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Abstract
Adaptive genetic variation is a function of both selective and neutral forces. To ac-
curately identify adaptive loci, it is thus critical to account for demographic history. 
Theory suggests that signatures of selection can be inferred using the coalescent, 
following the premise that genealogies of selected loci deviate from neutral expecta-
tions. Here, we build on this theory to develop an analytical framework to identify loci 
under selection via explicit demographic models (LSD). Under this framework, signa-
tures of selection are inferred through deviations in demographic parameters, rather 
than through summary statistics directly, and demographic history is accounted for 
explicitly. Leveraging the property of demographic models to incorporate directional-
ity, we show that LSD can provide information on the environment in which selec-
tion acts on a population. This can prove useful in elucidating the selective processes 
underlying local adaptation, by characterizing genetic trade- offs and extending the 
concepts of antagonistic pleiotropy and conditional neutrality from ecological theory 
to practical application in genomic data. We implement LSD via approximate Bayesian 
computation and demonstrate, via simulations, that LSD (a) has high power to identify 
selected loci across a large range of demographic- selection regimes, (b) outperforms 
commonly applied genome- scan methods under complex demographies and (c) ac-
curately infers the directionality of selection for identified candidates. Using the same 
simulations, we further characterize the behaviour of isolation- with- migration models 
conducive to the study of local adaptation under regimes of selection. Finally, we 
demonstrate an application of LSD by detecting loci and characterizing genetic trade- 
offs underlying flower colour in Antirrhinum majus.
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1  |  INTRODUC TION

Elucidating the genetic basis of adaptation and identifying genetic 
determinants of population and species divergence are key foci in 
evolutionary biology. In natural systems, genetic variation is shaped 
by the demographic history (driven by the neutral processes of mu-
tation, migration and drift) together with natural selection on loci un-
derlying adaptive traits. While all gene genealogies are constrained 
by the demographic history of the population, the genealogies of 
loci affected by selection are perturbed and may differ in key char-
acteristics compared to those evolving under neutrality, though con-
verging patterns can arise (Bierne et al., 2011; Edmonds et al., 2004; 
Excoffier, Foll, et al., 2009; Li et al., 2012; Slatkin & Excoffier, 2012). 
Disentangling the genomic signatures generated by these two pro-
cesses (i.e., correctly identifying adaptive loci) remains a prevailing 
challenge in the field of population genetics (Biswas & Akey, 2006; 
Horscroft et al., 2019; Luikart et al., 2003).

A multitude of methods have been developed that identify loci 
under selection as those whose summary statistics deviate from the 
genome- wide distribution. These “outlier” approaches can generally 
be grouped into three classes: those that (a) detect regions of ele-
vated differentiation between populations (via e.g. FST- related sta-
tistics), (b) detect regions of perturbed site frequency spectrum (SFS) 
via diversity or diversity- related estimators (e.g., π, Tajima's D) and (c) 
detect regions of extensive linkage disequilibrium (LD) via haplotype 
statistics (e.g., extended haplotype homozygosity [EHH], integrated 
haplotype score) (Beaumont & Nichols, 1996; Biswas & Akey, 2006; 
Luikart et al., 2003; Oleksyk et al., 2010; Sabeti et al., 2002; Vitti 
et al., 2013). While in empirical studies inference of selection is often 
achieved through corroboratory evidence from multiple measures, 
the choice of a particular class and hence summary statistic is moti-
vated by the type of selection one aims to infer; with the first geared 
towards divergent selection between populations and the others to-
wards footprints of selection within single populations.

Under the premise that adaptive genetic variation is a function 
of both selective and neutral forces, accounting for the demographic 
history of the study system is critical for the correct identification 
of selected loci (Excoffier, Hofer, et al., 2009; François et al., 2016; 
Hoban et al., 2016; Hofer et al., 2009). This is commonly achieved 
by contrasting locus- specific statistics against an estimate of the 
expected distribution of these statistics under demography alone, 
with the power of such an approach being a function of both the 
summary statistics used and the accuracy with which the neutral 
distribution is inferred. In the context of identifying local adaptation, 
the canonical statistics employed is FST, and the first methods to 
infer its neutral distribution used simulations under an island model 
calibrated by matching the observed heterozygosity at each locus 
(Beaumont & Nichols, 1996; Excoffier, Foll, et al., 2009). Under is-
land models, the distribution of sample allele frequencies is also well 
captured by Pólya distributions (Balding & Nichols, 1994; Rannala 
& Hartigan, 1996), which can be learned using likelihood- based 
methods that jointly classify loci into neutral and selected classes 
(Beaumont & Balding, 2004; Foll & Gaggiotti, 2008; Galimberti et al., 

2020). While generally powerful, these methods suffer from high 
false- positive rates in the case of asymmetric divergence between 
populations (Galimberti et al., 2020; Lotterhos & Whitlock, 2014; 
Luu et al., 2017), which violates a key assumption of island models. 
This can be alleviated by using hierarchical island models (Foll et al., 
2014; Galimberti et al., 2020) or a more flexible distribution to cap-
ture neutral allele frequencies (e.g., principal components analysis 
[PCA], Luu et al., 2017). For some natural systems, however, these 
approaches may still be insufficient to capture the demographic 
history of the population and a (potentially complex) demographic 
model should be used. Williamson et al. (2005), for instance, inferred 
such a model from putatively neutral loci and then identified loci 
under selection as those for which an additional selection parameter 
is required.

Rather than modelling selection explicitly, loci under selection 
may also be identified under pure demographic models through 
locus- specific demographic parameters, under the premise that the 
demographic parameters of selected loci are expected to deviate 
from neutral expectations (Barton & Bengtsson, 1986; Charlesworth, 
2009; Charlesworth et al., 1997; Fusco & Uyenoyama, 2011; Galtier 
et al., 2000; Gossmann et al., 2011; Petry, 1983; Sousa et al., 2013). 
Under coalescent theory, demographic models are parametrized 
by the effective sizes (NE) of each population and the effective 
rates of migration (ME) between them, which respectively describe 
the level of drift and gene flow within and between populations 
(Charlesworth, 2009; Petry, 1983). Importantly, both NE and ME may 
change through time. Different modes of selection and adaptive 
processes can be expected to alter these demographic parameters in 
different ways. In a single population, a selective sweep is expected 
to reduce NE at selected and linked sites while diversifying selec-
tion is expected to increase it (Galtier et al., 2000; Gossmann et al., 
2011). In the case of two or more populations connected by gene 
flow, balancing selection and adaptive introgression are expected to 
increase ME at selected and linked sites, while divergent selection 
is expected to reduce ME at those sites (Charlesworth et al., 1997; 
Geraldes et al., 2006; Petry, 1983; Won et al., 2005).

