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The diagnosis of Parkinson’s disease (PD) is currently anchored on clinical motor

symptoms, which appear more than 20 years after initiation of the neurotoxicity.

Extra-nigral involvement in the onset of PDwith probable nonmotor manifestations before

the development of motor signs, lead us to the preclinical (asymptomatic) or prodromal

stages of the disease (various nonmotor or subtle motor signs). REM sleep behavior

disorder (RBD) and depression are established prodromal clinical markers of PD and

predict worse motor and cognitive outcomes. Nevertheless, taken by themselves, these

markers are not yet claimed to be practical in identifying high-risk individuals. Combining

promising markers may be helpful in a reliable diagnosis of early PD. Therefore, we

aimed to detect neural correlates of RBD and depression in 93 treatment-naïve and non-

demented early PD by means of diffusion MRI connectometry. Comparing four groups

of PD patients with or without comorbid RBD and/or depressive symptoms with each

other and with 31 healthy controls, we found that these two non-motor symptoms are

associated with lower connectivity in several white matter tracts including the cerebellar

peduncles, corpus callosum and long association fibers such as cingulum, fornix, and

inferior longitudinal fasciculus. For the first time, we were able to detect the involvement

of short association fibers (U-fibers) in PD neurodegenerative process. Longitudinal

studies on larger sample groups are needed to further investigate the reported

associations.
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INTRODUCTION

Parkinson’s disease (PD), a form of α-synucleinopathy neurodegeneration (1), is manifested by
a heterogeneous combination of motor and non-motor symptoms (NMS) (2). PD is classically
diagnosed based on its cardinal motor symptoms relatively late in the course of the disease, years
or even decades after the initiation of neurotoxicity. Thus, the golden time to halt the disease
progression is missed. Searching for markers to diagnose PD in the early stage of the disease, a
critical opportunity for neuroprotective interventions remains a hot topic (3).
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Rapid Eye movement (REM) sleep behavior disorder (RBD),
characterized by unpleasant dreams and loss of normal muscle
atonia (4), has by far proved to be the strongest precursor of
upcoming PD (3) and with more than 75% conversion rate,
is considered as an evolving synucleinopathy (5–7). With an
estimated prevalence of 15–60% in PD patients (8), baseline
RBD is attributed to more aggressive clinical subtype with
worse motor and non-motor symptoms, especially depressive
disorders and cognitive decline (9). Besides high specificity and
prognostic value, its low predictive sensitivity and long lead time
to the development of parkinsonism bring challenges in practice.
Combining RBD with another prodromal symptom may solve
this task by increasing the risk of conversion (10).

Depression is another established clinical prodromal marker
(3, 7) and is the main culprit in a lower quality of life in PD
patients (11). Depression together with RBD play as potential
interactive risk factors for the development of dementia in PD
which is associated with more advanced disease and poorer
prognosis (12–14). Depression has multitude neural and clinical
correlates with RBD. Depressed mood is often associated with
disrupted REM sleep structure such as decreased latency, longer
duration and more rapid eye movements, which may precede
the onset of depressive episodes or even persist after complete
remission with an increased rate of relapse or recurrence
and poor treatment response (15–18). Furthermore, studies on
healthy relatives of depressed patients have shown that REM
sleep disturbances can predict the development of depressive
episodes (19–22). This indicates that REM sleep dysregulation
is not merely secondary but rather share underlying pathologies
with depression (23–25). The frequency of Depression and its
severity are also shown to be related to RBD and other sleep
disturbances in PD (9, 26, 27). Some studies on depressed
patients with idiopathic RBD (iRBD) have supported the
assumption that this comorbidity might underpin and accelerate
the neurodegenerative process (28–30). Interestingly, Wing et al.
proved depression as a potential predictor of upcoming PD in
following a cohort of iRBD patients (31). Remarked subcortical
Lewy bodies in late-life depression (32) further supports this
proposed link between depression and RBD.

