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Abstract
Multiple-merger coalescents, e.g. Λ-n-coalescents, have been proposed as models of
the genealogy of n sampled individuals for a range of populations whose genealogical
structures are not captured well by Kingman’s n-coalescent. Λ-n-coalescents can be
seen as the limit process of the discrete genealogies of Cannings models with fixed
population size, when time is rescaled and population size N → ∞. As established
for Kingman’s n-coalescent, moderate population size fluctuations in the discrete
population model should be reflected by a time-change of the limit coalescent. For
Λ-n-coalescents, this has been explicitly shown for only a limited subclass of Λ-n-
coalescents and exponentially growing populations. This article gives a more general
construction of time-changed Λ-n-coalescents as limits of specific Cannings models
with rather arbitrary time changes.
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1 Introduction

The genealogies of samples from populations with highly variant offspring numbers,
for instance due to sweepstake reproduction or rapid selection, are notwellmodelled by
Kingman’s n-coalescent. As a more realistic alternative, multiple-merger coalescents,
especially Λ-coalescents have been proposed, as reviewed in Tellier and Lemaire
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1498 F. Freund

(2014), Irwin et al. (2016) and Eldon et al. (2016). Λ-n-coalescents, introduced by
Pitman (1999), Sagitov (1999), Donnelly and Kurtz (1999), are Markovian processes
(Πt )t≥0, which describe the genealogy of a set of individuals {1, . . . , n}. This is done
by representing the ancestral lineages present at time t of these individuals by the sets
of offspring of each ancestral lineage in the sample. Thus, (Πt )t≥0 can be defined
as a random process with states in the set of partitions of {1, . . . , n} and transitions
via merging of blocks (i.e. merging of ancestral lineages to a common ancestor). For
a Λ-n-coalescent, the infinitesimal rates of any merger of k of b present lineages is
given by λb,k := ∫ 1

0 xk−2(1 − x)b−kΛ(dx), where Λ is a finite measure on [0, 1].
This includes Kingman’s n-coalescent if Λ is the Dirac measure in 0.
As in the case ofKingman’s n-coalescent being the limit genealogy from samples taken
from a discreteWright–Fisher orMoranmodel,Λ-n-coalescents can be constructed as
the (weak) limit of genealogies from samples of size n taken from Cannings models.
The limit is reached as population size N goes to infinity and time is rescaled, seeMöhle
and Sagitov (2001). Time is rescaled by using [c−1

N ] generations in the discrete model
as one unit of evolutionary (coalescent) time in the limit, where cN is the probability
that two individuals picked in a generation have the same parent one generation before.
In the discrete models, the population size N is fixed across all generations.
Only populations in an equilibrium state are described well by models with fixed
population sizes. This idealized condition often does not apply to natural populations.
In particular, due to fluctuating environmental conditions population sizes are expected
to fluctuate likewise. Two standard models of population size changes are timespans
of exponential growth or decline, as well as population bottlenecks, where population
size drops to a fixed size smaller than N for a timespan on the evolutionary (coalescent)
timescale. Such changes are featured in coalescent simulators as ms (Hudson 2002) or
msprime (Kelleher et al. 2016). The latter changes are also the model of population
size changes in PSMC (Li and Durbin 2011) or similar approaches as SMC++ (Terhorst
et al. 2017). For theWright–Fishermodel, which converges toKingman’s n-coalescent
if population size N is fixed for all generations, the same scaling c−1

N from discrete
genealogy to limit is valid for population size changeswhichmaintain a population size
of order N at all times, see Griffiths and Tavare (1994) or Kaj and Krone (2003). The
resulting limit process is Kingman’s n-coalescent, whose timescale is (non-linearly)
transformed. However, size changes too extreme can yield a non-bifurcating (multiple
merger) genealogy, see Birkner et al. (2009, Sect. 6.1).
For Λ-n-coalescents, the link between fluctuating population sizes in the discrete
models and the time-change in the coalescent limit is somewhat less established.
While conditions for convergence of the discrete genealogies to a limit process are
given in Möhle (2002), no explicit construction of haploid Cannings models lead-
ing to an analogous limit, a Λ-n-coalescent with changed time scale, is given. For a
specific case, the Dirac n-coalescent for an exponentially growing population, such
a construction has been given in Matuszewski et al. (2017), based on the fixed-N
Cannings model (modified Moran model) from Eldon and Wakeley (2006). However,
also otherΛ-n-coalescents (or Cannings models which should converge to these) with
changed time scale have been recently discussed and applied as models of genealo-
gies, see Spence et al. (2016), Kato et al. (2017), Alter and Louzoun (2016) and
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Multiple-merger coalescents and population size changes… 1499

Hoscheit and Pybus (2019). This leads to the goal of this article, which is to extend
the approach in Matuszewski et al. (2017) to explicitly give a construction of time-
changedΛ-coalescents as limits of Canningsmodels with fluctuating population sizes.
The Cannings models used are modified Moran models, see e.g. Huillet and Möhle
(2013), and the Cannings models introduced in Schweinsberg (2003). The main tool
to establish the convergence to the time-changedΛ-n-coalescent is, as inMatuszewski
et al. (2017), applying Möhle (2002, Thm. 2.2).
For diploid Cannings models, the umbrella model from Koskela andWilke Berenguer
(2019) gives a general framework to add population size changes, selection, recom-
bination and population structure to the fixed-N -model. There, if one only considers
population size changes, the limit is a time-changedΞ -n-coalescent, a coalescent pro-
cess with simultaneous multiple mergers. The focus in the present paper is slightly
different though, the aim is to explicitly construct Cannings models that converge,
after linear time scaling, to a time-changed Λ-n-coalescent, while Koskela and Wilke
Berenguer (2019) concentrates on the convergence itself.

2 Models andmain results

Cannings models (Cannings 1974, 1975) describe the probabilistic structure of the
pedigree (offspring-parent relations) of a finite population in generations v ∈ Z =
{. . . ,−2,−1, 0, 1, 2 . . .} with integer-valued population sizes (Nv)v∈Z. The Nv indi-
viduals in generation v produce (ν

(v)
1 , . . . , ν

(v)
Nv

) offspring, where
∑Nv

i=1 ν
(v)
i = Nv+1

and offspring sizes are exchangeable, i.e. (ν
(v)
1 , . . . , ν

(v)
Nv

)
d= (ν

(v)
σ (1), . . . , ν

(v)
σ (Nv)) for

any permutation σ ∈ SNv . The offspring generation v + 1 then consists of these indi-
viduals in arbitrary order (independent of the parents). The case Nv = N for all v is
denoted as the fixed-N case.
Fromnowon, look at the genealogy of the population in generation 0. For convenience,
denote the generations in reverse order by r = −v, i.e. if one looks i generations back,
this is denoted by r = i . The population sizes Nr are defined relative to a reference
size N , in a way that if N → ∞, also Nr → ∞. From now on, use N = N0. The goal
is to establish a limit process of the discrete genealogies as N → ∞. The discrete
genealogy of a sample of size n in generation 0 is a random process (R(N )

r )r∈N0 with
values in the partitions of {1, . . . , n}, where i, j are in the same block ofR(N )

r iff they
share the same ancestor in generation r .
The terminology from Möhle (2002) is used with slight adaptations. Let cN ,r be the
probability that two arbitrary individuals in generation r − 1 have the same ancestor
in generation r in the model with reference population size N . To clarify, cN ,r is the
coalescence probability for individuals in generation r − 1 if population sizes are
variable, while cN denotes the coalescence probability in the fixed-N case. Define
FN (s) = ∑[s]

r=1 cN ,r and let

G−1
N (t) = inf {s > 0 : FN (s) > t} − 1 (1)
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1500 F. Freund

be its shifted pseudo-inverse. For l and a1, . . . , al ≥ 1, set

Φ
(N )
l (r; a1, . . . , al) =

(Nr )l E
(∏l

i=1(ν
(r)
i )ai

)

(Nr−1)∑l
i ai

(2)

as the probability that in generation r − 1, from
∑l

i=1 ai individuals sampled from
the Cannings model, specific sets of a1 ≥ · · · ≥ al individuals each find a common
ancestor one generation before (generation r ), where ancestors of different sets are
different. For l = 1, a1 = 2, cN ,r = Φ

(N )
1 (r; 2). See Möhle (1998) for details.