Notably, locus- specific demographic parameters are not just in-
formative about the strength (i.e., the magnitude of variation in NE 
or ME) and mode of selection (i.e., a reduction or elevation of NE or 
ME), but may also identify the population (or environment) in which 
selection acts (e.g., a reduction in ME in one but not the other direc-
tion). Directional selection modulates fitness in natural populations 
by purging maladaptive alleles via extrinsic barriers such as hybrid or 
immigrant inviability, or lower fecundity (Naisbit et al., 2001; Nosil 
et al., 2005; Rundle & Whitlock, 2001; Schluter, 2000). This effec-
tively reduces ME at selected loci proportionally to the strength of 
selection (Petry, 1983). Under local adaptation, alternate alleles 
may confer higher fitness in their respective local environment but 
reduced fitness in the foreign environment (i.e., antagonistic plei-
otropy [AP]), or an allele may confer higher fitness in its local en-
vironment but have no differential effect relative to the alternate 
allele in the foreign environment (i.e., conditional neutrality [CN]) 
(Anderson et al., 2013; Kawecki & Ebert, 2004; Savolainen et al., 
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2013). To date, such genetic trade- offs have only been character-
ized in a handful of cases, primarily through demanding experiments 
involving the transplanting of alternate genotypes in their recipro-
cal environments (Anderson et al., ,2013, 2014; Oakley et al., 2014; 
Troth et al., 2018). Characterizing the nature of such trade- offs di-
rectly from genomic data presents a promising complementary ap-
proach, applicable to natural populations, to investigate the genetic 
basis of local adaptation, a key concept in ecological genetics.

Inferring demographic parameters using coalescent theory 
is, however, computationally challenging, as the underlying but 
unknown genealogies must be integrated out numerically (Hey 
& Nielsen, 2007). As a result, there exists only a single likelihood 
implementation to infer locus- specific and global demographic pa-
rameters jointly: an Markov chain Monte Carlo (MCMC) sampler 
that attributes loci to different classes (e.g., selected and neutral) 
and jointly infers the demographic parameters of a two- population 
isolation- with- migration (IM) model for each group (Sousa et al., 
2013). To extend this approach to more complex models, simulation- 
based techniques such as approximate Bayesian computation (ABC) 
(Beaumont et al., 2002; Marjoram & Tavaré, 2006; Sisson et al., 
2018) may be employed. The use of ABC to infer genome- wide de-
mographic parameters has a long tradition (Beaumont et al., 2002; 
Dussex et al., 2014; Sisson et al., 2018; Tavaré et al., 1997; Wegmann 
& Excoffier, 2010) and it may also be used to infer locus- specific 
parameters in a hierarchical setting, but it is computationally chal-
lenging. Indeed, the dimensionality of a genome- wide model is pro-
hibitively large for any naïve Monte- Carlo scheme as the probability 
that a simulation matches the data at all loci is virtually zero. When 
inferring genome- wide parameters, loci are exchangeable and this 
problem is easily overcome by using summary statistics that are 
functions of all loci such as the (scaled) moments of the distribu-
tion of locus- specific statistics (Tavaré et al., 1997; Wegmann et al., 
2009). To benefit from this in a hierarchical setting, Bazin et al. (2010) 
proposed a two- step algorithm in which hierarchical parameters are 
inferred based on moments of locus- specific summary statistics, 
and locus- specific parameters are then inferred with simulations of 
a single locus conducted with parameters drawn from the poste-
rior distribution of the hierarchical parameters. As recently shown 
(Kousathanas et al., 2016), this approach can be generalized to arbi-
trary parameter dependencies when using an ABC- MCMC setting 
that also eliminates the need for a two- step approach. These ap-
proaches were successfully used to infer locus- specific (Bazin et al., 
2010) and cluster- specific (Aeschbacher et al., 2013) migration rates, 
as well as locus- specific selection coefficients (Foll, Poh, et al., 2014; 
Kousathanas et al., 2016) for up to several hundred loci. Scaling such 
inference up to whole genomes, however, remains difficult due to 
the requirement to simulate all loci.

In this paper, we introduce LSD, a framework for identifying loci 
under selection via explicit demographic models that scales to ge-
nomic data. Similar to the approach by Bazin et al. (2010), LSD works 
in two steps. However, rather than inferring hierarchical parameters 
for all loci, LSD first obtains point estimates of demographic pa-
rameters for neutral loci, which is then compared against per- locus 

estimates to identify selected loci. This has the benefit of requiring 
only simulations of a single locus, which can be efficiently recycled 
(Thalmann et al., 2011). As a downside, the approach requires a pri-
ori knowledge on putative neutral sites. However, as we show with 
simulations, the approach is very robust to mis- specifications.

While LSD is flexible regarding the choice of demographic model 
and can in principle accommodate any discrete population model 
(including single population and stepping- stone models) as well as 
detect different modes of selection, we demonstrate here LSD’s util-
ity in studies of local adaptation by focusing on the detection of loci 
under divergent selection between populations under IM models. 
We validate and assess the performance of LSD via extensive simu-
lations, provide general insights into the properties of IM models in 
relation to the power of LSD and other widely applied genome scan 
methods, and demonstrate an application of the method to the de-
tection of functionally validated loci underlying flower colour in two 
parapatric subspecies of Antirrhinum majus (common snapdragon) 
(Schwinn et al., 2006; Tavares et al., 2018).

2  |  MATERIAL S AND METHODS

2.1  |  Model

We begin by outlining the conceptual framework underlying LSD. 
Consider a demographic model ℳ, parameterized by demographic 
parameters �, that generates genetic data D. To quantify deviations 
from neutrality, LSD first estimates the demographic parameters 
�̂ from a collection of loci assumed to be neutral (Figure S1). In a 
second step, LSD performs demographic inference on all loci and 
determines the posterior distribution �l(�) = �(� |Dl) for each locus. 
Finally, LSD assesses the concordance of �̂ with �l(�) by determining 
hl, the highest posterior density interval (HPDI) of �l(�) that contains 
�̂, and uses pl = 1 − hl as a metric to identify locus l  as incompatible 
with �̂. For loci with parameters �̂, pl follows a uniform distribution 
(the coverage property) and is interpreted as a p- value to reject �̂ 
for locus l . The joint posterior distribution �l(�) may further provide 
information on the magnitude and directionality of selection.

Given that the evaluation of the likelihood is nontrivial and may 
be intractable under more complex models, we resort to an approx-
imate approach (Marjoram & Tavaré, 2006) (Figure 1). Under an 
ABC framework, the likelihood is approximated by simulations, the 
outcomes of which are compared with observed data in terms of 
summary statistics. That is, we find the set of parameters � that min-
imize the distance between the observed data D and the simulated 
data D ′. To efficiently evaluate this, we reduce the dimensionality of 
the data via summarizing them into a set of lower- dimensional sum-
mary statistics S and S ′, which are selected to capture the relevant 
information in D and D ′, respectively (Beaumont et al., 2002; Joyce 
& Marjoram, 2008; Sisson et al., 2018).

An appropriate model for generating simulated genetic data 
is provided by coalescent theory (Kingman, 1982; Wakeley, 
2001), parametrized by population demographic parameters 
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� = {NE ,ME ,�}, where NE refers to the vector of effective popula-
tion sizes, ME to the vector of effective migration rates and � to the 
mutation rate. We stress that population sizes and migration rates 
may vary through time.

2.2  |  Implementation

We implemented the framework described above as shown in 
Figure 1 and detailed below.