Accumulating evidence suggests that white matter damage
underlies the heterogenous manifestation of PD symptomatology
(33). Although the pathogenesis of PD is still unclear, it is
speculated that α-synuclein species spread as a prion-like pattern
through axons and cause disruption in the white matter integrity
via mitochondrial damage and glial activation (34). In this regard,
diffusion MRI (dMRI) is a promising tool to measure white
matter microstructure in vivo and has shed light through the
knowledge of involved neural networks in PD in association with
its distinct features. DMRI connectomery is a powerful analytical
method that probes significant between-group differences within
subcomponents of a neural pathway, rather than the entire
pathway. Conventional diffusion tensor approaches track the
entire pathway, which will inevitably contain fibers not strongly
associated with study variables. This will result in higher
sensitivity and lower type II error using connectometry approach
by focusing only on significant variabilities (35). Furthermore,
connectometry relies on Spin Distribution Function (SDF) to
measure the density of water diffusion for any direction of a voxel

and reveals the so-called “local connectome fingerprint” which
is highly specific to each individual (36). Ability to quantify the
degree of connectivity between adjacent voxels within a neural
fascicle, local connectome, has opened a new door to investigate
pathological insults on the unique configuration of white matter
microstructure.

In two previous studies, we have tried to discover whether
RBD and depression can lead us to white matter degeneration
signature of early PD, comparing two groups of depressed (dPD)
and non-depressed PD patients (ndPD) with comorbid RBD (37)
and comparing two groups of dPD and ndPD without comorbid
RBD (38) through dMRI connectometry. RBD and depressive
symptoms both have been proposed as markers of prodromal
PD and with possible cumulative effect on progression to PD
and its severe subtypes and each can predict worse outcomes
in PD or the other. In this study, which is an extension of two
previous mentioned studies, we aimed to track differences in
white matter connectivity in four groups of treatment-naïve early
PD patients with and without comorbid RBD and/or depressive
symptoms compared to healthy controls (HC) with added within
PD subgroups comparisons.

MATERIALS AND METHODS

Participants
Participants, PD patients and HC, involved in this research
were recruited from Parkinson’s Progression Markers Initiative
(PPMI, http://www.ppmi-info.org/). The study was approved by
the institutional review board of all participating sites. Written
informed consent was obtained from all participants before
study enrolment. The study was performed in accordance with
relevant guidelines and regulations (39). These participants were
tested and confirmed negative for any neurological disorders
apart from PD. The participants’ PD status was confirmed by
Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS), and the loss of dopaminergic neurons was
observed on DAT scans.

We analyzed only drug-naïve cases with available diffusion
weighted imaging (DWI) in baseline visit after performing
automated quality-control steps expressed by Fang-Chen Yeh,
using q-space diffeomorphic reconstruction (QSDR) (40). This
method is based on checking how compatible the quantitative
anisotropy (QA) value of each voxel is with the reconstructed
QA map. Subjects were excluded if imaging failed specific
quality control criteria. Finally, a total of 93 drug-naïve early
PD patients and 31 age-matched and sex-matched HC with
good imaging quality were enrolled in this study. Clinical
measures included disease duration, motor section (III) of
UPDRS, Hoehn and Yahr (H&Y staging), Montreal Cognitive
Assessment (MoCA), Epworth Sleepiness Scale (ESS) for
daytime sleepiness, and the University of Pennsylvania Smell
Identification Test (UPSIT) for olfaction function. Depression
was assessed using the Geriatric Depression Scale (GDS), with
a cut-off score of 5 or more indicating clinically significant
symptoms (41). GDS is an easy to use, self-report screening
and diagnostic tool with good reliability and validity to
discriminate minor and major depressive disorders from non-
depressive disorder in PD patients of all ages, particularly
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elders (41). It is recommended for use by the Movement
Disorders Society to screen for symptoms of depression in
PD individuals (www.movementdisorders.org/MDS/Education/
Rating-Scales.htm). RBDwas assessed using REM Sleep Behavior
Disorder Screening Questionnaire (RBDSQ), with a cut-off score
of 5 or above to detect probable RBD (42, 43). Based on GDS
and RBDSQ, PD patients were divided into four groups of 14
patients with depression and RBD (DEP+/RBD+), 16 without
depression and with RBD (DEP-/RBD+), 43 with depression
and without RBD (DEP+/RBD-), and 20 without depression and
without RBD (DEP-/RBD-).

