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ABSTRACT: Allostery can occur by way of subtle cooperation
among protein residues (e.g., amino acids) even in the absence of
large conformational shifts. Dynamical network analysis has been
used to model this cooperation, helping to computationally
explain how binding to an allosteric site can impact the behavior
of a primary site many an̊gstroms away. Traditionally, computa-
tional efforts have focused on the most optimal path of correlated
motions leading from the allosteric to the primary active site. We
present a program called Weighted Implementation of
Suboptimal Paths (WISP) capable of rapidly identifying additional suboptimal pathways that may also play important roles in
the transmission of allosteric signals. Aside from providing signal redundancy, suboptimal paths traverse residues that, if disrupted
through pharmacological or mutational means, could modulate the allosteric regulation of important drug targets. To
demonstrate the utility of our program, we present a case study describing the allostery of HisH-HisF, an amidotransferase from
T. maritima thermotiga. WISP and its VMD-based graphical user interface (GUI) can be downloaded from
http://nbcr.ucsd.edu/wisp.

■ INTRODUCTION
Allosteric regulation is a key mechanism whereby proteins
respond to environmental stimuli that modulate their
activity.1−5 Classic models of allostery (e.g., the MWC6 and
KNF7 models) suggest that a binding event at an allosteric site
induces substantial conformational changes in the primary
catalytic site. However, allostery has since been observed in the
absence of large-scale conformational changes,8,9 suggesting
that subtle alterations in protein dynamics can induce a
population shift in the conformational ensemble without
substantially changing the mean conformation of the protein.
This subtle form of allosteric communication can be modeled
by dynamical network analysis.
Recent advances in both correlated-residue clustering and

dynamical network analysis have helped computationally
quantify allosteric states.10−19 Dynamical network models of
allostery often focus on the single most direct path of residues
leading from the allosteric to the primary active site. However,
few researchers have considered the state changes of slightly
longer (suboptimal) allosteric pathways. The statistical
distribution of these additional pathways may be useful for
locating accessible residues that, if disrupted via pharmaco-
logical or mutational means, could modulate the allosteric
regulation of important drug targets.
In this paper, we introduce Weighted Implementation of

Suboptimal Paths (WISP), a tool that compliments current
dynamical network models of allostery by rapidly calculating
the primary communicating path between two residues as well
as the slightly longer suboptimal paths. We illustrate the utility
of the WISP method using the biological system HisH-HisF, a
well-characterized glutamine amidotransferase enzyme.20 To
facilitate the broader adoption of this method, we have also

created a WISP plugin for the popular Visual Molecular
Dynamics (VMD) package.21 WISP has been specifically tested
on several operating systems, using several versions of Python,
NumPy, SciPy, and NetworkX (Table 1).22−27 The program is
open source and can be downloaded from http://nbcr.ucsd.
edu/wisp.

■ MATERIALS AND METHODS
Molecular-Dynamics Trajectory Input. As input, WISP

accepts an aligned molecular dynamics trajectory in the
common multiframe PDB format.28 Trajectory postprocessing
is necessary prior to WISP analysis, as most trajectories are not
initially aligned or PDB formatted. The freely available Visual
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Table 1. WISP Operating Specificationsa

operating system Python NumPy SciPy NetworkX

Scientific Linux 6.4 2.6 1.7 0.9.0 1.7
Mac OSX 10.6 2.7.2 1.6.1 0.9.0 1.8.1
Ubuntu 12.04 2.7.5 1.7.1 0.12.0 1.8.1
Windows XP 2.7.3 1.7.0rc1 0.11.0 1.8.1

aWISP has been tested on a number of operating systems, using
various versions of NumPy, SciPy, and NetworkX. We note that
installation of necessary packages under Windows was difficult;
however, the command-line version of the program was successfully
executed after installing the appropriate dependencies using the
ActivePython software package.
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Molecular Dynamics (VMD) software package can be used to
perform the necessary alignment and conversion.
Generating the Correlation Matrix. WISP, similar to

other dynamical network analysis tools,29 is based on the
dynamic interdependence among protein constituents (e.g.,
amino acids). A protein system is first simplified by
representing each constituent as a single node. For example,
depending on user-specified WISP parameters, an amino acid
can be represented by a node positioned at the residue center
of mass, the side-chain center of mass, the backbone center of
mass, or the α carbon. As a default, the residue center of mass is
used.
The interdependence among nodes is represented as a

