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On the best of days, using state-of-the-art genetic approaches involving whole genome and

whole exome sequencing (WGS/WES), geneticist have only approximately a 50:50 chance of

rapidly identifying variants causal for health and developmental abnormalities in humans [1].

Variants of unknown significance (VUS) now plaque WGS/WES studies, and a plethora of

bioinformatic approaches have been developed to predict VUS pathogenicity [2]. One com-

mon approach to define the function of a VUS is to create the animal model, hence produce a

genetically modified organism focused on the VUS of interest. For mammalian biology,

rodents are the most easily genetically modified species, with porcine models developing

quickly [3,4]. Genome editing of induced pluripotent stems cells supports VUS studies by cre-

ating the “disease in a dish” [5,6]; however, information from other species, comparative

genetics, remains an invaluable tool to decipher VUS physiological effects, thereby influencing

their priority for investigation. The research by Graff and colleagues, “PEA15 loss of function

and defective cerebral development in the domestic cat,” is a strong example of when the

murine model just does not rise to the challenge [7], and the value of other species models is

recognized.

Based on the analysis of primary astrocyte cultures from knockout mice, phosphoprotein
expressed in astrocytes-15 (Pea15) has been known for decades to be expressed in astrocytes

and normally functions to suppress tumor necrosis factor alpha (Tnfα)-induced apoptosis in

these cells [8]. However, mice with Pea15-targeted mutations have normal brain size and mor-

phology, contrary to a newly defined neurological model in domestic cats [7,9]. Thus, PEA15
was not strongly implicated in brain development. The Graff and colleagues study is an out-

standing example of the continued importance of spontaneous conditions in large animal

models, specifically the domestic cat. Hundreds of companion animals have been identified

with DNA variants in genes that also cause similar human diseases (Table 1) [10]. Recent

WGS studies in domestic cats have implicated causal variants in novel genes, including KIF3B
variants causing retinal degeneration (OMIA 002267-9685), UGDH causing disproportionate

dwarfism (OMIA 000187-9685), and GDF7 associated with another brain dysmorphology

(OMIA 000478-9685), all diseases with undiagnosed human patients [11–13]. New models for

neuronal ceroid lipofuscinosis (OMIA 001962-9685; OMIA 001443-9685) have further utilized

WGS and now WES in domestic cats [14,15]. Intergenic structural variation (SV) and genome

organization variation are becoming more recognized as keys to gene function. The impor-

tance of SVs in the cat is demonstrated by common hypomelanistic and amelaninistic pheno-

types. White cats are one of the historical models for neurological studies, as a high percentage

of all white cats have congenital deafness.White is a dominant trait in domestic cats caused by

an approximately 700-bp insertion in intron 1 of KIT, which is a gene known to cause various
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white spotting phenotypes in different species and known in the development and migration

of melanocytes from the neural crest [16,17]. Interestingly, a larger insertion of approximately

7 kb at the same intronic position causes a phenotype with a lesser degree of white, the pheno-

type known as Spotting. A large 20-kb duplication of the lysosomal traffic enzyme (LYST) is

another SV in cats, causing yet another lysosomal storage disease associated with neurological

deficits [18]. The increased vigilance of feline health by cat owners and the maturation of

genetic resources are supporting the reemergence of cats as biomedical models, particularly

for neurological studies.

Historically, the cat has been a favored model for neurological studies. Since rodents lack

gyri and sulci, abnormalities in cerebral cortical proliferation and folding are challenging to

study in laboratory mice. Lysosomal storages diseases often lead to neurological deficits, in

which cats are highly valued models and are used in therapeutic trials [19]. In Graff and col-

leagues, ironically, cats with an autosomal recessive cerebral dysgenesis phenotype were identi-

fied within an Auburn cat colony established for lysosomal disease investigations. The affected

cats had a 45% decrease in overall brain weight, defective gyrification, expansion of astrocytes,

and a loss of mature oligodendrocytes and white matter; however, their gross appearance and

behavior are not significantly abnormal. Thus, the cat is the right biomedical model for the

right disease, suggesting an underlying pathophysiology and a developmental process that is

unique to animals with gyrencephalic brains.