Data Acquisition
Data used in the preparation of this article were obtained from
PPMI database (www.ppmiinfo.org/data) (39). This dataset was
acquired on 3 Tesla Siemens scanners, producing 64 diffusion
MRI (repetition time = 7748MS, echo time = 86ms; voxel
size: 2.0 × 2.0 × 2.0 mm3; field of view = 224 × 224mm) at
b = 1,000 s/mm2 and one b0 image along with 3D T1-weighted
structural scans (repetition time = 8.2ms, echo time = 3.7ms;
flip angle = 8◦, voxel size: 1.0 × 1.0 × 1.0 mm3; field of
view= 240mm, acquisition matrix= 240× 240).

Diffusion MRI Processing
The diffusion MRI data were corrected for subject motion,
eddy current distortions, and susceptibility artifacts due to the
magnetic field inhomogeneity using Explore DTI toolbox (44).
We performed quality control analysis on the subject’s signals
based on the goodness-of-fit value given in QSDR reconstruction
of fibers. Each QSDR reconstruction file has a goodness-of-fit
value quantified by R2. For example, an R82 indicates a goodness-
of-fit between of the subject and template of 0.82 total. We
excluded cases in which the R2 value did not reach a threshold
of 0.6 otherwise.

Diffusion MRI Connectometry
The diffusion data were reconstructed in the Montreal
Neurological Institute (MNI) space using QSDR to obtain
the SDF (45), to detect the differences between groups.
Quantitative anisotropy (QA) is one of the several diffusion
indices derived from spin density, i.e., SDF (46). QA of each fiber
orientation gives the peak value of water density in that direction.
More precisely, in contrast to tensor-derived measures such as
fractional anisotropy (FA) which are defined for each voxel and
rely on diffusivity, QA is defined for each fiber orientation and
is based on density. Therefore, diffusivity measures reflect the
intactness of fibers, while QA quantifies the total diffusing water
or “connectivity.” As a result, QA has successfully overcome the
shortage of conventional tensor measures on crossing fibers.
Another advantage of QA over diffusivity metrics is that it
is not affected by partial volume defect, as it is derived from
spin density (47). We used diffusion MRI connectometry to
identify white matter tracts in which QA was significantly
different between two groups of PD patients with different
degrees of depression and RBD, and comparing each PD group
to HC. Resulting uncorrected output was corrected for multiple
comparisons by false discovery rate (FDR). A deterministic

fiber tracking algorithm was conducted along the core pathway
of the fiber bundle to connect the selected local connectomes
(48). Tracts with QA > 0.1, angle threshold lesser than 40

◦

and tract length >40mm were included. To estimate the false
discovery rate, a total of 2,000 randomized permutations were
applied to the group label to obtain the null distribution of the
track length. A T-score threshold of 2.5 was assigned to select
local connectomes, and the local connectomes were tracked
using a deterministic fiber tracking algorithm. Permutation
testing allows for estimating and correcting the FDR of Type-I
error inflation due to multiple comparisons. The analysis was
conducted using publicly available software DSI Studio (http://
dsi-studio.labsolver.org), released in 5th April 2018.

Statistical Analysis
IBM SPSS Statistics for Windows, version 22 (IBM Corp.,
Armonk, N.Y., USA) was used to analyse the demographic
and clinical data. Probability graphics and Shapiro–Wilk test
were used to check the compliance of variables with normal
distribution. For normally distributed variables, one-way analysis
of variance (ANOVA) was used to assess differences of means
between groups. Kruskal–Wallis test was used to determine
whether there are any statistically significant differences within
continuous variables without normal distribution. Pearson’s chi-
square was used to test nominal variables across groups. Finally,
P < 0.05 were considered statistically significant.