2.2.1  |  Simulations

While the framework is readily used for any type of locus, we consider 
here a locus to consist of a genomic window with a shared genealogy. 
This effectively implies that recombination is free between loci and ab-
sent within. We simulate genealogies using msms (Ewing & Hermisson, 
2010), under a user- defined demographic model. The processing, for-
mat and final output of observed genetic data will often differ from 
that of coalescent simulations, given that observed genetic data may 
be subject to various presequencing (e.g., pooling), sequencing (e.g., 
sequencing errors, stochastic sampling of reads) and postsequenc-
ing (e.g., filters) events that perturb and reformat the data from the 
original source. We thus implement two complementary programs that 

interface with coalescent simulators to replicate observed sequencing 
pipelines and generate simulated sequencing data: lsd- high can ac-
commodate and simulate both individual and pooled data and assumes 
mid-  to high coverage (>10×) data, while lsd- low accepts individual data 
and can additionally accommodate low coverage (>2×) data by utilizing 
genotype likelihoods via mstoglf and angsd (Korneliussen et al., 2014). 
A suite of summary statistics is then calculated for the simulated and 
observed data via the same programs. Summary statistics currently 
implemented include the number of segregating sites (S), private S, nu-
cleotide diversity (π), Watterson's estimator (θW), Tajima's D (θD), rela-
tive divergence (FST), absolute divergence (DXY) and site frequencies. In 
principle any summary statistic can be included, contingent on the data 
and appropriate additions to the programs’ scripts. To account for po-
tential correlation between summary statistics and to retain only their 
informative components, we apply a partial least squares transforma-
tion (Wegmann et al., 2009).

2.2.2  |  ABC inference

The estimation of demographic parameters is performed with abc-
toolbox (Wegmann et al., 2010), via the ABC- GLM algorithm using 
the subset of n simulations closest to the observed summary sta-
tistics. In a first step, LSD infers demographic parameters of puta-
tively neutral loci to obtain point estimates �̂. We do so based on 

F I G U R E  1  Analytical framework to identify loci under selection via explicit demographic models (LSD). LSD identifies loci under selection 
by first estimating demographic parameters and then quantifying the departure of these parameters from neutral expectations. Our specific 
implementation of LSD employs approximate Bayesian computation (ABC) for parameter estimation, and is performed in a genome scan 
approach [Colour figure can be viewed at wileyonlinelibrary.com]
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simulations of a single locus. In contrast to classic ABC regression ap-
proaches, ABC- GLM can readily use such simulations to accurately 
infer posterior distributions from many loci as it approximates the 
likelihood function, rather than the posterior distribution (Thalmann 
et al., 2011). However, we propose a slightly different approach that 
does not characterize the full posterior distribution, but we found to 
result in point estimates �̂ that are more accurate (Text S4, Figures 
S1 and S2) and robust to misidentification of putatively neutral loci 
(Text S5, Figure S3). Specifically, we first infer locus- specific poste-
rior distributions �l(�) for each putatively neutral locus with ABC- 
GLM, then calculate the product of these densities �(�) =

∏
l� l(�), 

and identify �̂ = argmax
�

�(�).
In a second step, LSD infers locus- specific posterior distributions 

using ABC- GLM on all loci, either using the same set of simulations as in 
the first step, or from simulations of a single locus conducted under the 
parameters �̂, except for the parameters affected by selection (e.g., ME).

2.3  |  Simulations

To test the performance of the LSD implementation, we simulated 
pseudo- observed genomes using the program msms under different 
demographic and selection parameter values, focusing on IM models 
relevant for the characterization of local adaptation. We assumed 
a diploid system, a common mutation rate µ = 5 × 10−7 per bp per 
generation, and all loci to be biallelic with ancestral allele a and de-
rived allele A. Each simulated pseudogenome represented a unique 

demographic- selection regime and comprised nn = 1000 neutral loci 
and ns = 50 selected loci of 5 kb length, for a total (pseudogenome) 
size of 5.25 Mb. We assume no within- locus recombination.

2.3.1  |  Demography

We simulated four models representing different levels of com-
plexity in terms of population structure and demographic history 
(Figure 2; Text S1). In all models, selection is inferred from the re-
ciprocal scaled migration rates between two contrasting environ-
ments (M12, M21; where ME = NmE). We used neutral migration rates 
M12 = M21 = M = 0.5, 5 and 50 migrants per generation and inferred 
selection as deviations from these rates. We use model ℳ1 to repre-
sent a simplified, generalized model of local adaptation, model ℳ2 to 
represent a more complex case of local adaptation comprising mul-
tiple, structured populations, model ℳ3 to reflect a scenario typical 
of glacial- induced divergence and secondary contact population dy-
namics and model ℳ4 to represent a case of hierarchical divergence 
with complex demography. The specific parameter choices for all 
models are given in Text S1.

2.3.2  |  Selection

To simulate genetic trade- offs, selection was simulated on alternate 
alleles in the contrasting environments, on top of the demographic 

F I G U R E  2  Models used in the 
simulations and case study. Model 
ℳ1 represents a simple two- deme 
isolation- with- migration (IM) model 
with reciprocal migration. Model ℳ2 
represents a six- deme island– continent 
model where common differences 
between environments are modelled 
by connecting the sampled demes (i.e., 
islands) to respective meta- population 
continents via gene flow. Model ℳ3 
represents a two- deme divergence with 
bottleneck and exponential growth 
model. Model ℳ4 represents a four- 
deme hierarchical divergence model with 
sequential founder events, bottleneck and 
exponential growth. Red and blue demes 
reflect contrasting environments, while 
grey demes reflect neutral environments 
where no selection acts. In all models, 
selection is inferred from the deviation 
from neutrality of the reciprocal migration 
rates between the two contrasting 
environments (M12, M21)
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model. Specifically, we assumed the beneficial alleles to be domi-
nant such that the relative fitness was 1 + s1, 1, 1 and 1, 1, 1 + s2 
for the three genotypes AA, Aa and aa in the demes or metapopula-
tions occupying the two environments, respectively. For the selec-
tion coefficients s1 and s2, we used all combinations of 0, 0.001, 
0.01 and 0.1 and thus included cases of CN, in which either s1 > 0, 
s2 = 0 or s1 = 0, s2 > 0, as well as cases of AP with s1 > 0, s2 > 0. CN 
regimes are by definition always asymmetric, while AP regimes can 
be either symmetric (s1 = s2) or asymmetric (s1 ≠ s2). We further var-
ied the time of the onset of selection from TS = 400, 4000, 40,000 
and 400,000 generations ago.

For all models, we considered selection on standing variation 
with the initial frequency of the derived allele at f1 = f2 = 0.1 in all 
demes. For model ℳ1, we additionally investigated the case of de 
novo mutations with initial frequencies f1 =

1

2N1

 and f2 = 0. These 
two cases represent the often- considered starting points for 
local adaptation (Peter et al., 2012). Depending on the selection 
regime and due to the stochasticity of drift, the derived allele A 
may sometimes be lost and hence be absent in the simulation of 
selected loci (especially in the de novo case). Because such a sce-
nario contains no signal for detection of selection, we excluded 
such simulations (via the - SFC parameter in msms).