connecting edge with an associated numeric value that reflects
its strength. There are numerous methods for describing the
interdependence among nodes in a protein network. Typically,
this interdependence is represented by a matrix C with values
corresponding to the weights of each edge. By default, WISP
generates an N2 matrix C by calculating the correlated motion
among node−node pairs as shown in eqs 1 and 2:
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where N is the number of nodes, i and j are indices
corresponding to individual nodes, ri(t) is the location of
node i at time t, and Cij is the matrix element at position (i, j).
The absolute value of Cij is larger when the motions of two

nodes are highly correlated or anticorrelated. In order to
compute signaling pathways, it is useful to construct a matrix
where the opposite is true, i.e., where small values indicate
highly correlated or anticorrelated motions. Consequently, the
correlation matrix is functionalized according to eq 3, as
outlined in previous works.12,13

= − | |w Clog( )ij ij (3)

As a point of clarification, each wij can be thought of as a
“distance” in functionalized correlation space. Throughout the
remainder of this paper, concepts like length and distance will
refer to spans in this space, unless specifically described as
“Cartesian” or “physical.” We further note that, while WISP’s
default functionalized correlation matrix is generally useful, any
user-specified matrix that defines signaling strength as inversely
proportional to edge length can be used.
Reducing the Complexity of the Functionalized

Correlation Matrix. In order to improve the speed of
subsequent path-finding steps, the complexity of the function-
alized correlation matrix W must be reduced. To this end, two
techniques are used. First, a contact-map matrix Mcontact is used
to separate entries in W that represent pairs of physically
distant residues from those that represent adjacent residues. By
default, Mcontact is constructed using pcutoff, a user-specified
Cartesian cutoff distance that represents physical proximity.
The average location of each atom over the course of the

aligned molecular dynamics trajectory is first calculated,
followed by a pairwise Cartesian distance comparison. Two
nodes are considered to be in physical contact if the average
locations of any of their associated residue atoms come within
pcutoff of one another. Mcontact entries are set to zero for all
node−node pairs that are not in physical contact. A simplified,
functionalized correlation matrix Wsimp is then constructed by

multiplying W and Mcontact element-wise. The entries of Wsimp
that equal zero represent node−node interactions that are
subsequently ignored. Alternatively, users can provide their
own Mcontact if desired.
Second, to further reduce the complexity of the function-

alized correlation matrix W, a pruning algorithm identifies
nodes that only participate in pathways having lengths in
network space that are greater than another cutoff (dcutoff). As
the ultimate goal is to identify suboptimal paths with lengths
less than dcutoff, these nodes can be effectively discarded as well.
To identify these nodes, we first generate the set of all forced-
node paths (FNPs). An FNP is the optimal pathway between
two user specified nodes na and nb that is forced to pass through
a given third node ni. For any two fixed nodes na and nb, each
third node ni is associated with a single FNP. The set of all
FNPs can therefore be generated by iterating over all the nodes,
ni, of the system.
To calculate an FNP, Dijkstra’s algorithm, included in

NetworkX,22 is first used to identify the optimal paths between
na → ni and nb → ni, respectively. The FNP has a length equal
to the sum of these two constituent paths. Any path between na
and nb that passes through ni must have a length equal to or
greater than that of the associated FNP. Consequently, if the
length of the FNP is greater than dcutoff, all entries in Wsimp
associated with ni are set to zero, so that ni is effectively ignored.

Calculating Suboptimal Pathways. Having generated
Wsimp, we are now ready to search for both the single optimal
and multiple suboptimal paths between na and nb. The optimal
path is fairly easy to identify using Dijkstra’s algorithm,
mentioned above. In contrast, identifying all suboptimal paths
is difficult because the number of possible pathways between na
and nb grows rapidly as the total number of nodes increases.
To identify suboptimal paths, a recursive, bidirectional

approach is employed. Simultaneous searches start from na
and nb (Figure 1, in blue and red, respectively) and recursively
traverse the nodes of the dynamical network. The recursive
algorithm ignores the connections/correlations between nodes