RESULTS

Demographic and Clinical Measures
PD patients in four groups were matched in their age, sex,
disease duration and years of education. Patients were also
comparable based on their degree ofmotor impairment (UDPRS-
III and H&Y) after controlling for age, sex, and disease duration.
The cognitive state (MoCA), olfaction function (UPSIT), and
daytime sleepiness (ESS) did not differ between four PD groups
(Table 1). There are few discrepancies between PD patients
enrolled in this study and those investigated in our two previous
studies, as we attempted to include patients matched in their
demographic, motor and other non-motor symptoms other than
depression and RBD in the present study. Eleven patients in the
DEP+/RBD+ group, eight patients in the DEP-/RBD+ group,
19 patients in the DEP+/RBD- group, and 14 patients in the
DEP-/RBD- group were at their stage 2 of H&Y, indicative of
bilateral involvement without disturbance in balance. The rest of
the patients were all in stage 1 of H&Y scaling compatible with
mild symptoms of unilateral involvement. None of the patients
in any group were demented as they all scored above the cut-off
score of 21 on the MoCA. HC were matched with PD patients
regarding age, sex, handedness, education years, MoCA, and ESS
scores, while performed better than PD patients on GDS, RBD,
and UPSIT.

PD Groups vs. HC Imaging Analysis
As outlined in Table 2, all four groups of PD patients showed
lower connectivity in superior longitudinal fasciculus and U-
fibers of parietal lobe and motor and pre-motor areas of the
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TABLE 1 | Demographic and baseline clinical information of healthy controls and patients with Parkinson’s disease with or without comorbid RBD and/or depression.

Groups Healthy controls

(n = 31)

DEP+RBD+

(n = 14)

DEP-RBD+

(n = 16)

DEP+RBD-

(n = 43)

DEP-RBD-

(n = 20)

p-Value** p-Value

(between PD

groups)**

Age (mean ± sd) 58.0 ± 12.1 58.8 ± 9.8 59.2 ± 11.6 58.5 ± 8.7 58.4 ± 9.4 0.997 0.997

Female/Male no. 18/13 11/3 12/4 24/19 13/7 0.441 0.441

Handedness (L/R) 3/28 0/14 2/14 4/36 3/17 0.717 0.716

Education years (mean ± sd) 15.0 ± 2.8 15.1 ± 2.4 16.2 ± 2.6 15.0 ± 3.0 14.8. ± 3.1 0.611 0.611

Duration of disease in years (mean ± sd) – 7.5 ± 7.5 8.5 ± 7.5 6.2 ± 6.7 6.3 ± 6.8 – 0.738

Hoehn & Yahr stage (mean ± sd) – 1.8 ± 0.4 1.5 ± 0.5 1.4 ± 0.5 1.7 ± 0.5 – 0.146

UPDRS III* (mean ± sd) – 21.7 ± 8.3 21.8 ± 11.4 19.3 ± 7.3 24.7 ± .8.7 – 0.163

MOCA* score (mean ± sd) 28.4 ± 1.1 27.4 ± 2.2 27.5 ± 1.8 27.6 ± 1.8 27.6 ± 2.4 0.324 0.955

RBD* score (mean ± sd) 3.4 ± 2.1 7.4 ± 2.0 7.1 ± 1.4 2.5 ± 1.1 2.3 ± 1.1 <0.001 <0.001

GDS* score (mean ± sd) 4.4 ± 1.1 5.1 ± 0.9 3.2 ± 1.1 5.2 ± 0.4 3.3 ± 1.1 <0.001 <0.001

ESS* scale (mean ± sd) 6.7 ± 4.3 7.4 ± 3.1 7.5 ± 3.8 5.5 ± 3.2 6.2 ± 3.0 0.263 0.126

UPSIT (mean ± sd) 33.1 ± 4.3 21.6 ± 9.9 19.6 ± 8.4 24.8 ± 8.1 24.3 ± 6.8 <0.001 0.145

*UPDRS III, Unified Parkinson’s Disease Rating Scale part III; ESS, Epworth Sleepiness Scale; MoCA, Montreal Cognitive Assessment; RBD, REM sleep Behaviour Disorder Screening

Questionnaire; GDS, Geriatric Depression Scale; UPSIT, the University of Pennsylvania Smell Identification Test (UPSIT). **p-value of one-way ANOVA analysis for age, education years,

disease duration, and UPSIT; Pearson Chi-square for gender, handedness, and H&Y stage; and Kruskal–Wallis test for ESS, UPRDS part III, GDS scale, MoCA score, and RBDSQ.

