popu-
lation. However, to understand the pathogenesis of WD more com-
prehensively, it is necessary to analyze the patients and families with 
clinically confirmed WD on a larger scale, and it is urgent to study the 
molecular mechanism of WD pathogenic mutation.
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