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ABSTRACT

Identifying the variants that alter protein function
is a promising strategy for deciphering the biolog-
ical consequences of somatic mutations during tu-
morigenesis, which could provide novel targets for
the development of cancer therapies. Here, based
on our previously developed method, we present a
strategy called AlloDriver that identifies cancer driver
genes/proteins as possible targets from mutations.
AlloDriver utilizes structural and dynamic features
to prioritize potentially functional genes/proteins in
individual cancers via mapping mutations generated
from clinical cancer samples to allosteric/orthosteric
sites derived from three-dimensional protein struc-
tures. This strategy exhibits desirable performance
in the reemergence of known cancer driver muta-
tions and genes/proteins from clinical samples. Sig-
nificantly, the practicability of AlloDriver to discover
novel cancer driver proteins in head and neck squa-
mous cell carcinoma (HNSC) was tested in a real
case of human protein tyrosine phosphatase, recep-
tor type K (PTPRK) through a L1143F driver muta-
tion located at the allosteric site of PTPRK, which
was experimentally validated by cell proliferation as-
say. AlloDriver is expected to help to uncover inno-
vative molecular mechanisms of tumorigenesis by
perturbing proteins and to discover novel targets
based on cancer driver mutations. The AlloDriver is

freely available to all users at http://mdl.shsmu.edu.
cn/ALD.

INTRODUCTION

Cancer is a disease of genetic alterations (1). Advances in
DNA sequencing have revealed a broad spectrum of so-
matic mutations within cancer genomes (2). Somatic mu-
tations include driver and passenger mutations. Compared
to passenger mutations, driver mutations confer selective
growth advantages towards cancer cells. It is established
that cancer driver mutations are involved in 12 major intra-
cellular signaling pathways and regulate three core cellular
processes during carcinogenesis, namely, cell survival, cell
fate, and genome maintenance (3,4). They are implicated
in the acquisition of carcinogenic properties through me-
diating uncontrolled proliferation, abnormal angiogenesis,
metastasis, and drug resistance (1). Considering their cen-
tral role in tumorigenesis, knowledge of cancer driver mu-
tations cannot only unveil the underlying mechanisms for
cancer pathogenesis but can also expand the repertoire of
cancer drug targets, which can be further exploited to de-
velop targeted medicine to improve the diagnosis and ther-
apy of cancer.

From a structural standpoint, driver mutations are usu-
ally positioned in functional areas, such as allosteric sites
(5) and orthosteric sites (6). Allosteric sites are known as
regions in a protein that are topologically and spatially
distinct from the orthosteric site (7–11). Unlike the well-
characterized mutations at orthosteric sites, the landscape
of driver mutations at allosteric sites, also referred to as al-
losteric driver mutations, has been less explored (12,13), be-
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cause of the complexity of the underlying mechanisms of
protein allosteric mutations. It is generally accepted that al-
losteric driver mutations initiate local conformational dis-
turbances at an allosteric site that propagate to and sub-
sequently alter the conformational state at an orthosteric
site (14–18). The resulting effect leads to trapping the pro-
tein in either an active or inactive conformation. The ab-
normal regulation of protein communication caused by al-
losteric driver mutations leads to tumorigenesis (7,19). Re-
cently, we have developed a statistical approach to identify
and prioritize potential allosteric driver mutations in can-
cer based on systematic analyses of somatic mutations in
∼7000 cancer genomes across 33 cancer types (20). As a re-
sult, the identification of cancer-associated allosteric driver
mutations and the phenotypes that they alter during tumor
initiation and progression could effectively unravel new can-
cer driver genes/proteins and pathways, decipher their func-
tional consequences and nominate novel druggable targets.