2.3.3  |  Assessing accuracy

We inferred selection by contrasting the locus- specific migra-
tion rates M12 and M21 against their neutral estimates M̂12 and M̂21 
(Figure 3). We evaluated the performance of our LSD implementa-
tion at identifying selected loci under these simulations by plotting 
the true positive rate (TPR) against the false positive rate (FPR) 
under the choice of HPDI thresholds from 0 to 1, and reporting 
the area under the curve (AUC) of the resultant receiver operating 
characteristic (ROC) curve (approximated by the Mann– Whitney 
U test; Delong et al., 1988). An AUC value of 0.5 reflects random 
assignment while that of 1 reflects perfect classification. To evalu-
ate the accuracy of the inferred symmetry of the joint posterior 
(of reciprocal migration rates), we compared it to the true underly-
ing selection coefficients, under the expectation that deviations 
from symmetry in the joint posterior should reflect asymmetry in 
selection regimes. Specifically, we determined for each locus l  the 
posterior mass 

where the indicator function Ind ( ⋅ ) limits the integral to cases in which 
the deviation of one of the migration rates has reduced more than the 
reciprocal migration rate compared to a proportional deviation of both 
migration rates from their neutral estimates M̂12 and M̂21. From this, we 
calculate the asymmetry as 

where � =
1

ns

∑
� l across loci simulated under selection.

AUC and asymmetry are reported for each simulated pseudoge-
nome, each representative of a unique demographic- selection regime.

2.3.4  |  ABC parametrization

Migration rates were drawn from log10M12, log10M21
∼U[−4,3] in all 

cases, while all other parameters were fixed to their true values 
(“fixed” parametrization). We do this to assess the sensitivity and 
accuracy of LSD under ideal conditions, and to avoid confounding 
with model and parameter mis- specifications. For ABC parameter 
estimation, we retained the 1% closest simulations of 250,000 total 
simulations.

2.3.5  |  Comparison with other methods

We compared the performance of LSD against that of two widely 
employed genome scan methods, on the simulated pseudogenomes. 
pcadapt (Luu et al., 2017) identifies candidate single nucleotide poly-
morphisms (SNPs) as outliers with respect to population structure, 
ascertained via PCA, while outflank (Whitlock & Lotterhos, 2015) 
infers candidate SNPs by testing against a null model inferred from 
a highly revised Lewontin– Krakauer model extended to account for 
nonindependent sampling of populations and sampling errors. Given 
that these approaches are SNP- based (whereas LSD is window- 
based), we consider a specific genomic window to be an outlier if 
at least one SNP within that window is called significant. This may 
reduce false negatives at the expense of inflating false positives, but 
reflects typical usage of such genome scans. For both methods, the 
true number of simulated populations was specified and SNPs were 
thinned to accommodate the particular LD structure of our simu-
lated pseudogenomes when computing PCs and calibrating the FST 
null distribution, before running on the full SNP dataset.

For a more realistic comparison where model parameters may not 
be known with confidence, we also considered cases of ℳ1 and ℳ4 
in which all demographic parameters were unknown (“free” parame-
trization) and drawn from large, uniform priors log10Ni

∼U[2,7], i = 1,2 
for ℳ1 and log10Ni

∼U[1.5,5], i = 1, …, 4, log10TDj ∼U[4.1,5.6], j = 1,2,3, 
log10 �

∼U[0,1] and log10Madj
∼U[0,1] for model ℳ4. Priors for M12, M21 

remained the same as before. We used the closest 10,000 out of 
1,000,000 simulations both to infer �̂ and to identify outlier loci. For 
added realism, we inferred �̂ from a full pseudogenome of 1050 loci, 
of which 1000 were neutral but 50 were mis- specified and weakly 
selected with s1, s2 = 0.001; Ts = 4000, M12 = M21 = M.

2.4  |  Case study

To evaluate the performance of LSD on real data, we applied it to the 
detection of loci underlying floral colour in two parapatric subspecies 

𝜎 l = ∫ Ind
(
M21

M12

<
�M21

�M12

)
𝜋 l (𝜃) d�,

a = log
�

1 − �
,
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of Antirrhinum majus. A. majus is an herbaceous, perennial, flowering 
plant native to the western Mediterranean. Owing to its diploid in-
heritance, relatively short generation time, ability for both self-  and 
cross- pollination, and rich and varied flower morphology, A. majus has 
lent itself as a model organism for over a century, with several key 
floral genes being first identified within this genus (Schwarz- Sommer 
et al., 2003; Schwinn et al., 2006). Two subspecies, A. m. striatum and 
Antirrhinum majus pseudomajus, differ in the flower colouration that 
signposts the pollinator entry point, and form a natural hybrid zone 
in the Pyrenees that constitutes a benchmark example of divergent 
selection (Whibley et al., 2006). Several genetic loci have been shown 
to control the differences in these floral patterns (Bradley et al., 2017; 
Schwinn et al., 2006), and recently, Tavares et al. (2018) produced 
evidence of genomic signatures of selection at the ROSEA (ROS) and 
ELUTA (EL) loci, of which the former was functionally validated. Here, 
we apply LSD to sequencing data from this study to isolate the ROS 
and EL loci and to characterize their underlying selection signal. We 
filtered the data as in the original study, but mapped on a more recent 
version of the A. majus reference (version 3.0; Li et al., 2019).

We modelled this study system via a simple representation 
(model ℳ1) of one population on either side of the hybrid zone 
(YP1 [A. m. striatum] vs. MP2 [A. m. pseudomajus]; populations 
2.5 km apart) and via a more inclusive island– continent model 
(model ℳ2) comprising three (distant) populations each per subspe-
cies (CAM, ML, YP1 [A. m. striatum] vs. MP2, CHI, CIN] A. m. pseu-
domajus]; Figure S4), using an estimate of µ = 1.7 × 10−8 per bp per 
generation (Tavares et al., 2018) and allowing all N and M parameters 
to be free with priors log10Nj

∼U[1,7], j = 1,2 and log10M12, log10M21
∼U

[−4,4] for ℳ1 and log10Nj
∼U[3,7], j = 1,2, log10Nik

∼U[1,6], k = 1, …, 6, 
log10M12, log10M21

∼U[−4,4] and log10Mic
∼U[0,5] for ℳ2. In line with 

the available pool- seq data for this study, we simulated pooling of 
individuals in silico by pooling twice the amount of msms coalescent 
(haploid) samples as (diploid) individuals in the pooled populations via 

lsd- high. Reads were then drawn from a parametric (negative bino-
mial) distribution fitted to the empirical coverage distribution using 
the “fitdistrplus” package (Delignette- Muller & Dutang, 2015) and lsd- 
high. We focused our analysis on chromosome 6 on which the ROS 
and EL loci lie. To acquire empirical estimates of neutral demographic 
parameters, we excluded all genomic regions present in the structural 
annotation plus 10- kb flanking regions to generate a subset of puta-
tively neutral regions on that chromosome. M̂12 and M̂21 were then 
estimated via 10- kb windows from these neutral regions by retaining 
the closest 10,000 out of 1,000,000 simulations, as outlined above. 
To identify selected loci in the second step, we used sliding windows 
of size 10 kb and a 1- kb step- size, and retained the closest 5000 out 
of the same 1,000,000 simulations. Window size was identical to that 
of Tavares et al. (2018) and was chosen to reflect a compromise be-
tween statistical power and resolution (genomic signatures of selec-
tion were previously found to be in the range of ~20– 40 kb; Tavares 
et al., 2018), as well as to be compatible with the system's LD, which 
is expected to decay rapidly in outcrossing populations of A. majus.