Consider a sequence of fixed-N Cannings models for each N → ∞ with cN → 0 as
N → ∞ and transition probabilities Φ

(N )
l (a1, . . . , al) for a merger of a1, . . . , al ≥ 1

individuals , converging to aΛ-n-coalescent (Πt )t≥0 with infinitesimal transition rates
φl(a1, . . . , al) := λ∑l

i=1 ai ,a1
1{a2=···=al=1} when scaled by c−1

N , i.e.

(

R(N )

[c−1
N t]

)

t≥0

d→ (Πt )t≥0 (3)

in the Skorohod sense as N → ∞. Eq. (3) is satisfied if

cN → 0 and c−1
N Φ

(N )
l (a1, . . . , al) → φl(a1, . . . , al)

for a1 ≥ · · · ≥ al ≥ 2 as N → ∞, see (Möhle and Sagitov 2001, Thm. 2.1). We will
establish a variant of Möhle (2002, Corollary 2.4) to show convergence of a variety of
Cannings models with variable population sizes to (time-changed) Λ-n-coalescents.
For this, we need some assumptions. Most importantly, an asymptotically infinite
sum needs to be controlled. For this, we introduce a concept of o-terms: A sequence
(yN )N∈N of null sequences yN = (yN (r))r∈N0 is o

∑(xN ) for a null sequence (xN )N∈N
if summing the first O(x−1

N ) members of yN still vanishes as N → ∞. This will be
denoted by yN (r) = o∑(xN ), i.e.

yN (r) = o∑(xN ) ⇔
[t x−1

N ]∑

r=0

yN (r) → 0 as N → ∞ for any t ≥ 0.

For instance, this condition is satisfied if yN (r)/xN have the same null sequence
majorant as N → ∞ for all r ∈ N.
Fix t > 0. We assume for all 0 ≤ r ≤ [c−1

N t]:
– Population size changes of order N leading to awell-defined population size profile
in coalescent time, i.e.

0 < N−(t) := c1(t)N ≤ Nr ≤ c2(t)N =: N+(t) < ∞
N−1N�tc−1

N 	 → ν(t) for N → ∞ (4)
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for positive and finite functions c1, c2, ν : R≥0 → R>0.
–

Φ
(N )
l (r; a1, . . . , al) = Φ

(Nr )
l (a1, . . . , al) + o∑(cN ) (5)

The first class of Cannings models used to construct time-changedΛ-n-coalescents
are modified Moran models. In a modified Moran model, only a single individual has
more than one offspring (and may have many offspring). Following Huillet andMöhle
(2013), define the modified (haploid) Moran model with fixed population size N . Let
(UN (z))z∈N be i.i.d. random variables with values in {2, . . . , N }, letUN be a r.v. with
their common distribution. In each generation z ∈ Z,

– One randomly chosen individual has UN (z) offspring,
– UN (z) − 1 randomly chosen individuals have no offspring,
– The other N −UN (z) have one offspring each,

Specific modified Moran models leading to Dirac n-coalescents as genealogy limits
have been introduced as population models with skewed offspring distributions, see
Eldon and Wakeley (2006) and Matuszewski et al. (2017), for fixed and variable
population sizes.
For any Λ-n-coalescent with Λ([0, 1]) = 1 (denoted by Λ ∈ M[0, 1]), Möhle (2013,
Prop. 3.4) show that there always exist fixed-N modifiedMoran models such that their
rescaled genealogies converge to the Λ-n-coalescent. These can be constructed via a
random variable U ′

N , that is distributed like the merger size of the first merger in a
Λ-N -coalescent. As shown in (Huillet and Möhle 2013, Eq. 9), this means

P(U ′
N = j) = λ−1

N

(
N

j

)

E(X j−2(1 − X)N− j ), j ≥ 2, (6)

where λN is the total transition rate of the Λ-N -coalescent and X has distribution Λ.
To add population size changes from generation to generation to the modified Moran
model, the relationship between offspring and parent generation needs to be defined.
This will be done by adjusting the fixed-N model: If in generation r , there are Nr

individuals, first run a fixed-Nr modified Moran model, producing Nr (potential)
offspring. LetUn,r denote the number of offspring in generation r−1of themultiplying
parent in generation r .
If population size declines from generation r to r − 1, sample Nr−1 individuals
randomly (without replacement) from the Nr potential offspring consisting of UNr

offspring of the multiplying parent and Nr − UNr single offspring. If individuals are
added to the population (population growth), i.e.

dN ,r = Nr−1 − Nr > 0, (7)

to still end upwith amodifiedMoranmodel one has twooptions.Additional individuals
can be added as further offspring of the already multiplying parent. A second option is
to add individuals as offspring of the non-reproducing individuals from generation r in
the fixed-Nr model. Each originally non-reproducing parent can have one offspring, so
this allows one to addUNr − 1 ≥ 1 individuals. The number of additional individuals
can be divided between these two options, let An,r denote the individuals added as
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1502 F. Freund

Fig. 1 Example of allocation of individuals when population size is increasing. Left: start with a fixed size
Moran model with U6 = 4. Right: population increases by d6,r = 3, from which An,r = 1 individual is
allocated to the multiplying parent from generation r in the fixed size model (and 2 to non-reproducing
individuals from the fixed size model in generation r ). This results in U6,r = 5

offspring to the multiplying parent (which means that dN ,r − AN ,r individuals are
added as offspring of non-reproducing parents from the fixed-Nr model). Expressed
differently, there are Nr−1 = Nr + dN ,r offspring from which Un,r = UNr + AN ,r

share the same parent, while all other offspring are single offspring of other parents
(who all differ). See Fig. 1 for an example.

While some care has to be taken to not change coalescence probabilities (see
Remark 5 for an example), there will be different possibilities to choose AN ,r .
For Dirac-n-coalescents with exponential growth (on the coalescent time scale),
Matuszewski et al. (2017) used An,r = dN ,r . A reasonable approach may also be
to set An,r (close to) proportional to the fraction UNr /Nr of offspring coming from
the multiplying parent: Each of the dN ,r added individuals are added to the multiply-
ing parent with probability UNr /Nr (with the obvious constraint that after UNr − 1
individuals are added as offspring of non-reproducing parents, all further individuals
need to be added to the multiplying parent). As for the fixed-size models, we consider
the genealogy of a sample of n individuals, which is denoted by (R̃(N )

r )r∈N0

The main results of the present paper show that the two allocation schemes allow one
to constructΛ-n-coalescent limits of the genealogies of these modifiedMoran models
if population sizes vary in the discrete models in ways described by Eq. (4).

Theorem 1 Let Λ ∈ M[0, 1] so that U ′
N defined by Eq. (6) satisfies

E((U ′
N )2)(N − 1)−1

� 0 for N → ∞.

Define a modified Moran model for fixed N by

UN := U ′
N1AN + 2(1 − 1AN )

for sets AN s.t. U ′
N ,1AN are independent and E((U ′

N )2)P(AN )((N )2)
−1 = N−γ

for 1 < γ < 2. Let ν : R≥0 → R>0 be a positive real function. Then, there exist
population sizes satisfying Eq. (4) for ν so that the genealogies (R̃(N )

r )r∈N0 of the
modified Moran model with variable population sizes converge

(

R̃(N )

[c−1
N t]

)

t≥0

d→ (ΠG(t))t≥0

123



Multiple-merger coalescents and population size changes… 1503

in the Skorohod-sense, where G(t) = ∫ t
0 (ν(s))−γ ds and (Πt )t≥0 is a Λ-n-coalescent.

In the discrete model, additional individuals can be added in any way so that the
resulting model is still a modified Moran model.