The Graff and colleagues research also demonstrates the maturity of WGS in domestic cats

and the utility of the cat variant database [20]. The 99 Lives Cat Genome Sequencing Consor-

tium now encompasses the genetic variation from over 300 domestic cats, and its use for preci-

sion medicine is maturing [20]. In the cerebral dysgenesis study, WGS of eight affected and six

obligate carrier cats identified an area enriched for candidate variants in a distal 5-Mb region

on cat chromosome F1q. Genotype by sequencing reduced the region to a 1.3-Mb haplotype

with 337 variants that were private and not present in the 99 Lives dataset. The PEA15 coding

sequence variant (XM_023247767.1:c.176delA, XP_023103535.1:p.(Asn59fs)) had the highest

Combined Annotation Dependent Depletion (CADD) score, predicted a frameshift and early

truncation likely leading to nonsense-mediated decay, and the gene is highly expressed in the

brain. RNA sequencing (RNA-seq) and immunohistochemical analysis revealed astrocytosis.

Expression levels of PEA15 as assessed by RNA-seq from the cerebral cortex of adult cats

revealed a 59% reduction in homozygous affected animals, consistent with nonsense-mediated

decay. Western blot analysis with a polyclonal antibody against the carboxyl-terminal amino

acids of human PEA15 indicated that a 15-kDa band present in normal brain extracts was

absent in brains from affected cats. Together, these studies strongly implicate the PEA15 vari-

ant as causal for the autosomal recessive cerebral dysgenesis, causing the death of neurons

accompanied by increased proliferation of astrocytes, leading to abnormal organization of

neuronal layers and loss of white matter.

Table 1. Online Mendelian inheritance in animals: Biomedical models for human disease in non-rodent mammals.

Dog Cattle Cat Pig Sheep Horse Chicken Rabbit Goat Other TOTAL

Total traits/disorders 776 545 357 280 256 240 222 98 88 674 3,626

Mendelian trait/disorder 358 254 113 86 110 59 131 58 18 266 1,518

Mendelian trait/disorder; likely causal variant(s) known 286 161 80 39 55 46 51 11 14 139 898

Likely causal variants 417 217 128 47 70 97 66 14 25 120 1,219

Potential models for human disease 462 220 222 128 115 132 51 54 40 350 1,807

Accessed 2020 Sep 4 [10].

https://doi.org/10.1371/journal.pgen.1009177.t001
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A vast majority of the genes in the human body have direct homologs in all mammals,

including domestic cats [21]. PEA15 is highly conserved across mammalian species; however,

no gene-specific pathogenic variants are defined that are associated with brain malformations.

Compared to humans, cats have higher sequence identity across their exome and higher pro-

tein homology than mice, suggesting many antibodies developed for human protein studies

may be suitable for use in the cat, as demonstrated by the PEA15Western blot analyses in the

cerebral dysgenesis study. Since cats have high genetic similarity and conserved genomic orga-

nization with humans, when physiological and developmental biology are also conserved, per-

haps they can better decipher VUS for human studies than more traditional mammalian

disease models.

How can researchers be more efficient in developing the right biomedical model for the

right disease? Similarities and differences across species will define the biological effects due to

perturbations in gene order, distance between genes, and the role of distant regulatory ele-

ments. Overall, genomic organization similarities and differences have not been strongly con-

sidered as important factors for biomedical models, perhaps it’s time to reconsider gene

synteny across species when exploring SV and gene regulation? Assisted reproduction is well

developed in the domestic cat and has been used to resurrect neurological disease models [18].

More focus and support for genome editing in cats will help produce cat models when rodents

and porcine are not appropriate. Different animal models have various costs and benefits; the

advances in WGS/WES in companion animals will lead to additional novel discoveries useful

as biomedical models for human diseases. Additional support for cat genomics and genome

editing could lead to effective, feline-based biomedical models that fill an important void for

VUS interpretation, targeted therapeutics, and translation medicine.
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