3  |  RESULTS

3.1  |  Two- deme IM case (model �1)

3.1.1  |  Power to identify selected loci

While our LSD implementation exhibited conservative pl values 
(Figure S5), it demonstrated a high diagnostic ability to discriminate 
between neutral and selected loci (AUC > 0.8) across a large range 
of migration- selection regimes (Figure 4). Notably, our results point 
towards an optimal, intermediate rate of migration (M = 5) at which 
selection is best detectable with high AUC values across a large 
set of selection coefficients. As migration rates increase (M = 50), 

F I G U R E  3  Exemplary joint posterior distribution of reciprocal migration parameters, M12 and M21. The neutral joint parameter estimate, 
as informed by the global posterior distribution of all neutral regions (Figure S1), is indicated by the red dot in the top right corner. The red 
contours represent the joint posterior distribution of a genomic region (i.e., window), with the blue contours representing the 95% (light blue) 
and 99% (dark blue) highest density region (HDR) credible intervals. Left: a window not significantly divergent from the neutral estimate; 
right: a window significantly divergent from the neutral estimate, and with slightly higher relative reduction in M12 than in M21
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migration from the foreign deme where selection acts on the al-
ternate allele increasingly inhibits the build- up of beneficial poly-
morphisms in the local deme, in which case the power to detect 
selected loci becomes limited to scenarios under longer regimes of 
strong selection. At lower migration rates (M = 0.5), long regimes of 
selection permit the detection of loci under the lowest selection 
coefficients, but power decreases for younger times compared to 
scenarios simulated under intermediate migration rates. This owes 
to LSD relying on the reduction of effective migration relative to 
neutral or genome- wide expectations, which in this case is already 
at a low level.

The power to detect selection increased with increasing se-
lection coefficients when these were similar (s1 ≈ s2, cells along 

diagonal of subpanels in Figure 4). In such cases, stronger se-
lection coefficients on alternate alleles increasingly polarize and 
ultimately maintain larger allele frequency differences between 
the two environments. In tandem, the power to detect selection 
also generally increased with the time since the onset of selec-
tion TS. In contrast, when s1 ≫ s2 or s1 ≪ s2, one of the two al-
leles may proceed to fixation, in which case the power to detect 
selection decays or is lost (e.g., grey cells in left- most column 
of subpanels when derived allele A is lost, and AUC values and 
inferred (a)symmetries tending toward 0.5 and 0 respectively in 
bottom row cells when ancestral allele a is lost; Figure 4). This is 
particularly evident when the onset of selection is more distant 
in the past.

F I G U R E  4  Simulation results showing the effect of migration rate, time of onset of selection and deme- specific selection coefficients 
on LSD diagnostic performance (AUC), for the two- deme IM model (model ℳ1; standing genetic variation case). Each cell represents a 
pseudogenome simulated under a specific selection regime. The cell colours reflect the AUC calculated by the correct discrimination of 1000 
neutral loci and 50 selected loci in the 1050 loci simulated pseudogenomes. Grey cells indicate selection regimes where the derived allele is 
always lost
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3.1.2  |  Power to characterize (a)symmetry

A benefit of LSD over classical outlier approaches is that it can pro-
vide insight into genetic trade- offs underlying local adaptation, by 
identifying cases in which selection acts at equal strength in the two 
demes or metapopulations (symmetric AP), or whether selection 
coefficients differ considerably (CN or asymmetric AP). As shown 
in Figure 5, the inferred (a)symmetry generally reflected the true 
(a)symmetry of the underlying selection coefficients well, particu-
larly for regimes with high power to correctly identify selected loci 
(Figure 4). In lower powered regimes, we observe some cases where 
the inferred asymmetry does not reflect the underlying asymmetry 
of the selection coefficients accurately (e.g., blue cells along diago-
nals in subpanels at TS = 4000; Figure 5; Figure S6B). We interpret 
these results further in the discussion.

3.1.3  |  Standing variation vs. de novo

A lower initial frequency of the derived allele may be expected to 
affect LSD’s power to identify selected loci and its power to cap-
ture the underlying (a)symmetry of selection coefficients. However, 
we find that results for simulations building on selection from the 
de novo and standing variation cases showed generally very similar 
patterns (Figures 4 and 5; Figure S6). One notable exception how-
ever was the inaccurate inference of (a)symmetry in a few regimes 
with high power (AUC > 0.8) in the de novo case (e.g., blue cells 
along diagonals in subpanels at TS = 4000 in Figure S6B). This we 
attribute to the lower initial frequency of the derived allele A and 
consequently longer time needed to approach drift– migration– 
selection equilibrium for the de novo cases. This is explored further 
in the discussion.

F I G U R E  5  Simulation results showing the effect of migration rate, time of onset of selection and deme- specific selection coefficients 
on LSD- inferred (a)symmetry of selection, for the two- deme IM model (model ℳ1; standing genetic variation case). Each cell represents a 
pseudogenome simulated under a specific selection regime. The cell colours reflect the (a)symmetry values inferred by LSD, where a value 
of 0 reflects perfect symmetry of the joint posterior while values divergent from this reflect asymmetry. Cells surrounded by thick lines 
indicate the values of (a)symmetry for regimes expected to generate meaningful signal (AUC > 0.8 in Figure 4). Grey cells indicate selection 
regimes where the derived allele is always lost
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3.2  |  More complex cases (models �2, �3 and �4)

A key feature of LSD is its potential to explicitly accommodate com-
plex demographies, which can lead to an inflation in false positives 
when not properly accounted for (Foll & Gaggiotti, 2008; Lotterhos 
& Whitlock, 2014; De Villemereuil et al., 2014). Despite the added 
complexity of models ℳ2 and ℳ3, results were generally very simi-
lar to that of model ℳ1, with high power to identify selected loci 
(AUC > 0.8) across a large range of migration– selection regimes, 
an optimal migration rate at an intermediate value (M = 5), a simi-
lar dependence of power to detect selection on s1, s2 and TS, and 
inferences of (a)symmetry that reflected well the underlying (a)sym-
metry of selection coefficients (Figure 6; Figures S7 and S8). One 
notable difference between these models was that model ℳ2 gen-
erally required a longer time to generate power to detect selection 
when compared to models ℳ1, ℳ3 and ℳ4, which we attribute to 
the larger metapopulation NE in model ℳ2. For model ℳ4, selection 
coefficients needed to be slightly higher (s1, s2 ≥ 0.01; Figure S8) to 
attain high power to identify selected loci, and to accurately identify 
asymmetry.