For Λ not covered by Theorem 1, one can choose slightly different modified Moran
models that converge to a Λ-n-coalescent limit for an arbitrary population size profile
on the coalescent time scale.

Theorem 2 Fix Λ ∈ M[0, 1] so that U ′
N defined by Eq. (6) satisfies

E((U ′
N )2)(N − 1)−1 → 0.

For fixed population size N, define modified Moran models via UN = U ′
N . Let ν :

R≥0 → R>0 be a positive function describing the population size profile. Then, there
exist population sizes satisfying Eq. (4) for ν so that the genealogies (R̃(N )

r )r∈N0 of the

modifiedMoranmodel with variable population sizes fulfill (R̃(N )

[G−1
N (t)])t≥0

d→ (Πt )t≥0

in the Skorohod-sense, where (Πt )t≥0 is a Λ-n-coalescent. In the discrete model,
additional individuals are added solely as offspring of non-reproducing parents from
the fixed-Nr model, unless E((UN )2) → ∞ as N → ∞. In that case, they can be
added any way that preserves that the model is still a modified Moran model.

Remark 1 The condition of Λ([0, 1]) = 1 in both theorems is not very important: If
one scales by c2cN instead of cN for any c2 > 0, the rescaled discrete genealogies
converge to the c2Λ-n-coalescent.

To get convergence to a time-changed Λ-n-coalescent in Theorem 2, i.e.

(

R̃(N )

[c−1
N t]

)

t≥0

d→ (ΠG(t))t≥0

in the Skorohod-sense as N → ∞, one needs that

G(t) := lim
N→∞

[tc−1
N ]∑

r=0

cNr (8)

exists for all t ≥ 0. The following corollary shows that, at least for certain measures
Λ, this condition is met.

Corollary 1 Let Λ ∈ M[0, 1] be a Beta(a,b)-distribution with a ∈ (0, 1) and b > 0.
Let ν : R≥0 → R>0. Then, there exist population sizes satisfying Eq. (4) for
ν so that the genealogies (R̃(N )

r )r∈N0 of the modified Moran model with variable

population sizes fulfill (R̃(N )

[c−1
N t])t≥0

d→ (ΠG(t))t≥0 in the Skorohod-sense, where

G(t) = ∫ t
0 (ν(s))a−2ds and (Πt )t≥0 is a Beta(a, b)-n-coalescent. In the discrete

model, additional individuals can be added in any way so that the resulting model is
still a modified Moran model.
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1504 F. Freund

The specificmodels used in each of the two theorems are not the only possibilities of
modifiedMoranmodelswith variable population sizes to converge toΛ-n-coalescents.
For instance, if one only allows certain population size changes, one can also use the
modified Moran model used in Theorem 2 for some Λ covered by Theorem 1.

Corollary 2 Let Λ ∈ M[0, 1] be a Beta(a,b)-distribution with a ∈ (1, 2) and b > 0.
Consider an exponentially growing modified Moran model population on the coales-
cent time scale, i.e. ν(t) = exp(−ρt) Then, there exist population sizes satisfying
Eq. (4) for ν so that the genealogies (R̃(N )

r )r∈N0 of the modified Moran model with

variable population sizes fulfills (R̃(N )

[c−1
N t])t≥0

d→ (ΠG(t))t≥0 in the Skorohod-sense,

where G(t) = ∫ t
0 (ν(s))a−2ds and (Πt )t≥0 is a Λ-n-coalescent. In the discrete model,

additional individuals can be added in any way so that the resulting model is still a
modified Moran model.

Finally, for the classic Moran model, i.e. the modified Moran model with UN = U ′
N

and U ′
N defined via Eq. (17) for Λ = δ0, we can establish

Proposition 1 For the standardMoran model and a population size profile ν : R≥0 →
R>0, there exist population size changes allowed by Eq. (4) so that (R̃(N )

[c−1
N t])t≥0

d→
(ΠG(t))t≥0 in the Skorohod-sense, where G(t) = ∫ t

0 (ν(s))−2ds. Individuals are added
only as offspring of non-reproducing parents (in the fixed-Nr model) if the population
size increases.

For Beta(2− α, α)-n-coalescents, 1 ≤ α < 2, genealogies sampled from the fixed-N
Cannings models introduced in Schweinsberg (2003) also converge weakly to these
Beta coalescent processes (after rescaling of time) as N → ∞.
This model (for fixed population size N ) lets each individual in any generation r pro-
duce a number of (potential) offspring X (r)

i , i.i.d. across individuals and generations,
distributed as a tail-heavy random variable X with E(X) = μ > 1, i.e.

P(X ≥ k) ∼ Ck−α on N, (9)

where C > 0 is a constant and 1 < α < 2. Then, N offspring are chosen to form the
next generation. If less than N offspring are produced, the missing next generation
individuals are arbitrarily associated with parents. Here, this is done by randomly
choosing a parent, which preserves exchangeability and makes the model a Cannings
model. The genealogies of a sample of size n converge as N → ∞ and time rescaled
by c−1

N to the Beta(2 − α,α)-n-coalescent, see Schweinsberg (2003, Thm. 4).
Thismodel can very easily extended to variable population sizes by just sampling from
the potential offspring. The tail-heavy distributions used produce, asymptotically as
N → ∞, enough potential offspring to cover growing population sizes of order N as
allowed by Eq. (4).

Lemma 1 Let dN ,r := Nr−1 − Nr > 0. Assume that for any fixed t, for all r ≤
c−1
N t there exists a null sequence (dN )N∈N with dN ,r/N ≤ dN as N → ∞. Then,

P(
∑Nr

i=1 X
(r)
i < Nr−1) ≤ AN with N = N0 and A < 1.
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Multiple-merger coalescents and population size changes… 1505

This gives us an alternative Cannings model with variable population sizes to define
time-changed Beta coalescents as the limit of its discrete genealogies.

Theorem 3 Consider the Cannings model coming from sampling from potential i.i.d.
offspring following Eq. (9) with parameter α ∈ [1, 2). For any ν : R≥0 → R>0,
there exist variable population sizes (Nr )r∈N0 fulfilling (4) for ν so that the discrete n-

coalescents converge (R̃(N )

[c−1
N t])t≥0

d→ (ΠG(t))t≥0 in the Skorohod-sense, whereG(t) =
∫ t
0 (ν(s))1−αds and where (Πt )t≥0 is the Beta(2 − α, α)-n-coalescent.

The time-change function G(t), which appears in Theorem 1, Corollary 2, Propo-
sitions 1 and 3 simplifies considerably for exponential growth on the coalescent time
scale, i.e. ν(t) = exp(−ρt) for ρ > 0 in Eq. (4) (corresponding to population sizes
given by Nr−1 = �Nr (1 − cNρ)	 for r ∈ N).

Corollary 3 For a population size profiles of exponential growth (on the coalescent
scale) with growth rate ρ and for cN = cN−γ + o(N−γ ) for γ > 0, the time-change
function G has the form

G(t) =
∫ t

0
eργ sds = (ργ )−1(eργ t − 1). (10)

This implies that the waiting time between coalescent events are Gompertz distributed
with parameters a = λbeργ t0 and b = ργ , i.e. the waiting time T for the next
coalescence event, given the last coalescence at t0 into b lineages, fulfills

Pt0(T ≤ t) = 1 − exp(λb(ργ )−1(eργ (t+t0) − eργ t0))

= 1 − exp(λb(ργ )−1eργ t0/eργ t − 1).

Remark 2 It is well-known that for Kingman’s n-coalescent with exponential growth,
waiting times for coalescence events follow a Gompertz distribution, e.g. see Slatkin
and Hudson (1991, Eq. 5), Polanski et al. (2003). For time-changed Dirac coales-
cents appearing as limits of modified Moran models with ν(t) = exp(−ρt), Eq. (10)
appeared in Matuszewski et al. (2017).