Figure 1. A schematic for path identification. Simultaneous searches
start from na and nb (blue and red, respectively) and recursively
traverse the nodes of the dynamical network. Connections/
correlations between nodes that are physically distant are ignored
(gray lines). Nodes eliminated using the FNP technique are also
ignored (gray circles). As soon as any of the lengthening paths grows
too long, that branch of the recursion is killed (red “X”). At each
recursive step, all branches originating from na and nb are compared for
common nodes (asterisk). If a common node exists, the two paths are
joined. If the length of this composite path is sufficiently short, a
suboptimal path has been identified.
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that are physically distant (Figure 1, gray lines). Additionally,
nodes eliminated using the FNP technique described above are
likewise ignored (Figure 1, gray circles), resulting in substantial
speedups. As soon as any of the lengthening paths grows longer
than dcutoff, that branch of the recursion is killed (Figure 1, red
“X”).
At each recursive step, all branches originating from na and nb

are compared for common nodes (Figure 1, the node marked
with an asterisk). If a common node exists, the two paths are
joined at this node. If the length of this composite path is less
than dcutoff, a suboptimal path has been identified. As WISP has
been developed to take advantage of multiple processors,
running the program on a multicore system can lead to further
speedups beyond the software optimizations described above.
Program Output. The program output is a directory

containing multiple files, including the specific W and Mcontact
matrices used. The primary output file is a Tcl script that, when
loaded into VMD, draws three-dimensional splines representa-
tive of the optimal and suboptimal paths. User defined
parameters control the relationship between spline thickness,
color, opacity, and path length. Useful information is also given
as comments in the Tcl file, including path lengths and
participating protein residues.
Graphical User Interface. In addition to the command-

line program, we have also developed a Visual Molecular
Dynamics21 (VMD) plugin and Tcl-based GUI for easy

preparation and visualization of WISP results. The plugin can
be accessed through the VMD “Extensions” menu. The main
window of the WISP GUI (Figure 2) allows the user to specify
the molecular trajectory as well as the allosteric-signal source
and sink residues. Several additional window interfaces allow
the user to modify more advanced program options if needed.
All options available through the WISP command-line interface
are available to users of the GUI.
Once satisfied with the run specifications, the user may click

the “Run WISP” button at the bottom of the WISP main
window to execute the job. The plugin loads the visualization of
the allosteric pathways into the main VMD window, where the
appearance can be further modified according to the user’s
preferences.

HisH-HisF Details. The molecular dynamics simulations of
HisH-HisF used in the current study have been described
previously.13 In brief, a model of the HisH−HisF apo dimer
was prepared from the 1GPW30 crystal structure (Thermotoga
maritima). To generate the corresponding holo structure, the
1OX531 crystal structure (Saccharomyces cerevisiae), which
contains a cocrystallized PRFAR allosteric effector molecule,
was aligned to the apo model, effectively positioning PRFAR
within the 1GPW:HisF allosteric site. The aligned 1OX5
PRFAR was then merged with the 1GPW-based apo model to
yield the corresponding holo structure. Following solvation
with TIP3P water molecules and 1 ns of harmonic constrained

Figure 2.WISP Graphical User Interface (GUI). In this demonstration, the GUI is used to visualize the allosteric pathways between Leu50:HisF and
Glu180:HisH. In the main window (top left), the user selects the relevant molecule and which residues to use as the source and sink. The user may
also select to load the visualization into VMD upon job completion. The setting option windows (left and bottom right) allow the user to specify
additional WISP arguments.
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equilibration, 20 ns of production dynamics with a 2 fs time
step were run for both the apo and holo systems using
NAMD,32 the CHARMM27 force field,33 and the same PRFAR
parametrization used previously.34

■ RESULTS/DISCUSSION

Allosteric regulation is crucial to many biological processes.
Consequently, one natural strategy for rational drug design is to
impede or agonize protein function via allosteric modulation.
Classic views of allostery suggest that the binding of an effector
molecule at an allosteric site induces large conformational shifts
that alter the activity of the primary site. However, as allostery
is not necessarily limited to large shifts, this reasoning does not
explain some examples of regulation at a distance. For instance,
Tsai et al.9 recently showed that significant backbone
deformations are not required for an allosteric effect; rather,
in the absence of large conformational changes, subtle shifts in
local dynamics driven by entropic effects8 govern certain types
of allostery.
Quasi-harmonic analysis (e.g., like that used by software