Despite improvements in the understanding of allosteric
driver mutations, there is still no efficient and conve-
nient platform for the identification of allosteric driver
mutations for cancer therapeutic targets. Based on our
previous allosteric data (21) and method (20), here we
present an easy-to-use platform called AlloDriver that iden-
tifies allosteric driver mutations and assesses their bio-
logically relevant effects on tumor fitness and progres-
sion from clinical cancer samples. In addition to allosteric
driver mutations, AlloDriver can also recognize orthos-
teric driver mutations to enable researchers to evaluate
cancer-driven targets from mutations as a whole. Allo-
Driver utilizes both structural and dynamic features to pri-
oritize potentially functional genes/proteins in individual
cancers by mapping mutations generated directly from clin-
ical cancer samples to allosteric/orthosteric sites derived
from 3D protein structures. Testing on two benchmark-
ing datasets, AlloDriver can reemerge >83% driver mu-
tations at allosteric/orthosteric sites. Furthermore, Allo-
Driver successfully preferred SHP2 in lung squamous cell
carcinomas to be a potential target based on driver muta-
tions from cancer samples. Importantly, we employed Al-
loDriver to discover an unreported target––human protein
tyrosine phosphatase, receptor type K (PTPRK)––in head
and neck squamous cell carcinoma (HNSC). It predicted a
L1143F driver mutation located at the allosteric site of PT-
PRK, which was experimentally validated by cell prolifer-
ation assay. Collectively, AlloDriver may not only uncover
innovative molecular mechanisms of tumorigenesis by the
perturbation of protein functions, but may also aid in the
identification of novel drug targets based on cancer driver
mutations.

MATERIALS AND METHODS

Workflow of AlloDriver

AlloDriver is deployed as a computational workflow that
identifies therapeutic targets in cancer samples by assessing
how mutations at allosteric (and orthosteric) sites perturb
protein functions during the proliferation and development
of individual cancers, followed by an analysis of the pre-
dicted driver mutations among current clinical samples. The

web server is free and open to all users with no login require-
ment.

The workflow of AlloDriver is schematically described in
Figure 1. First, users can submit cancer samples to Allo-
Driver, and missense mutations are detected and mapped
to 3D structures of 1650 human proteins originating from
PDB (https://www.rcsb.org/). Mutations occurring at al-
losteric or orthosteric sites are further evaluated for driver
estimation by the structural and dynamic features. Potential
driver proteins in query samples as targets are prioritized on
the basis of an evaluation of mutations by the AlloDriver
score. In addition, for each query sample, the profiling of
predicted driver mutations on the human structural pro-
teome is analyzed. Additionally, for each potential driver
protein, clinical mutations in 33 TCGA cancer types at al-
losteric (orthosteric) sites, their locations of functional do-
mains (22), and known modulators are also provided.

AlloDriver Input

Clinical sample mutations are required for the identification
of potential driver genes/proteins as targets. For users’ con-
venience, the web server can accept input in three different
formats:

1. Upload cancer sample(s) in a Mutation Annotation For-
mat (MAF) file.

2. Upload a tab-delimited output file generated by ANNO-
VAR software (23). All mutations in the file are consid-
ered to be derived from one sample.

3. Specify a valid point mutation list in the text area
(e.g. sample 1;BRAF;V600E).

Users can specify the mapping region of interest either as
‘Allosteric site’ or ‘Functional Site’ under ‘Mapping Area’.
Currently, AlloDriver provides 2650 allosteric sites (168 ex-
perimentally verified allosteric sites and 2482 potential al-
losteric sites detected by AlloSite (24)) in ‘Allosteric site’,
as well as 2650 allosteric sites and 1672 known orthos-
teric sites in ‘Functional Site’ among 1650 human proteins
with 3D structures. Considering the run time, the server
does not presently accept samples with >2000 mutations. A
‘Job Name’ is compulsory, which allows users to find their
queries in the ‘Job Queue’. Input options in the main page
are shown in Supplementary Figure S1 and details of the
site collection are provided in the Supplementary Materials
and Methods.

AlloDriver Output

The prediction result is provided to users in the ‘Job Queue’
page when the job is completed. Typically, the web server
produces a summary table called the ‘Target Result’, in-
cluding potential targets ranked by the ‘Score’ of the pre-
dicted driver mutations and general information such as
‘Gene/Protein’, ‘UniProt ID’, ‘Driver mutation’, ‘Loca-
tion’ and ‘Area’ (Supplementary Figure S1). Interactively,
clicking the ‘Show’ button in each entry links to details of
the driver mutation and its gene/protein to enable users to
navigate different analyses for delineating the mutation fea-
tures for the gene/protein in clinical samples.

https://www.rcsb.org/
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Figure 1. The workflow and output of AlloDriver.