3 Discussion

As for theWright–Fishermodel, genealogies of samples taken from (haploid)modified
Moran and other Canningsmodels can be approximated by a time-change of their limit
coalescent process, when the population sizes of the discrete models are fluctuating,
but are always of the same order of size. As for models with fixed population size, time
intervals of [c−1

N t] generations in the discrete model correspond to a time interval of
length t in the continuous time limit. The approach of this studywas to build on existing
Canningsmodels that converge for fixed population size to theΛ-n-coalescent and just
change the population sizes gradually from generation to generation, which includes
adjusting parent-offspring allocation between generations. This raises the question
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1506 F. Freund

whether the used Cannings models and the adjustment of ancestral relationships have
biological interpretations and are a reasonablemodel for at least some real populations.

3.1 Interpretation of the Canningsmodels and allocation schemes used

The modified Moran models used to construct a time-changed Λ-n-coalescent with
Λ([0, 1]) = 1 [defined via Eq. (6), introduced in Huillet and Möhle (2013)] can
be described as follows (for fixed N ): On top of a standard Moran model choice of
one parent M with two offspring and one individual in the parent generation with
no offpring, there is a random probability X for each other individual in the parent
generation to not have offspring in the next generation. X is drawn fromΛ, potentially
only activated in a given generation with a low probability N−γ , γ ∈ (1, 2). From the
individuals that have offspring, all but M reproduce once, and M replaces itself and
all non-reproducing individuals by its offspring. These models capture the concept of
sweepstake reproduction (Hedgecock and Pudovkin 2011), though the assumption of
a single individual with more than one offspring is rather artificial. For a non-random
X and large families appearing occasionally at rate of order N−γ , this model is very
similar to the discrete modified Moran model from Eldon and Wakeley (2006) used
to describe sweepstake reproduction (and that was used in Matuszewski et al. (2017)
as a basis to construct a time-changed Dirac n-coalescent). Both models lead to the
same Dirac coalescent limit and have the same time rescaling order c−1

N . In Eldon
and Wakeley (2006), instead of randomly choosing individuals to not reproduce with
probability X , a fixed number of ≈ N X − 2 individuals are chosen at random to
not reproduce on top of the Moran choice (again with a small probability in each
generation for this to happen). For random X , similar models also appear in Hartmann
and Huillet (2018) and Eldon (2012).
The other class of Cannings models used to capture skewed offspring distributions,
defined via Eq. (9), lead to the specific class of Beta(2−α,α)-n-coalescents. They have
been proposed as amodel of type-III survivorship, where all individuals producemany
offspring with a high juvenile mortality, see e.g. Steinrücken et al. (2013, Sect. 2.3),
also leading to sweepstake-like phenomena. While both classes of Cannings models
allow the Bolthausen-Sznitman n-coalescent (Λ = Beta(1, 1)) as a possible limit
model, the discrete models used to explicitly construct it are not based on modelling
a directed selection process due to selective advantages of certain ancestral lineages.
Thus, the results do not answer whether adding population size changes to a model
of rapid selection or genetic draft as in Desai et al. (2013), Neher and Hallatschek
(2013), Schweinsberg (2017) also leads to its rescaled genealogies being described by
a time-changed Bolthausen-Sznitman n-coalescent.
To construct time-changedΛ-n-coalescents as limits of genealogies inmodifiedMoran
models, the approach here is to adjust fixed-N modified Moran models for growing or
decreasing population sizes. Sampling the next generation from the fixed-N offspring
when there is population decline maintains on average the ratio between the large fam-
ilyUN and the rest off the individuals. Thismeans that the population decrease, e.g. due
to less resources available, has the same chance to affect each offspring of the fixed-
sizemodel. Additional individuals can be added to the family of themultiplying parent
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or by allowing parents with no offspring from the fixed-N allocation scheme to have
exactly one offspring. For some sequences of modified Moran models, any partition
of additional individuals to these two allocation forms is possible, e.g. allocate them
randomly to the multiplying parent (with UNr offspring) from the fixed-size model
with probability UNr /Nr (with the constraint that we cannot add more than UNr − 1
individuals to non-reproducing parents). The merit of this random allocation is that it
is trying to maintain the ratio UNr /Nr from the fixed-size model. As for sampling a
smaller number of individuals, this describes that population size increase, e.g. due to
more resources available, follows (approximately and on average) the sweepstake pat-
tern of the fixed-N model. From a biological viewpoint, other allocation schemes can
also be interpreted: Adding the additional offspring completely to the largest family,
as done in Matuszewski et al. (2017), could describe a scenario where new resources
become available and only the multiple-offspring parent can claim them for its off-
spring. In contrast, adding individuals as single offspring of non-reproducing parents
from the fixed-size model relaxes the (viability) “selection” pressure of the modi-
fied Moran model by allowing more non-multiplying parents (resp. their offspring)
to survive, e.g. due to the additional resources. For the models covered in Theorem 3
from Schweinsberg (2003), population size changes in either direction are modelled
by sampling from a pool of more individuals than the current population size, thus
additional or decreasing resources affect the offspring of different parents in the same
way.

3.2 Influence of the choice of Canningsmodel on the limit

Many results in the present paper allow us to scale the time in the discrete models with
c−1
N as in the fixed N case so that the scaled genealogies converge to a time-changedΛ-
n-coalescent (ΠG(t))t≥0. This time-change G(t) depends both on the population size
profile ν on the coalescent time scale from Eq. (4) and the (asymptotic properties of)
the coalescence probabilities cN , i.e. how many discrete generation correspond to one
unit of coalescent time. For instance, consider an exponentially growing population
(on the coalescent time scale, ν(t) = exp(−ρt) for ρ > 0) and two different models
leading to a time-changed Beta(2 − α, α)-n-coalescent (α ∈ (1, 2)): the ones from
Corollary 1 and Theorem 3. From Eq. (10), we see that G depends on the product
γρ. For the model from Corollary 2, γ = α and for the one from Proposition 3,
it is γ = α − 1. Thus, the exact same time-changed Λ-n-coalescent can appear as
limit model for genealogies with different population size profiles on the coalescent
time scale. As already discussed in (Matuszewski et al. 2017) in the case of time-
changed Dirac-n-coalescents, this poses a problem for inference: If one wants to infer
ρ directly (instead of the compound parameter γρ), γ has to be known. This means
that specifying/identifying the Cannings model leading to the limit process would be
necessary to directly estimate ρ. This is very similar to the effect that e.g. Watterson’s
estimator only estimates the mutation rate on the coalescent time scale, and not the
mutation rate in one generation, see e.g. Eldon and Wakeley (2006, p. 2627). Another
example for different ν leading to the same time-scaled coalescent limit for different
Cannings models is given by the genealogy limit from the Wright–Fisher model and
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the (usual) Moran models. It is well known, see e.g. Griffiths and Tavare (1994), that
the rescaled genealogy of a sample from a Wright–Fisher model with population size
profile ν converges to Kingman’s n-coalescent with time change G as in Eq. (22) with
γ = 1. However, for the classic Moran model, Proposition 1 shows that Eq. (22) holds
with γ = 2.
For families of Cannings models, if the coalescence probability cN is of order
log(N )−1, a curious phenomenon appears: Population size changes of order N do
not even alter the limit genealogy. An example is the model from Proposition 3 for
the Bolthausen-Sznitman n-coalescent (Λ = Beta(1, 1)). One can interpret this for
a population described by the model as follows: Even instantaneous bottlenecks or
expansions do not influence the effect that a very large family appearing in a gen-
eration has on the genealogy. How the population reproduces, i.e. how the offspring
distributions compare between different parents, is thus fully controlling the geneal-
ogy, regardless of changes that alter the population sizes overall, e.g. changes in range
and/or resources.

4 Proofs

This section contains the proof of the presented statements as well as some further
remarks.