packages such as CARMA35,36 to calculate entropy) is
commonly used to build dynamical network models that
quantify signaling pathways among protein constituents.
Optimal and suboptimal pathways are calculated that connect
protein constituents believed to be important for allostery (i.e.,
“sources” and “sinks”). An optimal pathway is the shortest
distance traversed between source and sink along weighted
edges (e.g., as determined by correlated motions), and
suboptimal pathways are those closest in length to, but not
including, the optimal path. Existing tools can compute optimal
and suboptimal pathways between residues;37 however, these
programs lack the speed required to compute more than 50
suboptimal pathways within a reasonable amount of time
(several hours or days). As statistics related to suboptimal

pathways may provide important insights that cannot be
gleaned from the single optimal pathway, faster algorithmic
advances must be made.
WISP is designed to facilitate the calculation of hundreds of

suboptimal pathways in minutes, thereby permitting fast and
robust statistical analysis of biological systems modeled as
dynamical networks. For example, using a modern workstation
with 24 cores, we recently used a 20 000-frame trajectory to
identify 750 pathways. WISP loaded and analyzed the
trajectory, generated the functionalized correlation matrix,
and identified the 750 pathways in 21 min and 52 s. When
the calculation was repeated using a copy of the functionalized
correlation matrix saved from the first run, the 750 pathways
were identified in only 5 min and 44 s.
To demonstrate the utility of the WISP algorithm, we used it

to study HisH-HisF, a multidomain globular protein known to
exhibit allostery. The activity of HisH-HisF, which regulates the
fifth step of the histidine biosynthetic pathway in plants, fungi,
and microbes, is substantially altered by the allosteric effector
N1-[(5′-phosphoribulosyl)-formimino]-5-aminoimidazole-4-
carboxamide ribonucleotide (PRFAR).20 Guided by previous
work,13 we investigated the suboptimal pathways between
residues Leu50:HisF and Glu180:HisH using 20 ns molecular
dynamics simulations of both apo and holo HisH-HisF.
A total of 700 pathways (Figure 3) between Leu50:HisF and

Glu180:HisH were calculated using WISP’s default correlation
(eqs 1−3) and contact-map matrices, described in the Materials
and Methods. Had only the two optimal pathways (apo vs
holo) been considered, we would have concluded that
communication between the allosteric and primary site is
fundamentally different in the presence and absence of the
PRFAR effector molecule (Figures 3 and 4). The optimal
pathway between Leu50:HisF and Glu180:HisH in the apo
state was LEU50:HisF → PHE49:HisF → PHE77:HisF →

Figure 3. WISP-generated signaling pathways. The 700 shortest paths between Leu50:HisF and Glu180:HisH, shown as red splines, derived from
(A) the apo trajectory and (B) the holo trajectory. WISP allows the user to choose between a number of graphical settings to better visualize
signaling among nodes.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4008603 | J. Chem. Theory Comput. 2014, 10, 511−517514



PRO76:HisF → LYS181:HisH → GLU180:HisH. In contrast,
the optimal pathway with PRFAR bound was LEU50:HisF →
GLY80:HisF → VAL79:HisF → LYS99:HisF → ASP98:HisF
→ LYS181:HisH → GLU180:HisH.
However, when we considered multiple suboptimal paths, it

became apparent that allosteric signaling may be far more
intricate. The optimal path in the apo simulation is the shortest
suboptimal path in the holo simulation (top 0.3%), and the
optimal path in the holo simulation is the 13th shortest
suboptimal path in the apo simulation (top 2.0%). In light of
this multipathway analysis, the idea that PRFAR binding
fundamentally alters a solitary line of communication between
the allosteric and primary site becomes less tenable. Rather, the
binding of the effector molecule likely has small effects on
multiple pathways, both optimal and suboptimal, that when
taken together yield a substantial allosteric effect.
We subsequently sought to characterize the strength of this

allosteric effect. The lengths of the two optimal pathways of the
two systems did not differ substantially (apo, 2.97; holo, 2.84).
Consequently, had only these two pathways been considered,
some might have mistakenly concluded that the allosteric
consequences of PRFAR binding are minor. In contrast, when
hundreds of suboptimal paths were also considered, a large
PRFAR-dependent shift in communication between the
allosteric and primary site became apparent. To demonstrate
this shift, we generated a histogram of all path lengths for both
the holo and apo simulations (Figure 4). The distribution
derived from the holo trajectory is substantially skewed toward
shorter path lengths, suggesting that the motions of the
residues connecting the allosteric and primary sites are more
tightly correlated when PRFAR is bound. An overall “dynamical
tightening” and loss of entropy along the pathways may
therefore explain the allosteric signal.
To identify protein residues critical for allosteric trans-

mission, we counted the number of times each residue
appeared in any of the 700 paths associated with the apo and
holo trajectories, respectively (i.e., the degeneracy of each node,
Figure 5). Notably, a number of residues had large effector-
molecule-dependent shifts in degeneracy, i.e., HisF: LEU47
(shifts down), VAL69 (shifts up), ALA70 (shifts up), ILE73
(shifts up), ASP74 (shifts up), PRO76 (shifts down), and
ALA97 (shifts down) and HisH: LYS181 (slight shift down)