P < 0.05 are considered statistically significant.

TABLE 2 | Regions with significantly reduced quantitative anisotropy comparing

each group of PD patients with healthy controls.

PD RBD+/DEP+

vs. HC

(FDR = 0.01)

PD Dep–/RBD+

vs. HC

(FDR = 0.02)

Dep+/RBD–vs.

HC

(FDR = 0.001)

DEP-/RBD-vs.

HC

(FDR = 0.036)

B-SLF B-SLF B-SLF B-SLF

B-U-fiber B-U-fiber L-U-fiber R-U-fiber

L-ILF B-cingulum L-ILF R-cingulum

body of CC B-cingulum

B, bilateral; L, left; R, right; SLF, superior longitudinal fasciculus; ILF, inferior longitudinal

fasciculus; CC, corpus callosum; FDR, false discovery rate.

frontal lobe. Left inferior longitudinal fasciculus (ILF) was
only disrupted in the PD groups with comorbid depression,
i.e., DEP+/RBD- and DEP+/RBD+. Cingulum had lower
connectivity in all PD patients except RBD+/DEP+. This group
instead showed lower connectivity in the body of corpus callosum
(CC).

Between-Group Imaging Analyses of PD
Patients
Compared with PD DEP-/RBD+ patients, PD DEP+/RBD+
patients showed decreased connectivity in the right cingulum, left
ILF, splenium, and body of the CC (FDR = 0.03) (Figure 1). As
shown in Figure 2, the PD DEP+/RBD+ group demonstrated
decreased connectivity in the genu, splenium, and body of
CC, left ILF, left fornix, and right superior cerebellar peduncle
(SCP) in contrast to PD DEP+/RBD- (FDR = 0.02). The group
differences between PD DEP+/RBD+ patients and PD DEP-
/RBD- were that connectivity in PD DEP-/RBD- was higher than
that in PDDEP+/RBD+ patients in the genu, splenium and body
of CC, bilateral cingulum, left ILF, left fornix, right SCP, and right
inferior fronto-occipital fasciculus (IFOF) (FDR= 0.01).

Compared with PD DEP-/RBD- patients, PD DEP–/RBD+
patients showed decreased connectivity in the bilateral cingulum,

bilateral fornix, left ILF, genu, and body of CC, middle cerebellar
peduncle (MCP), bilateral SCP, right uncinate fasciculus (UF),
and left cerebro-cortical pathway (CST) (FDR = 0.03). These
were almost the same results of comparison between PD
DEP+/RBD- with the DEP-/RBD+, except for the right fornix,
left cingulum, and left ILF (FDR= 0.006).

Finally, PD DEP+/RBD- patients showed decreased
connectivity in the bilateral cingulum, bilateral fornix, bilateral
ILF, left UF, right CST and genu, splenium, and body of CC
compared to PD DEP-/RBD- (FDR = 0.02). Table 3 summarizes
the significant regions of lower connectivity in between-group
analyses.