4.1 Converging to a time-changed coalescent: sufficient conditions

First, recall this special case of Möhle (2002, Thm. 2.2)

Corollary 4 If we satisfy, for any fixed t,

lim
N→∞ inf

1≤r≤G−1
N (t)

Nr = ∞, lim
N→∞ sup

1≤r≤G−1
N (t)

cN ,r = 0, (11)

lim
N→∞

G−1
N (t)∑

r=1

Φ
(N )
l (r; a1, . . . , al) = qa1,...,al t < ∞, a1 ≥ · · · ≥ al ≥ 2 (12)

the discrete-time coalescent (R̃(N )

[G−1
N (t)])t≥0, so rescaled in time, converges in distri-

bution (Skorohod-sense) to a continuous-time Markov chain with transition function
exp(Qt), where Q is a transition rate matrix with entries qa1,...,al , a1 ≥ · · · ≥ al ≥ 2
(so diagonal entries are the negative row sums of the other entries).

Remark 3 When compared to the original formulation of Möhle (2002, Thm 2.2),
the limit here can be described as a homogeneous Markov chain with rate matrix Q
instead of the more complicated original description of the transition probabilities as
a product integral of matrix-valued measures. This directly follows from the stronger
condition (12), where for Möhle (2002, Thm 2.2) to hold only convergence and not
linear dependence on t is needed. Indeed, if (12) holds, the value Π((0, t]) of the
product measure Π in Möhle (2002, Thm. 2.2) has the form Qt . This is stated on
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Möhle (2002, p. 209), see also Eq. (24) therein. Then, the form of the transition
function is described on Möhle (2002, p. 203).

Now, recall the conditions (4), (5). Additionally, consider the following control con-
dition for the fluctuations of cN as N → ∞:
For t > 0, there exist M1(t), M2(t) ∈ (0,∞) with

M1(t) ≤ cNr

cN
≤ M2(t) (13)

for all r ≤ [tc−1
N ]. For instance, when (4) holds, this condition is satisfied if cN =

f (N ), where f is regularly varying (at ∞). If Eqs. (5) and (13) hold, choosing l = 1
in Eq. (5) yields

M1(t)cN + o∑(cN ) ≤ cN ,r ≤ M2(t)cN + o∑(cN ) (14)

as N → ∞.
Now, we establish an easy-to-verify variant of Möhle (2002, Corollary 2.4).

Lemma 2 Consider a sequence of Cannings models with reference size N = N0 and
variable population size (Nr )r≥0 which fulfill conditions (4), (5), (13), limN→∞ cN =
0 and whose genealogies of a sample of size n, if one would fix the population
sizes Nr ≡ N0, would be in the domain of attraction of a Λ-n-coalescent (Πt )t≥0

(rescaled by c−1
N ). Then, Corollary 4 can be applied, so (R̃(N )

[G−1
N (t)])t≥0

d→ (Πt )t≥0 in

the Skorohod-sense.
If furthermore G−1(t) := limN→∞ G−1

N (t)cN exists, we have, with G = (G−1)−1,

(
R̃(N )

[t/cN ]
)

t≥0

d→ (ΠG(t))t≥0 (15)

as N → ∞
Proof Size changes of order N satisfy the first part of Condition (11). Its second part
is then satisfied by (14), which in turn is satisfied due to (5) and (13). Also due to (14),
FN is bounded by

[s]M1(t
′)cN + [s]o(cN ) ≤ FN (s) ≤ [s]M2(t

′)cN + [s]o(cN ) (16)

as N → ∞ and [s] ≤ c−1
N t ′ and thus its pseudo-inverse by

t

M2(t ′)cN
+ o(cN )

cN
− 1 ≤ G−1

N (t) ≤ t

M1(t ′)cN
+ o(cN )

cN
− 1

with an appropriate t ′ ≥ t . This implies that the time change function G−1
N for the

discrete models in Corollary 4 is of order c−1
N . Knowing this, we compute
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G−1
N (t)∑

r=1

Φ
(N )
l (r; a1, . . . , al) (5)=

G−1
N (t)∑

r=1

Φ
(Nr )
l (a1, . . . , al)c

−1
Nr︸ ︷︷ ︸

→φl (a1,...,al )

cNr +
G−1
N (t)∑

r=1

o∑(cN )

(5)= φl(a1, . . . , al)

G−1
N (t)∑

r=1

cN ,r

︸ ︷︷ ︸
=FN (G−1

N (t))

+O(1)

G−1
N (t)∑

r=1

o∑(cN )

︸ ︷︷ ︸
→0

→ φl(a1, . . . , al)t

as N → ∞ The second equation is valid due to the uniform convergence of
Φ

(Nr )
l (a1, . . . , al)c

−1
Nr

in r for N → ∞ (Nr is bounded from below on the timescale
used). This allows us to pull outφl(a1, . . . , al). This shows that condition 12 is satisfied
and thus establishes the convergence of (R̃(N )

[G−1
N (t)])t≥0 to the same Λ-n-coalescent as

the fixed-size model. Eq. (15) follows as described in Möhle (1998, Sec. 4). ��

Remark 4 The condition for Eq. (15) to hold is a weak condition, since G−1
N (t) is of

order c−1
N . Additionally, the linear scaling in (15) makes it easy to introduce amutation

structure. Letmutation be introduced in the discretemodel by allowingmutations from
parent to offspring with a rate μN . If μNc

−1
N → θ as N → ∞, the mutations on the

time-scaled Λ-n-coalescent are given by a Poisson point process with homogeneous
intensity θ .

The next step is to establish a special case of Lemma 2 which only considers
modified Moran models with changing population sizes.

Remark 5 Depending on the magnitude of a population size increase, adding indi-
viduals as further offspring of the multiplying parent from the fixed-size modified
Moran model can strongly increase coalescence probabilities. For instance, for a pop-
ulation expansion of size Nm, if one just expands by adding dN ,r = Nm to the
offspring number of the individual with multiple offspring in a single generation,
the coalescence probability for this generation is dominated by the population size

change. Then UN ,r ≥ Nm, leading to cN ,r = E((UN ,r )2)

(Nr−1)2
≥ (Nm−1)2

(Nr−1)2
= O(1) � 0 as

N → ∞. Thus, from generation r − 1 to r , coalescence is still happening with posi-
tive probability as N → ∞, which shows that a potential limit coalescent cannot just
be a (non-degenerately) time-changedΛ-n-coalescent, a continuous-time (inhomoge-
neous) Markovian process. This has an implication for modelling of real populations:
The genealogy of a sudden population expansion, happening at a specific generation,
where a single genotype/individual is responsible for the population growth, is not
given by a time-changed continuous-time Λ-n-coalescent.

We recall some properties of fixed-N modified Moran models.

Lemma 3 (i) As N → ∞: UN/N
d→ 0 is equivalent to cN = E((UN )2)

(N )2
→ 0

123



Multiple-merger coalescents and population size changes… 1511

(ii) If cN → 0 as N → ∞, the genealogies in the modified Moran models converge,
with a rescaling of time by c−1

N , to a Λ-n coalescent if

lim
N→∞ c−1

N Φ
(N )
l (a1, . . . , al) = lim

N→∞ 1{l=1}
E((U )a1)

(N )a1cN
=

∫ 1

0
xa1−2Λ(dx)1{l=1}

(17)
(iii) If U ′

N is distributed as in Eq. (6)

E((U ′
N )k) = (N )k

λN
E(Xk−2) (18)

for all k ≥ 2.

Proof (i) from Huillet and Möhle (2013, Lemma 3.2), (ii) from Huillet and Möhle
(2013, Theorem 3.3), (iii) from Huillet and Möhle (2013, Eq. 10) ��

The following proposition provides criteria for genealogies inmodifiedMoranmod-
els with fluctuating population sizes to converge to a Λ-n-coalescent after a suitable
time change.