(Table 2). Importantly, these residues, which may be crucial for
the regulation of protein activity, did not all appear in the

optimal apo and holo paths and so would not have been
identified had the suboptimal paths been ignored. Previous
studies in evolutionary conservation have shown that HisF:
LEU47, VAL69, ALA70, and ILE73 are partially or strongly
conserved and HisF: PRO76 and ALA97 and HisH: LYS181
are strictly conserved across the entire glutamine amidotrans-
ferase family of enzymes.38 HisF: ASP74 is not conserved, but
this amino acid is still predicted to play a role in allostery.38

Compounds that target (i.e., selectively bind) these critical
residues may serve as useful precursors to future allosteric-
modulating small molecules.
We note that our decision to specifically analyze the 700

shortest paths between Leu50:HisF and Glu180:HisH was
arbitrary. In order to better assess the minimum number of
paths required to reliably predict node degeneracy, we analyzed
the holo trajectory by varying the number of paths considered
and calculating the degeneracy of selected residues/nodes
implicated in the allosteric mechanism (Figure 6). We note that
the degeneracy of these nodes had largely converged by 350
paths. A similar result was obtained when the apo simulation

Figure 4. Statistical distribution of signaling pathways. A histogram of
the 700 path lengths associated with the apo and holo trajectories is
shown. The optimal paths are denoted “Shortest Path.” The path
distribution is largely shifted to the left for the holo (allosteric) state.
This shift likely results from a more coherent signal in the holo
simulation, indicating a possible decrease in the entropy along the
pathways due to PRFAR binding. Figure 5. Node degeneracy in signaling pathways. The total number of

times a given residue participates in any of the 700 paths (i.e., node
degeneracy) is shown for (A) HisF and (B) HisH. Green indicates the
holo state, blue indicates the apo state, and cyan indicates an overlap.
Note that Leu50:HisF and Glu180:HisH are present in all 700 paths.

Table 2. Node Degeneracya

aA numerical representation of the same data from Figure 5. The
comparison between the apo and holo states suggests that certain
residues are more sensitive to the allosteric effector PRFAR than
others (shaded columns).
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was analyzed (data not shown). Given that the relative
importance of suboptimal paths in determining the competency
of an allosteric signal is likely highly system dependent, we do
not necessarily recommend this exact number of paths for all
analyses. However, we are hopeful that this general benchmark
will help guide future researchers in their efforts.

■ CONCLUSION
We present WISP, a program that rapidly calculates both
optimal and suboptimal communication pathways between
distinct protein residues. The program is available as a VMD
plugin or a standalone command-line script. WISP outputs path
members and lengths that can be subsequently used in the
analysis of path distributions, node degeneracy, and other
metrics of interest to scientists studying the molecular
mechanisms of allostery
The utility of our program was presented by performing a

dynamical analysis of the HisH-HisF protein. In our test case,
allosteric modulation was likely the result of subtle changes in
multiple suboptimal pathways rather than large changes in a
single optimal path. Additionally, we showed that PRFAR
binding causes a large shift toward shorter path lengths (i.e.,
more correlated motions) in 700 communication pathways
between residues HisF:Leu50 and HisH:Glu180. This shift
explains the strong allosteric effects of the PRFAR modulator
(Figure 4). Remarkably, the significant shift in collective
correlated dynamics occurred even at relatively short (tens of
nanoseconds) time scales, suggesting that the allosteric signal is
rapidly transmitted. The multiple suboptimal pathways are
dominated by a few select residues, as indicated by the shift in
node degeneracy between the apo and holo states (Figure 5
and Table 2).
WISP has been successfully tested on a number of platforms

(Table 1). We are hopeful that the program will be a useful tool
for the computational-biology community.
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