3.3  |  Robustness to mis- specification of the 
neutral set

As shown for all models and a subset of the regimes (M = 5; 
TS = 40,000; s1 = s2 = 0.01, 0.1), LSD is highly robust to the inclusion 
of selected loci in the neutral set, with negligible reduction in power 
(AUC) at up to a 13% mis- specification for model ℳ4 and up to 20% 
for models ℳ1, ℳ2 and ℳ3 (Text S5; Figure 7).

3.4  |  Comparison to other methods

The performance of LSD is comparable to that of pcadapt and out-
flank under model ℳ1, with minimal difference between the meth-
ods across the range of migration– selection regimes (Figure 8; Figure 
S9). For the complex model ℳ4, however, both pcadapt and outflank 
have little to no power to correctly identify selected loci (AUCs ~ 0.5; 
Figure 8; Figure S10), while LSD exhibits high AUC scores (> 0.8) in sim-
ilar migration– selection regimes as it does under models ℳ1, ℳ2 and 
ℳ3. Importantly, the power of LSD to identify loci under selection was 

F I G U R E  6  Simulation results for a two- deme divergence with bottleneck and exponential growth model (model ℳ3; standing genetic 
variation case) showing the effect of migration rate, time of onset of selection and deme- specific selection coefficients on (a) LSD diagnostic 
performance (AUC) and (b) LSD- inferred (a)symmetry of selection. Divergence time of the two populations, TD, is 200,000 generations ago. 
Each coloured cell represents a pseudogenome simulated under a specific selection regime. Grey cells indicate selection regimes where 
the derived allele is always lost. (b) Cells surrounded by thick lines indicate the values of (a)symmetry for regimes expected to generate 
meaningful signal (AUC > 0.8 in Figure 6a)
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very similar when fixing M̂12 and M̂21 and all demographic parameters 
not affected by selection to their true value (“fixed” parametrization), 
as when estimating M̂12 and M̂21 (Figures S11 and S12) and keeping all 
other parameters free (“free” parametrization) (Figures 4 and 8; Figures 
S8A– S10A), implying that LSD is robust to parameter specification.

3.5  |  Case study results

We identified a region of reduced effective migration between 52.9 
and 53.2 Mb on chromosome 6 (Figure 9), consistent with the lo-
cation of the ROS and EL loci (Tavares et al., 2018). Under model 
ℳ1, this region is characterized by a set of smaller, multiple peaks 
(pl < 0.01) reflecting signatures identified by previous authors, with 
the left- most peaks corresponding to ROS1 and ROS2 (shaded in 
red) and the right peaks to EL (shaded in green; Figure 9b). The joint 
posterior probability distributions reveal symmetric selection acting 
on both regions, implying that selection acts with similar strength in 
the two populations. Under model ℳ2, we find fewer outliers in the 
ROS– EL region than in model ℳ1, with the left- most peak in this re-
gion corresponding to ROS2 and the right peaks consistent with EL. 
ROS1 appears to be less of an outlier than in model ℳ1 (pl ≈ 0.02). In 
contrast to model ℳ1, the ROS2 and EL peaks in model ℳ2 are char-
acterized by asymmetry, specifically with stronger selection acting 
in the populations of A. m. pseudomajus than in the populations of 
A. m. striatum. Estimates for �̂ for both models are given in Figures 
S13 and S14.

4  |  DISCUSSION

The trajectories of selected loci depend on demographic and se-
lection parameters that define the system, namely the effective 
population sizes, effective migration rates, selection coefficients 
and times of onset of selection, as well as on the intrinsic properties 

of mutation and recombination. Despite well- developed theory 
which relates the effect of population parameters on the trajec-
tories of selected alleles, few methods or empirical studies have 
combined estimates of differential selection with explicit quanti-
fication of migration rates and effective population sizes to exam-
ine the conditions under which local adaptation can arise. Here, 
we introduce such a method, LSD, which identifies candidate loci 
based on divergent population parameters using explicit demo-
graphic models, and demonstrate that under certain demographic- 
selection regimes, it can both detect and elucidate the processes 
underlying signatures of selection. While LSD is flexible regarding 
the choice of demographic models employed and can be applied to 
single and multiple populations, we focus here specifically on pro-
cesses that lead to selection against gene flow, namely local adap-
tation and extrinsic reproductive barriers, that can be inferred via 
their expectation to reduce ME.

4.1  |  Identifying selection

Using simulations, we demonstrate that LSD has high diagnostic 
power (AUC > 0.8) to identify selected loci across a large range of 
demographic- selection regimes. This power relies upon two funda-
mental aspects that contribute to generating observable patterns. 
First, selection must effectively be realized (i.e., result in a frequency 
shift of the beneficial allele). This requires that the strength of se-
lection and initial frequency of the beneficial allele be sufficient to 
both counter the homogenizing effect of migration (Felsenstein, 
1976; Haldane, 1930; Lenormand, 2002; Olson- Manning et al., 
2012; Slatkin, 1973; Yeaman, 2015) and the eroding effect of drift 
(Wright, 1931). Second, the genomic data must contain signatures 
of selection that can be detected. In the case of LSD, this requires 
that the signatures of selection are discernible from the underly-
ing noise (drift and migration) that characterizes the system, which 
demands sufficient time for said signatures to be reflected in the 

F I G U R E  7  Effect of increasing fraction 
of mis- specified (=selected) windows 
among the neutral set on LSD’s power 
to detect selection, for all four models 
and intermediate and high selection 
coefficients (s1 = s2 = s = 0.01, 0.1; 
TS = 40,000), and under neutral migration 
rates M12, M21 = 5. Here the neutral set 
of 1000 loci comprise a fraction f of 
selected loci and a fraction 1 − f neutral 
loci, with 0.0 ≤ f ≤ 0.2. The selected loci 
comprising the pseudogenome under scan 
are under the same selection regime as 
those included as mis- specifications in the 
neutral set
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employed statistics and hence in the inferred parameters NE or ME. 
A lack of power in LSD must be interpreted considering these two 
conceptually different aspects. Notably, the lack of discrimination 
power for high migration rates and low selection coefficients can be 
attributed to selection failing to realize as a consequence of local, 
beneficial alleles being swamped by immigrant, maladaptive alleles. 
In contrast, the lack of signal under low migration rates constitutes a 
methodological limitation of our implemented model, as it becomes 
increasingly difficult to detect reductions in effective migration 
when neutral or genome- wide migration rates are already at a low 
level, even when selection is effectively being realized in the demes. 
This is analogous in effect to the loss of power to detect selection 
in highly differentiated populations in FST outlier tests (Hoban et al., 
2016; Martin et al., 2013). Under the same principle, we argue that 
the converse expectation can be assumed to hold for loci underly-
ing adaptive introgression or balancing selection. That is, we expect 
power to detect such loci to be low when populations are minimally 
differentiated and high in highly divergent systems, as the detection 
of candidate loci in these cases is informed by increased effective 
migration.