Proposition 2 Consider a fixed-N modified Moran model so that UN/N
d→ 0 as

N → ∞ and that (17) holds for a finite measure Λ on [0, 1]. From this, construct
a modified Moran model with varying population sizes (Nr )r≥0 which satisfy the
following conditions. Assume that Eqs. (4) and (13) are satisfied. Assume further
dN ,r/Nr ≤ dN → 0 as N → ∞. Let An,r be the number of individuals in generation
r − 1 allocated as offspring of the multiplying parent of the fixed-Nr model from
generation r . If P(AN ,r > 0) > 0, further assume E(UN )

E((UN )2)
→ 0 and AN ,r ≤

c4E(UN ) for a constant c4 > 0 and N → ∞. Additionally, assume dN ,r − An,r ≤
min{i : P(UNr = i) > 0} − 1.
Based on the fixed-size modified Moran model and (Nr )r∈N define a modified Moran
model with population sizes (Nr )r∈N and offspring variable UN ,r = UNr + AN ,r for
all r ∈ N.
Then, (R̃(N )

[G−1
N (t)])t≥0

d→ (Πt )t≥0 in the Skorohod-sense, where (Πt )t≥0 is the Λ-n-

coalescent limit for the fixed-N modified Moran model.

Proof This is shown by applying Lemma 2. All conditions but Eq. (5) of it are clearly
fulfilled under the assumptions of the proposition currently proven, see also Lemma 3.
To show (5), first assume dN ,r ≥ 0. Then,

E((UNr + AN ,r )a1)

(Nr )a1cN
=

a1∑

k=1

s(a1, k)
k∑

l=0

(
k

l

)
E(Ul

Nr
Ak−l
N ,r )

(Nr )a1cN

= E((UNr )a1)

(Nr )a1cN
+

a1∑

k=1

s(a1, k)
k−1∑

l=0

(
k

l

)
E(Ul

Nr
Ak−l
N ,r )

(Nr )a1cN
, (19)

123



1512 F. Freund

where s(n, k) are Stirling numbers of the first kind. From Eq. (17), we see that
E((UNr )a1 )

(Nr )a1cN
→ ∫ 1

0 xk−2Λ(dx) uniformly in r as N → ∞ (convergence of the first

summand is at least as fast as for N−(t)), while we will now show that the sum fol-
lowing this term in Eq. (19) vanishes asymptotically. We will give an upper bound for
E(Ul

Nr
Ak−l
N ,r )

(Nr )a1cN
, independent from r . For this, we need to recall several technical points:

For an upper bound, we can always omit terms of the form UM
M ≤ 1 for M ∈ N, we

assume AN ,r ≤ c4E(UN ) for N ∈ N and E(UN )(E((UN )2))
−1 → 0 as N → ∞ in

this proposition and we have
Na1
r

(Nr )a1
≤ aa11

a1! , (20)

which follows from the fact that x �→ xa1
(x)a1

decreases for x ≥ a1. With all this, we

can observe that, for 0 ≤ r ≤ c−1
N t and 0 ≤ l < k < a1,

0 ≤ E(Ul
Nr

Ak−l
N ,r )

(Nr )a1cN
≤ E(Ul

Nr
)ck−l

4 (E(UN ))k−l Na1
r

Na1
r cN (Nr )a1

(4)≤ ck−l
4 E(UN )k−l Na1

r

(c1(t))a1−l Na1−l cN (Nr )a1

(20)≤ ck−l
4 E(UN )aa11

(c1(t))a1−l N 2cNa1! ≤ ck−l
4 (N )2E(UN )aa11

(c1(t))a1−l N 2E((UN )2)a1! → 0

as N → ∞. We can thus establish convergence, uniform in r , in Eq. (19), since we
have just shown the uniform convergence of all its summands:

E((UNr + AN ,r )a1)

(Nr )a1cN
→

∫ 1

0
xk−2Λ(dx) (21)

as N → ∞.
Regardless of the allocation of the new individuals, the population model is a modified
Moran model with a single multiplying parent. Thus, to show Eq. (5) one only needs
to show Φ

(N )
1 (r; a1) = Φ

(Nr )
1 (a1) + o∑(cN ) for 0 ≤ r ≤ c−1

N t . Compute further

Φ
(N )
l (r; a1) = E((UNr + AN ,r )a1)/(Nr + dN ,r )a1

= (Nr )a1

(Nr + dN ,r )a1
E((UNr + AN ,r )a1)/(Nr )a1

(∗)= (1 − o(1))−1
(
E((UNr )a1)

(Nr )a1
+ o∑(cN )

)

= Φ
(Nr )
1 (a1) + o∑(cN ).

Equation (∗) follows from Eq. (21) and, for the first factor, from N−1dN ,r ≤ dN being
a null sequence.
Now, consider dN ,r < 0. Then, we get the offspring population by sampling Nr−1
individuals out of Nr , from which UNr share one common parent. Thus, this is again
a modified Moran model, where Un,r is conditionally hypergeometrically distributed
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with P(UN ,r = k|UNr ) = (
UNr
k )(

Nr−UNr
Nr−1−k )

( Nr
Nr−1

)
. Using the factorial moment of the hyperge-

ometric distribution leads to

Φ
(N )
1 (r; a1) = E

(
(Un,r )a1

(Nr−1)a1

)

= E(E((Un,r )a1 |UNr ))

(Nr−1)a1
= (Nr−1)a1

(Nr−1)a1

E((UNr )a1)

(Nr )a1

= Φ(Nr )(a1).

��
Remark 6 In Proposition 2, if additionally G−1(t) := limN→∞ G−1

N (t)cN exists for
all t ≥ 0, Eq. (15) is satisfied, too (since Lemma 2 holds).

Finally, the following lemma provides sufficient conditions for shifting the time-
change G−1

N from pre-limit to limit.

Lemma 4 Assume that for a Cannings model with variable population sizes (Nr )r∈N,
the discrete n-coalescents satisfy (R̃(N )

[G−1
N (t)])t≥0

d→ (Πt )t≥0 in the Skorohod-sense

as N → ∞, where (Πt )t≥0 is a Λ-n-coalescent and G−1
N is defined via Eq. (1).

Further assume that Eq. (4) is satisfied for a positive real function ν and that cN =
f (N ) + o∑(cN ) for a function f (x) = cx−γ for γ > 0 or f (x) = c log(x)−1 for a

constant c > 0. Then, the convergence can be equivalently expressed as (Rc−1
N t )t≥0

d→
(ΠG(t))t≥0 in the Skorohod-sense, where G(t) = ∫ t

0 (ν(s))−γ ds, where γ = 0 is used
if f (x) = c log(x)−1.

Proof G is the pseudo-inverse of limN→∞ G−1
N cN , so

G(t) = lim
N→∞ FN (tc−1

N ), (22)

since for a sequence of functions, the inverses converge iff the original functions
converge and since c f has the inverse t �→ f −1(c−1t). The shift by -1 does not alter
the limit here, since its effect vanishes as N → ∞ due to the multiplication with
cN . It is important to note here that any terms of order o∑(cN ) can be omitted when
computing FN . Thus, we can replace cN ,r by cNr and even by c∗

Nr
= f (Nr ) for a

constant c2. Since N−1N�tc−1
N 	 → ν(t), analogous to Griffiths and Tavare (1994), we

can show, for f (x) = cx−γ ,

G(t) = lim
N→∞

[tc−1
N ]∑

r=1

c∗
Nr

c∗
N
c∗
N = lim

N→∞

[tc−1
N ]∑

r=1

(
N

Nr

)γ

c∗
N

= lim
N→∞

∫ t

0

[tc−1
N ]∑

r=1

(
Nr

N

)−γ

1[rcN ,(r+1)cN )(s)ds =
∫ t

0
(ν(s))−γ ds,
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where for convergence, observe that there is pointwise convergence

[tc−1
N ]∑

r=1

(
Nr

N

)−γ

1[rcN ,(r+1)cN )(s) =
(
N�sc−1

N 	
N

)−γ

→ (v(s))−γ

for s ∈ [0, t] inside the integral and that bounded convergence is applicable since
Eq. (4) ensures that the integrand is in [M2(t)−γ , M1(t)−γ ]. If f (x) is a logarithm,
we have, using kr defined by Nr = Nkr for 0 ≤ r ≤ c−1

N t with c1(t) ≤ kr ≤ c2(t),

G(t) = lim
N→∞

[tc−1
N ]∑

r=1

c log(N )−1 log(N )

log(Nr )

= lim
N→∞ c

[tc log(N )]∑

r=1

log(N )−1
(

1 − log(kr )

log(N ) + log(kr )

)

= t − lim
N→∞ c

[tc log(N )]∑

r=1

log(kr )

(log(N ) + log(kr )) log(N )
= t =

∫ t

0
(ν(s))0ds.