Under the summary table, two profiles called ‘Frequency
of mutations at different areas’ and ‘Score of potential
driver mutations’ are shown for each query sample if avail-
able. Users may select one of all samples in the ‘Choose
Sample’ menu in the top-left corner of the profiles. In the
‘Frequency of mutations at different areas’ profile, a water-
fall subplot shows the distribution of mutations in a query
sample mapped at four different areas (allosteric sites, po-
tential allosteric sites, orthosteric sites and other regions) of
the human structural proteome and a stacked bar subplot
displays the mutation frequency of each mapped protein.
Meanwhile, the ‘Score of potential driver mutations’ pro-
file exhibits probability scores for potential driver mutations
located at allosteric/orthosteric sites on each predicted hu-
man driver protein. Users can download the two profile re-
sults via the ‘Download predicted targets’ and ‘Download
target analysis’ buttons in this page.

Under the entry for each driver mutation and its protein,
a comprehensive analysis and annotation for the mutation
and its protein are summarized. In the top, a 3D repre-
sentation of the predicted driver mutation at the protein is
shown in the left panel, together with a table showing the
predicted driver mutation’s information including ‘Driver
Mutation’, ‘Location’, ‘Area’ and ‘Score’ as well as its pro-
tein properties such as ‘Gene Symbol’, ‘NCBI Gene ID’,
‘Function’ and ‘PDB ID’ in the right panel. In the middle
of the page, a heatmap plot is shown for known mutations
of the protein, in which the frequencies of all clinical mu-
tations from TCGA at the allosteric/orthosteric sites of the
protein across 33 individual cancer types are illustrated. In
addition, there is a lollipop-style diagram that highlights
the domain location of potential driver mutations on the
protein annotated in PFAM (http://pfam.xfam.org/) in the

query samples and the frequencies of the mutations via
mapping them into TCGA pan-cancer samples (25). In the
bottom, known modulators for the protein are offered with
cross-annotated links to two external chemical reposito-
ries, DrugBank (https://www.drugbank.ca/) and CHEMBL
(https://www.ebi.ac.uk/chembl/) (26,27), and a table sum-
marizing the general information for each modulator, such
as the name, molecular weight, 2D structure, original ID in
Drugbank or CHEMBL, and its usage for clinical indica-
tions. The analysis of a driver mutation and its protein can
be downloaded from the server by clicking the ‘Download’
button at the end of the summary table.

It is noted that the runtime of a submitted job can vary
from a few minutes to nearly an hour, according to the
scale of cohort samples. Conveniently, users can consult the
‘Help’ menu for a step-by-step tutorial.

Model construction

In the training dataset, the ratio of positive driver muta-
tions to negative passenger mutations is ∼0.12, which could
greatly affect the evaluation process and performance of the
minority class. To address this problem, the SMOTE (syn-
thetic minority oversampling technology) method was in-
troduced to obtain sufficient data to build a robust model
using an imbalanced-learn toolkit (28). The algorithm al-
ters the class distribution by generating new synthetic points
from the existing minority samples. Based on our previous
study (20), the evaluation model of driver mutations in Al-
loDriver was employed by combining random forest and
multi-layer perceptron methods. All of features are equally
weighted in estimator of individual tree and single node
of perceptron. Both models were fine-tuned using 10-fold
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cross-validation to get optimal hyper-parameters. An out-
put score for AlloDriver higher than 0.5 indicates the poten-
tial to be a driver mutation. The model construction proce-
dure was executed using the scikit-learn toolkit (29). Ran-
dom forest is an ensemble method by aggregating decision
trees, where each tree is grown using bootstrapped samples
by randomly selecting feature subsets and further search-
ing the best split according to the objective function. Here,
grid search with default ranges was used to optimize the pa-
rameters for random forest as follows: the maximum depth
is from 2 to 10, the number of trees is from 10 to 300, and
the size of feature subset considered when splitting nodes
is from 0.3 to 0.5. After exhaustive searching over the pa-
rameter space, these three parameters for the best random
forest were determined to be 4, 130 and 0.4. Multi-layer per-
ceptron is a feed-forward artificial neural network, which
consists of three layer types: one input layer, one or more
hidden layers, and one output layer. The input vector is fed
into the neural network architecture, where each layer serves
as the input for the next layer by weighted connections. The
patterns of input data propagate to the activation function
in the output layer to produce a predicted label. The archi-
tecture of our multi-layer perceptron consists of the input
layer, two hidden layers with 20 and 15 nodes, and the out-
put layer. Similar grid search was used to optimize the pa-
rameters and functions for multi-layer perceptron. Finally,
the parameters of learning rate and momentum were set to
be 0.1 and 0.8, rectified linear unit (ReLU) was used in the
hidden layers as activation function, and sigmoid function
was applied in the output layer as activation function.