The power of LSD to correctly identify selected loci generally in-
creases with stronger selection coefficients and longer time since the 
onset of selection, though with exceptions. Specifically, if selection 
is of similar or equal strength in both demes or metapopulations, we 
observe a strong correlation between the power to detect selection 
and the true underlying selection coefficients. This follows theory 
which states that the reduction in effective migration is proportional 
to the strength of selection (Petry, 1983). However, we defer from 
translating these changes to explicit selection coefficients because 
in addition to the strength of selection, changes in effective migra-
tion are also a function of the recombination rate between linked 
and selected loci (Cutter & Payseur, 2013; Lotterhos, 2019; Petry, 
1983). If selection differs strongly between demes or metapopula-
tions (si ≫ sj) or when the onset of selection is sufficiently distant 
in the past, however, one allele may become fixed in the system. 
In such a case, the signal to detect selection rapidly decays (Huber 
et al., 2016; Przeworski, 2002). Moreover, we observed little power 
to detect very recent selection, intrinsically related to our choice of 
summary statistics (Hohenlohe et al., 2010). That said, extending 
LSD to include additional statistics sensitive to linkage disequilib-
rium such as EHH (Sabeti et al., 2002) or single density score (SDS) 
(Field et al., 2016) will increase the power to detect more recent se-
lection. Finally, given that LSD relies on localized deviations in effec-
tive demographic parameters, we predict that it may miss signals of 
polygenic selection, as signals of selection become increasingly hard 
to distinguish from the genomic background the smaller the locus 
effect sizes are.

From our simulations, we find that the power to detect selec-
tion is similar between the de novo and standing genetic variation 
regimes (model ℳ1; Figure 4; Figure S6A), likely as a result of only 
considering loci for which the derived allele was not lost. This par-
ticularly affected the de novo case, under which the derived allele 

was lost in most simulations. Indeed, this is in line with theoretical 
expectation (Olson- Manning et al., 2012) and supports the notion 
that most empirical cases of local adaptation attribute selection of 
advantageous alleles to arise from standing variation (Jones et al., 
2012; Lai et al., 2019; Reid et al., 2016). To clearly distinguish be-
tween these regimes, additional information on the evolutionary 
history of the system such as allele age, mutation rate or supplemen-
tary phylogenetic information is required (Peter et al., 2012).

4.2  |  Comparison to existing methods

LSD’s power to detect selection is comparable with that of pcadapt 
and outflank under the simple model ℳ1, but strongly outperforms 
these alternatives under the more complex model ℳ4. These results 
appear to hold regardless of whether prior knowledge of model 
parameters is confidently known for LSD, as LSD exhibits similar 
performance under the ideal “fixed” and realistic “free” parametri-
zations. This suggests that the methods pcadapt and outflank uti-
lize to address population structure, namely PCA and an implicitly 
modelled FST null distribution, respectively, are sufficient to control 
for the effects of relatively simple demography, but insufficient to 
capture more complex demographies. By modelling complex demog-
raphies explicitly, LSD is less affected by model complexity, though 
this extra power comes with some costs.

First, a demographic model needs to be specified that appropri-
ately describes the neutral genetic variation of the system, allows for 
inferences of selection through changes in demographic parameters 
(e.g., NE or ME), and is sufficiently simple to remain computationally 
tractable. A preliminary analysis of model choice may therefore 
constitute a prerequisite to successfully recapitulate the signal of 
complex evolutionary histories in the simulated data. Importantly, 
the model should always be validated by demonstrating that the ob-
served data can be accurately and sufficiently captured (Figure S15).

Second, LSD remains computationally more demanding than 
both pcadapt and outflank. Inferring demographic parameters is 
generally computationally challenging as the underlying genealogies 
need to be integrated out numerically (Hey & Nielsen, 2007), which 
for complex models usually requires simulation- based approaches 
such as ABC. Existing ABC approaches to infer locus- specific param-
eters (Bazin et al., 2010; Kousathanas et al., 2016) are difficult to 
scale- up to genome- wide data as they require the simulation of pro-
hibitively many loci. To circumvent this problem, LSD implements an 
efficient ABC approach that requires simulations of single loci only, 
which is possible because LSD neither attempts to infer the hierar-
chical distribution of locus- specific parameters nor to obtain poste-
rior estimates on whether a locus is affected by selection. Instead, 
LSD identifies loci under selection by quantifying whether locus- 
specific estimates of demographic parameters are incompatible with 
those estimated from a set of putatively neutral loci.

The a priori identification of this neutral set constitutes the third 
requirement. Such a set may be informed by the particular structural 
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or functional class the sites belong to (Williamson et al., 2005) and 
may for instance consist of genomic regions not linked to structural 
annotations. Alternatively, a more naïve strategy may rely on the 
whole genome or a random subset of the genome to reflect neu-
tral diversity. Even if this assumption of neutrality is violated (Begun 
et al., 2007; Fay et al., 2002; Li & Stephan, 2006), we show that our 
method to estimate �̂ is robust to the misidentification of neutral 
loci, with minimal effect on power even at high percentages of up to 
20% mis- specification. We attribute this to our method of estimating 
�̂ as the product of per- locus posterior densities, which amplifies the 
signal (density) according to majority rule.

We finally note that most widely applied genome scan methods 
(e.g., pcadapt and outflank) detect outliers at the SNP level, while 
our current implementation of LSD focuses on genomic windows. 
Focusing on genomic windows offers a means to aggregate informa-
tion across linked loci, thereby potentially increasing power and re-
ducing false positives from spurious signals at individual SNPs (e.g., 
Galimberti et al., 2020). These benefits are conditional on a choice 
of window size compatible with the LD decay in the system, as this 
maximizes the power and accuracy to capture the signal generated 
by selection. The LSD framework is by no means limited to genomic 

windows, however, and can be extended to SNP data when using an 
appropriate simulator and summary statistics calculator.

4.3  |  Revealing trade- offs underlying selection

LSD can shed light on the directionality of selection by inferring the 
(a)symmetry in deviations of migration rates between populations. 
In our simulations, this inferred (a)symmetry accurately reflects the 
(a)symmetry in the underlying selection coefficients for older onsets 
of selection, but less so for more recent onsets (Figures 5 and 6B; 
Figures S6B and S7B). This is because inferred asymmetries in devia-
tions of effective migration rates are also affected by asymmetries 
in allele frequencies of the beneficial allele. For instance, a new ben-
eficial mutation that arises in one of two demes will initially be rare 
among migrants. Only as its frequency increases will selection start 
to act against immigrants in both demes (Figure 10). Hence, the infer-
ence of asymmetry in LSD may include cases where selection is ef-
fectively asymmetric, but also those in which selection is effectively 
symmetric but prior to drift– migration– selection equilibrium. A di-
rect link between the inferred (a)symmetry in deviations of migra-
tion rates and the (a)symmetry in underlying selection coefficients 

F I G U R E  8  Comparison of power to detect selection (AUC) between LSD, pcadapt and outflank. Simulation results are shown for a simple 
(ℳ1) and a complex (ℳ4) demographic model and for a subset of the tested migration– selection regimes at TS = 40,000 and M = 50 (full 
results in Supporting Information). For LSD, two parametrizations are performed: (i) assuming non- M demographic parameters and neutral 
M̂ to be fixed to the true values (LSD FIXED) and (ii) allowing non- M demographic parameters to be drawn from large prior ranges and using 
neutral M̂ estimated from the pseudogenomes (LSD FREE). Grey cells indicate selection regimes where the derived allele is always lost
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is only established through time. We note that in practice, however, 
the interpretation of the results is straightforward, as the inference 
of directionality is only meaningful for loci identified as under selec-
tion (i.e., with low pl values). Such loci can only be inferred in regimes 
with high AUC, which generally preclude regimes characterized by 
recent onsets of selection. For these (high AUC) regimes, we gener-
ally find the estimated (a)symmetries to reflect the true (a)symmetry 
in selection coefficients accurately. Stated succinctly, LSD’s inferred 

directionality is generally accurate and meaningful for identified 
candidates, and potentially inaccurate but irrelevant for other loci.