��
Remark 7 – The integral representation of the time change is a deterministic version

of the coalescent intensity from Kaj and Krone (2003, Sect. 1.3), just applied to
Cannings models leading to non-Kingman Λ-n-coalescents.

– As described in Möhle (1998, Section 4), the time-changed Λ-n-coalescent limit
can also be expressed by its infinitesimal rates

λ
(ν)
n,k = (ν(s))−γ

∫ 1

0
xk−2(1 − x)n−kΛ(dx)

for a merger of k of n present lineages. This is also the form in which the limit
process of the diploid umbrella model from Koskela and Wilke Berenguer (2019)
is given.

– Conditioned that the limit coalescent (ΠG(t))t≥0 has at time T0 = t0 coalesced into
a state with b blocks, what is the distribution of the waiting time T for the next
coalescence event? If T = t , this means that in the non-rescaled Λ-n-coalescent
(Πt )t≥0, we wait G(t) − G(t0) for the next coalescence. This waiting time T ′ in
(Πt )t≥0 is exponentially distributed with parameter λb (total rate of coalescence).
Thus,

P(T > t0 + t |T0 = t0) = P(T ′ > G(t0 + t) − G(t0)) = e−λb(G(t0+t)−G(t0)).

(23)

Proof of Corollary 3 The form of G is a direct consequence of Lemma 4, since ν(t) =
exp(−ρt). Then, plugging G into Eq. (23) yields the distribution for the next coales-
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cence event, the Gompertz distribution parameters as e.g. described in Lenart (2014,
Eq. 3) can be read off. ��

4.2 Proofs of convergence to a time-changed coalescent: modifiedMoranmodels

The modified Moran models used in Theorems 1 and 2 were introduced in Huillet
and Möhle (2013, Prop. 4), the latter model with a small modification to ensure that
there is always a parent with at least two offspring, see also Huillet and Möhle (2013,
Example 4.1).

Proof of Theorem 1 Assume that E((U ′
N )2)(N − 1)−1

� 0 as N → ∞ also holds for
any subsequence. If not, restrict to a subsequence for which this is true and define the
limit only along this subsequence.
First, we verify that cN = N−γ + o∑(N−γ ), thus converges to 0 and that the fixed-N
model converges to the Λ-n-coalescent. Let c′

N be the coalescence probability in a
fixed-N modifiedMoran model withU ′

N as the number of offspring of the multiplying
parent. This ensures 2((N )2)

−1 ≤ c′
N ≤ 1. Moreover, the assumptions made ensure

that (Nc′
N )N∈N has a lower bound > 0, so we can define An s.t. P(AN )c′

N = N−γ

for any γ ∈ (1, 2). Then, the following is satisfied as N → ∞ and X
d= Λ

cN = c′
N P(AN ) + (1 − P(AN ))

2

N (N − 1)
= N−γ + o(N−γ ),

E((UN )k)

(N )kcN
= E((U ′

N )k)P(AN )

(N )kcN

(∗)= E((U ′
N )k)N−γ λN

(N )kcN

(18)= E(Xk−2)N−γ

cN
→ E(Xk−2) for k > 3, (24)

whereEq. (∗)uses c′
N = λ−1

N ,which follows fromEq. (18)with k = 2.This establishes
the convergence to the Λ-n-coalescent in the fixed-N case. Now we assume variable
population sizes (Nr )r∈N. First, observe that, since cN = O(N−γ ), it is enough to add
occasionally a single individual from generation r to r − 1 to generate any population
size changes allowed in Eq. (4) including bottlenecks which are instantaneous on
the coalescent time scale. This single individual can then be added as offspring of
a non-multiplying parent from the fixed-Nr model or as an offspring of the already
multiplying parent. To see the latter, observe that E((UN )2) = cN (N )2 ∼ N−γ N 2 →
∞. Then, as in Huillet and Möhle (2013, third remark p. 8), one has

E(UN )

E((UN )2)
∼ E(UN )

E(U 2
N )

≤ 1

E(UN )
.

If both E((UN )2), E(UN ) → ∞, the equation above shows that E(UN )
E((UN )2)

→ 0. If

E(UN ) � ∞ but E((UN )2) does, we still have E(UN )
E((UN )2)

→ 0 as N → ∞. Thus,
Proposition 1 allows one to add the one individual also to the already multiplying
parent.
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Thus, we have verified all conditions but Eq. (13) to apply Proposition 2. However,
this follows from cN regularly varying. Since cN = N−γ +o(N−γ ), we can also shift
the non-linear time-change to the limit due to Lemma 4. ��
For the proof of the next theorem, we use the following

Lemma 5 Let Λ ∈ M[0, 1] and let U ′
N be distributed as in Eq. (6) for any N ∈ N.

Let (Nr )r∈N satisfy Eq. (4). Then, Eq. (13) is satisfied.

Proof Equation (18) shows cN = λ−1
N , where λN is the total transition rate for the

first jump of a Λ-N -coalescent. Without restriction, assume Nr ≥ N (for N < Nr ,
an analogous proof provides bounds for cN

cNr
). Further assume that the N -coalescent is

just the restriction of the Nr -coalescent on individuals {1, . . . , N }. Any merger in the
N -coalescent is then also a merger in the Nr -coalescent, which shows λN ≤ λNr . In
contrast, the first merger in the Nr -coalescent is only a merger in the N -coalescent if
it features at least two individuals from {1, . . . , N }. The probability of this is bounded
from below by the probability N (N−1)

Nr (Nr−1) that the first two of the blocks merged in the
N are from {1, . . . , N }. This implies

0.5(c2(t))
−2 (4)

<
N (N − 1)

Nr (Nr − 1)
≤ cN

cNr

= λN

λNr

≤ 1

Proof of Theorem 2 In the fixed-N case, Eq. (6) implies that E((U ′
N )2)(N −1)−1 → 0

necessarily needs that λN → ∞ as N → ∞. This is equivalent to
∫ 1
0 x−2Λ(dx) = ∞,

see (Pitman 1999, Eq. 7). Thus, convergence to theΛ-n-coalescent is shown in (Huillet
and Möhle 2013, Prop. 3.4). Now, switch to variable population sizes (Nr )r∈N. Since
NcN = E((UN )2)(N − 1)−1 → 0 as N → ∞, it is enough to add one individual per
generation to cover any population growth profile covered by Eq. (4). This can always
be done by letting a parent not reproducing in the fixed-size model reproduce (once).
To add as further offspring of the multiplying parent, assume E((UN )2) → ∞ as
N → ∞. Then, E(UN )

E((UN )2)
→ 0 as shown in the proof of Theorem1. Thus, Proposition 1

provides that at most AN ,r ≤ c4E(UN ) for arbitrary c4 > 0 individuals can be added
per generation to the alreadymultiplying parent. This allows for adding up to any fixed
number k ∈ N individuals per generation. Additionally, Eq. (13) is satisfied due to
Lemma 5. We can thus apply Proposition 2, with an arbitrary allocation of additional
individuals that yields a modified Moran model. ��

Proof of: if Theorem 2 holds, Eq. (8) implies Eq. (15) We just need to show that
the condition in Remark 6 is equivalent to Eq. (8). From the proof of Lemma 4 [the
arguments surrounding Eq. (22)] combined with Eq. (5), we see that existence of

limN→∞
∑[tc−1

N ]
r=0 cNr is equivalent to the existence of G−1(t) := limN→∞ G−1

N (t)cN .
��

To prove the Corollaries 1 and 2, we collect some properties of the modified Moran
models with UN = U ′