Benchmarking test dataset

To test the performance of AlloDriver, we built two bench-
marking datasets: an allosteric dataset and a functional
dataset. The allosteric dataset was setup by collecting driver
and passenger mutations at allosteric sites including poten-
tial allosteric sites predicted by AlloSite (24), and the func-
tional dataset is composed of driver and passenger muta-
tions at both allosteric and orthosteric sites on human pro-
teins. Driver mutations in the datasets are confirmed from
two expert-curated cancer variant knowledge bases: On-
coKB (http://oncokb.org/) and CIViC (https://civicdb.org)
(30,31). Passenger mutations are aggregated from TCGA
cancer samples without known cancer-related functions. To
this end, the allosteric dataset is composed of 24 driver mu-
tations and 197 passenger mutations (Supplementary Ta-
bles S1 and S2), and the functional dataset contains 73
driver mutations and 582 passenger mutations (Supplemen-
tary Tables S3 and S4). The class distributions of the two
datasets are shown in Supplementary Figure S2.

PERFORMANCE OF ALLODRIVER

To validate the implementation of AlloDriver, we assessed
the performance of AlloDriver to identify driver mutations
on the two benchmarking datasets: the allosteric dataset
and the functional dataset. The result revealed that Allo-
Driver is capable of detecting 22 out of 24 driver muta-
tions in the allosteric dataset and 61 out of 73 in the func-

tional dataset (Supplementary Table S5), which shows the
capability of AlloDriver to distinguish allosteric and or-
thosteric driver mutations from passenger mutations. Fur-
thermore, we analyzed the receiver operating characteris-
tic (ROC) curves for AlloDriver on the allosteric and func-
tional datasets (Figure 2A). This curve describes the trade-
off between sensitivity and specificity of AlloDriver pre-
diction on the two benchmarking datasets. The further the
ROC curve is from the diagonal, the better the AlloDriver
prediction is. As another supporting measure, the area un-
der an ROC curve, i.e. the AUC value, was also calculated
to reveal the quality of the prediction (32). AlloDriver ex-
hibited excellent performance at any given percentage in the
ROC curve and a >0.9 of AUC value for each dataset (al-
losteric dataset: 0.951 and functional dataset: 0.935), reveal-
ing a significantly predictive power for the server based on
the well trained model (Supplementary Tables S6–S8).

EXAMPLES

Evaluation of driver protein SHP2 in lung squamous cell car-
cinoma (LUSC)

PTPN11, which encodes the protein tyrosine phosphatase
SHP2 with two tandem Src homology 2 (SH2) domains, a
PTP domain, and a C-terminal tail, is positively engaged
in a variety of intracellular cell signaling cascades and is
well-characterized as an oncogene in hematologic malig-
nancies and other solid tumors (33). Using a clinical sam-
ple with PTPN11 (SHP2) mutations from LUSC of TGCA
and ‘Functional Site’ as inputs, we investigated the potency
of AlloDriver to identify the driver protein SHP2. By map-
ping mutations in the query sample to human structural
proteome, three driver proteins were presented according
to the potential of predicted driver mutations occurring at
allosteric or orthosteric sites. Remarkably, SHP2 was suc-
cessfully ranked as first of the three driver proteins due to
the highest score of 0.647 on E76K as a driver mutation.
Figure 2B shows the predicted driver mutation E76K at the
allosteric site of SHP2 between the interface of the SH2 do-
main and the PTP domain, and the result is in consistent
with the previous report about the driven effect of SHP2-
E76K in tumor progression (34). Furthermore, the pan-
cancer analysis of the mutation shows that E76K located
at the allosteric site of SHP2 is implicated in not only lung
cancer but colon adenocarcinoma, which suggests poten-
tially extensive involvement of SHP2 in tumorigenesis and
cancer progression for these individual types. In addition,
AlloDriver also provides known inhibitors (e.g. estramus-
tine and estradiol) of SHP2 to promote the rational design
of therapeutic agents against these individual cancer types.
Detailed information of the example is further provided in
the online Tutorial under the Help of the AlloDriver server.