The ability of LSD to infer the directionality of selection directly 
from genomic data can greatly facilitate investigations of genetic 
trade- offs underlying adaptation, which are seldom performed due 
to the considerable effort required to set up field trials of recom-
binant lines. As shown above, the inference of symmetry in LSD- 
identified candidates accurately reflects cases of AP with equal 

F I G U R E  9  Manhattan plot for the LSD scan of the Antirrhinum majus striatum– A. m. pseudomajus system. The p- values for loci being 
divergent from neutrality for 10- kb windows (1- kb step- size) are plotted for (a) a 16- Mb region of chromosome 6, under models ℳ1 and ℳ2, and 
(b) a 2- Mb zoomed- in region of chromosome 6 focusing on the ROS– EL region, under the same two models. The horizontal dashed line indicates 
a 99.9% posterior probability of deviating from neutral expectations. Colour for loci above this threshold denotes the joint (M12, M21) posterior 
(a)symmetry, and reflects the relative strengths of selection in the two divergent demes or subspecies. A large divergent peak centred around 
the ROS– EL region (a) is composed of a set of smaller peaks (b), consistent with the ROS (red) and EL (green) loci
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strength of selection on alternate alleles in the contrasting environ-
ments. The inference of asymmetry, on the other hand, can either in-
dicate AP with stronger selection in one environment than the other, 
or CN. From our simulations, we find that scenarios reflecting AP 
are generally more readily detected than those reflecting CN. Given 
that selection acts only upon one of the two alleles in the latter case, 
fixation becomes likely and the ability to detect selection is tran-
sient. This implies that there may be an observation bias between AP 
and CN, such that the inference of CN may be comparatively under- 
represented. This bias appears to contrast with that reported in the 
ecological literature, where instances of AP are more rarely detected 
compared to CN due to the additional power required to statisti-
cally prove differential fitness concurrently in two environments 
(Anderson et al., 2013). LSD may further complement field trials as 
such experiments typically test genetic trade- offs under contempo-
rary selective environments, which may not reflect past conditions 
driving the observed adaptive responses, but whose signature may 
still be inferred from genomic data. Using LSD to formulate expecta-
tions about fitness effects and to inform the choice of environmen-
tal conditions under which to validate identified candidate genes can 
thus greatly aid such experiments.

4.4  |  Real- world application

We demonstrate a real- world application of LSD by successfully iso-
lating and characterizing the selection signal of loci underlying an ex-
trinsic reproductive barrier in A. majus. Our results from contrasting 
a single population (model ℳ1) and three populations (model ℳ2) per 
subspecies both identified the ROS and EL loci which were previously 
reported to underlie differences in floral patterns between these 
subspecies (Tavares et al., 2018). Interestingly, however, our results 
characterize selection at these loci as symmetric under model ℳ1 
and asymmetric with stronger selection acting on A. m. pseudomajus 
than in A. m. striatum under model ℳ2. This exemplifies that results 
of LSD genome scans are conditional on the model and populations 
used, such that here, model ℳ1 uncovers population- pair- specific 
differences at the contact zone (YP1 vs. MP2) while model ℳ2 re-
veals common (global) differences between the two subspecies. We 
do not necessarily expect these two signals to be identical, and in-
deed, Tavares et al. (2018) showed different θW and FST estimates 
between distant and close A. m. striatum- A. m. pseudomajus popula-
tion pairs. Consistent with their results, we recovered a larger num-
ber of candidate loci in model ℳ2 (which comprise multiple, more 

F I G U R E  1 0  Conceptual illustration of allele frequency trajectories over time in a two- deme IM model (ℳ1), for an example de novo case 
and antagonistic pleiotropic selection regime. The frequency of derived allele A is indicated in black and that of ancestral allele a in grey. Red 
arrows represent migration. Prior to reaching drift– migration– selection equilibrium, estimated asymmetries in effective migration rates are 
also affected by asymmetry in allele frequencies
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distant populations), where isolation by distance underlies genome- 
wide patterns in which the ROS– EL region no longer stands out ex-
clusively. Given that there is no evident difference in environment 
or pollinators on opposite sides of the hybrid zone, reproductive 
barriers in this system have often been proposed to be maintained 
through selection against hybrids and frequency- dependent sexual 
selection mediated by pollinator preference for the dominant flower 
phenotype on either side of the contact zone (Tavares et al., 2018). 
However, whether selection on alternate alleles follows the same 
positive frequency- dependence across the broader scale, including 
more distant populations, is currently unknown. The difference in 
signal between local pairs at the contact zone (ℳ1) and the global set 
(ℳ2) may be generated by different frequency- dependent selection 
curves for the alternate alleles and potentially loss of AP away from 
the contact zone (Figure S16).

5  |  CONCLUSION

Loci under selection are predicted to exhibit genealogies with de-
mographic parameters divergent from those of neutral nonlinked 
regions, leading to heterogeneity in demography across the genome. 
In this study, we condition the identification of candidate loci on di-
vergent population parameters using explicit demographic models, 
and demonstrate that under certain conditions of migration, selec-
tion strength and onset time, we can both detect and elucidate the 
underlying processes driving signatures of selection. Incorporating 
and utilizing the inference of demographic parameters in the identi-
fication of candidate loci address some key issues and assumptions 
that prevail in the discrimination of selected variants, namely (a) the 
explicit consideration of demography, (b) heterogeneity in drift and 
gene flow across the genome, (c) information synthesis of multiple, 
complementary summary statistics and (d) transparency towards 
underlying driving mechanisms.

Our power analysis using simulations shows that LSD, and our 
implementation of it, represents a powerful method for detecting 
selection that is robust to different and complex demographies. 
Furthermore, given that certain demographic parameters (e.g., mi-
gration) are not inherently commutative, we show that the direction-
ality or population- specificity in selection can be inferred. This can 
facilitate identifying in which environment selection acts and hence 
elucidate genetic trade- offs, bridging an analytical divide between 
experimental ecology and population genomics. Importantly, the 
proposed approach as well as our implementation is not limited to 
the demographic models investigated here, nor the explicit choice of 
simulation programs or summary statistics used. This flexibility and 
customizability of LSD can facilitate, for example, more realistic ac-
commodation of recombination (via different coalescent simulators), 
improved detection of more recent selection (via linkage- informative 
statistics), and inference of other modes of selection (e.g., balancing 
selection) and adaptive introgression by conditioning the detection 
of selection on, for instance, an increase (rather than reduction) in 
ME or changes in NE relative to neutral expectations.
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