N with U ′
N given by Eq. (6) leading to Beta-(a, b)-coalescents

for a ∈ (0, 2], b > 0. From Huillet and Möhle (2013, Eq. (10)+ Corollary A.1),

cN ∼ (2 − a)Γ (b)

Γ (a + b)
Na−2 for a < 2. (25)
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Proof of Corollary 1 From Eq. (25), it follows that for a ∈ (0, 1), Λ = Beta(a, b)
satisfies E((U ′

N )2)(N − 1)−1 = NcN = O(Na−1) → 0 as N → ∞. Thus, such
Λ-n-coalescents are covered by Theorem 2. Additionally from Eq. (25), cN has a form
that is covered by Lemma 4, which allows us to shift the time-change G in Theorem 2
to the limit coalescent and also shows the form of G in Corollary 1. ��
Proof of Corollary 2 We reiterate the proof of Theorem 2. Let Λ = Beta(a, b) for
a ∈ (1, 2), which satisfies

∫
x−2Λ(dx) = ∞. Thus, in the fixed-N case, again (Huillet

and Möhle 2013, Prop. 3.4) ensures the convergence of the discrete genealogies to the
Λ-n-coalescent when properly rescaled as N → ∞. Furthermore, Lemma 5 shows
that Eq. (13) is satisfied Since ν(t) = exp(−ρt), we can use Nr = �N (1 − ρcN )	 to
satisfy (4). Thus, we only need to show that the population size increase per generation
does not violate the conditions of Proposition 2. Indeed,

dN ,r = �N (1 − cNρ)r	 − �N (1 − ρcN )r+1	 ≤ N (1 − (1 − ρcN )) + 1

= N (ρcN ) + 1

individuals at most have to be added. These can be added as An,r additional offspring
of the multiplying parent from the fixed-Nr model, if the condition to apply it from
Lemma 2 are met. For Λ considered here, one has E((UN )2)) ∼ N 2cN ∼ Na → ∞,
see Eq. (25). From Lemma 2 we see that then we are allowed to add O(E(UN ))

individuals. Huillet and Möhle (2013, Remark p. 9) shows E(UN ) = c5NcN for
a constant c5 > 0, so such growth is indeed covered (and we can then still use
AN ,r < dNr and add the other individuals to non-reproducing parents from the fixed-
Nr model). Thus, we can establish convergence using Proposition 2 and shift the
time-change G to the limit using Lemma 4, since cN is essentially a negative power
of N . ��
Proof of Proposition 1 For Λ = δ0, Eq. (6) shows U ′ ≡ 2, so the modified Moran
model is the normal Model model in this case. Since E((U ′

N )2)(N − 1)−1 = 2(N −
1)−1 → 0 as N → ∞, Theorem 2 applies. Since cN = 2(N (N − 1))−1 = 2N−2 +
o(N−2), we can apply Lemma 4 to shift the time-change G to the coalescent limit. ��

4.3 Proofs of converging to a time-changed coalescent: model from Schweinsberg
(2003)

Proof of Lemma 1 It suffices to reiterate the proof of Schweinsberg (2003, Lemma
5) briefly. For u ∈ [0, 1], consider the generating function f (u) := E(uX ). Let
d ′
n,r = dN ,r/Nr . Then, SN ,r := ∑Nr

i=1 X
(r)
i fulfills

P(SN ,r ≤ Nr−1) ≤ u−Nr (1+d ′
N ,r )E(uSN ,r ) = (u−(1+d ′

N ,r ) f (u))Nr .

Since f (1) = 1 and f ′(1) = μ > 1, there exists u0 ∈ (0, 1) and ε > 0 so that
u1+ε
0 > f (u0). Moreover, for this ε we find N0 ∈ N so that dN < ε for N ≥ N0. For

such N , as computed above, one gets
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P(SN ,r ≤ Nr−1) ≤ (u
−(1+d ′

N ,r )

0 f (u0))
Nr ≤ ANr

1 ≤ AN−(t)
1 = (Ac−(t)

1︸ ︷︷ ︸
<1

)N ,

where A1 := u−(1+ε)
0 f (u0) < 1. Setting A := Ac−(t)

1 completes the proof. ��
Proof of Theorem 3 Recall that, for 1 < α < 2, the coalescence probability in this
(fixed-N ) model satisfies cN ∼ CαB(2 − α, α)E(X)−αN 1−α , where B is the Beta
function, see Schweinsberg (2003, Lemma 13). For α = 1, instead cN ∼ (log N )−1,
see Schweinsberg (2003, Lemma 16). Check the conditions necessary to apply
Lemma 2: the model and the assumptions above satisfy cN → 0 as N → ∞, (4)
and, since cN is regularly varying, also (13). The changes of population sizes from
generation to generation are enough to cover instantanous population size changes
on the coalescent time scale (and these are the most extreme changes allowed in
Eq. (4)): for a (coalescent time) instantaneous change of size mN , one can set
|dN ,r | = m

√
cN =: dN → 0 as N → ∞ for (

√
cN )−1 generations. Thus, only

(5) needs to be verified. Since Nr−1 offspring are sampled from
∑Nr

i=1 X
(r)
i poten-

tial offspring, the transition probabilities of the discrete coalescent can be formulated
analogously to Eq. (2) as

Φ(N )(r; a1, . . . , al) =
(Nr )l E

(∏l
i=1(X

(r)
i )ai

)

(Nr−1)∑l
i=1 ai

= Φ(Nr )(a1, . . . , al)
(Nr )∑l

i=1 ai

(Nr−1)∑l
i=1 ai

This means one just needs to show that

Φ(Nr )(a1, . . . , al)

∣
∣
∣
∣
∣

(Nr )∑l
i=1 ai

(Nr−1)∑l
i=1 ai

− 1

∣
∣
∣
∣
∣
= o∑(cN ),

which follows from

c−1
N Φ(Nr )(a1, . . . , al)

∣
∣
∣
∣
∣

(Nr )∑l
i=1 ai

(Nr−1)∑l
i=1 ai

− 1

∣
∣
∣
∣
∣
→ 0

uniformly in r . To show the latter, uniform convergence, proceed as follows. First,
observe that, since (13) holds,

c−1
N Φ(Nr )(a1, . . . , al) = c−1

Nr
Φ(Nr )(a1, . . . , al)

︸ ︷︷ ︸
→φ(a1,...,al )

cNr

cN

is uniformly bounded (again, since Nr is bounded from below by N−(t), there is
uniform convergence in r of the first factor as N → ∞). Thus, we only need to show∣
∣
∣
∣

(Nr )∑l
i=1 ai

(Nr−1)∑l
i=1 ai

− 1

∣
∣
∣
∣ → 0. For this, observe that the function x �→ a′

1−x
a′
2−x

for x < a′
2 is
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strictly increasing (decreasing) if a′
1 − a′

2 > 0 (if a′
1 − a′

2 < 0). This shows that there
are b1, b2 ∈ N0 so that

(
Nr − b1
Nr−1 − b1

)∑l
i=1 ai

≤
(Nr )∑l

i=1 ai

(Nr−1)∑l
i=1 ai

≤
(

Nr − b2
Nr−1 − b2

)∑l
i=1 ai

.

This implies that it is sufficient to show

∣
∣
∣
∣
∣

(
Nr−b

Nr−1−b

)∑l
i=1 ai − 1

∣
∣
∣
∣
∣
→ 0 as N → ∞ for

any N−(t) > b ≥ 0, which follows from
∣
∣
∣
(

Nr−b
Nr−1−b

)
− 1

∣
∣
∣ → 0 uniformly in r . Further

computation shows

∣
∣
∣
∣
Nr − b

Nr−1 − b
− 1

∣
∣
∣
∣ = |dN ,r |

Nr−1 − b
≤ dN

Nr−1 − b
.

Since dN → 0, this vanishes uniformly. Thus, Lemma 2 can be applied, establishing

convergence of (R̃(N )

[G−1
N (t)])t≥0

d→ (Πt )t≥0. Lemma 4 then ensures that the time-

change G can be shifted to the limit, since cN is either essentially a negative power or
a logarithm of N . ��
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