Discovery of novel driver target PTPRK in HNSC

Head and neck squamous cell carcinoma (HNSC) is the
sixth most common cancer worldwide and ∼600 000 new
cases are diagnosed each year (35). Despite advances in
surgery to treat this disease, the five-year survival rate of

http://oncokb.org/
https://civicdb.org
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Figure 2. Performance and applications of AlloDriver. (A) The Receiver operating characteristic (ROC) curves for the two benchmarking test datasets. (B)
The driver mutation E76K located at the allosteric site on SHP2 (PTPN11). The protein structure is shown in both cartoon and surface modes. Allosteric
and orthosteric sites are colored in magenta and marine, respectively. Residue E76 is highlighted in stick mode. (C) The driver mutation L1143F located
at the potential allosteric site on PTPRK. The allosteric site is highlighted in wheat on the protein surface, while the orthosteric site is deeply buried and
shown as a blue mesh. (D) The relative proliferation levels of TU-177 and CNE2 cells overexpressing PTPRK-WT and PTPRK-L1143F protein. Data
were normalized to the vector control group. Error bars represent the SD of three to six independent experiments.

HNSC has remained stagnant at ∼50% for the past few
decades (36). Thus, it is urgent to identify novel driven
targets for HNSC, which will facilitate the development
of novel therapeutic approaches for the disease. Using Al-
loDriver, we found that the protein tyrosine phosphatase,
receptor type K (PTPRK) (37) has emerged as a poten-
tial driver protein from a patient sample of HNSC. As
shown in Figure 2C, PTPRK may play a crucial role in the
progression of HNSC through the perturbation of an al-
losteric driver mutation L1143F as suggested by AlloDriver.
To validate the effects of L1143F on PTPRK in HNSC,
we transfected wild type PTPRK (PTPRK-wt) or mutant
L1143F (PTPRK-L1143F) expression plasmids into two
HNSC cell lines, TU-177 and CNE2, respectively (Supple-
mentary Figure S3). In good agreement with the prediction
of AlloDriver, both TU-177 and CNE2 cells overexpress-
ing PTPRK-L1143F exhibit a significant increase in pro-
liferation compared with the empty vector control cells or
cells expressing PTPRK-wt (Figure 2D). The result indi-
cates that L1143F on PTPRK could potentially be an onco-
genic driver mutation in HNSC and then PTPRK could be-
come a target for the treatment of HNSC. Taken together,
these data support the feasibility of AlloDriver to discover
novel driver proteins as targets via identifying allosteric
driver mutations from cancer samples.

DISCUSSION

Allostery is currently regarded as a unifying mechanism for
receptor function and regulation (8), and it is also a novel
tactic for target identification in cancer (Supplemental Fig-
ures S4 and S5). The AlloDriver platform aims to provide
the scientific and industrial community with a free and user-
friendly web server to identify allosteric driver mutations
for cancer-associated targets. Subsequently, AlloDriver per-
forms clinical profile analyses of predicted allosteric driver
mutations. This platform will be continuously updated in
the future to make it a useful community resource. One
improvement includes future advances in computational
methods for the identification of more allosteric sites (38–
48). Another improvement stems from the ever-increasing
number of protein structures determined by spectroscopy
methods (49). These improvements will strengthen the per-
formance of AlloDriver to identify cancer driver mutations
(50–52) from clinical cancer samples.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz350#supplementary-data
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