DISCUSSION

In this study, we investigated the neural underpinnings of
RBD and depression as clinical PD prodromal markers with
more severe outcome mainly of the motor and cognitive
function. RBD not only predicts upcoming PD but also warns
the development of non-tremor dominant motor subtype with
a diversity of other NMS such as depression and dementia
(49). Recent evidence has exposed the role of widespread
white matter disruption underlying heterogenous symptoms of
PD, including commissural, projection and long association
fibers (33). Previous studies have mostly relied on diffusion
tensor imaging (DTI), which has major limitations in detecting
pathologies in areas of high crossing fibers such as near cortical
structures. Using connectometry analysis, which successfully
overcomes this pitfall (50), we were able to capture the novel
contribution of U-fibers in PD. U-fibers are short association
fibers which run between white matter and cortex and connect
adjacent gyri and participate in higher functions of the brain. As
these particular fibers have low metabolic rate and high blood
supply, they are relatively spared in vascular disorders such as
stroke. In contrast, pathologies with glial insult, such as multiple
sclerosis, are shown to result in early involvement of U-fibers
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FIGURE 1 | White matter pathways with significantly reduced quantitative anisotropy in PD DEP+RBD+ vs. PD DEP-RBD+ (FDR = 0.03). (A) right cingulum, (B)

body of the corpus callosum, (C) left inferior longitudinal fasciculus, (D) splenium. The results are overlaid on ICBM152 (mni_icbm152_t1) from the McConnell Brain

Imaging Centre using DSI-STUDIO software.

FIGURE 2 | White matter pathways with significantly reduced quantitative anisotropy in PD DEP+RBD+ vs. PD DEP+RBD- (FDR = 0.02). (A) right superior cerebellar

peduncle, (B) body of the corpus callosum, (C) left fornix, (D) left inferior longitudinal fasciculus, (E) genu, (F) splenium. The results are overlaid on ICBM152

(mni_icbm152_t1) from the McConnell Brain Imaging Centre using DSI-STUDIO software.

and the subsequent cognitive malperformance in such patients
(51). Glial dysfunction is one of the key events in initiation
and progression of neurodegenerative processes as well (52–54).

Therefore, it seems that U-fibers can be potentially affected in PD.
This is a thought-provoking result that should be addressed in
future research.
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TABLE 3 | Regions with significantly different connectivity in between group

comparing of PD patients with or without comorbid RBD and/or depression.

PD DEP+/RBD+

vs. PD DEP-/RBD–

(FDR = 0.01)

PD DEP+/RBD+ vs.

PD DEP–/RBD+

(FDR = 0.03)

PD DEP+/RBD+ vs.

PD DEP+/RBD–

(FDR = 0.02)

R-SCP

B-cingulum

L-fornix

L-ILF

R-IFOF

Genu, body and

splenium of CC

R-Cingulum

L-ILF

Splenium and body of

CC

(previous study: Fornix,

genu, L-MCP, R-CST,

R-cing, L-ILF)

R-SCP

L-ILF

L-fornix

Genu, body and

splenium of CC

PD DEP–/RBD+ vs.

PD DEP-/RBD–

(FDR = 0.03)

PD DEP+/RBD– vs.

PD DEP-/RBD-

(FDR = 0.02)

PD DEP–/RBD+ vs.

PD DEP+/RBD–

(FDR = 0.006)

B-SCP

MCP

B-cingulum

B-fornix

L-ILF

Genu and body of

CC

R-UF

L-CST

B-cingulum

B-fornix

B-ILF

Genu, body and

splenium of CC

L-UF

R-CST

(Previous study:

R-IFOF, MCP Genu, UF,

L-ILF, R-CST, Fornix)

B-SCP

MCP

R-cingulum

L-fornix

Genu and body of CC

L-external capsule

L-CST

The left groups vs. the right groups showed lower quantitative anisotropy in the areas

listed. B, bilateral; R, right; L, left; SCP, superior cerebellar peduncle; MCP, middle

cerebellar peduncle; ILF, inferior longitudinal fasciculus; UF, uncinate fasciculus; CST,

cerebrospinal tract; IFOF, inferior fronto-occipital fasciculus; CC, corpus callosum; FDR,

false discovery rate.

Among other fibers with lower connectivity, like U-fibers,
SLF also consistently differed between PD patients and HC
regardless of the comorbid RBD or depression. Previous studies
have specified the lower integrity of SLF associated with several
domains of cognitive decline from mild cognitive impairment
to dementia (55–58), and also in non-tremor motor phenotypes
of PD such as freezing of gait (59, 60), bradykinesia (61),
and postural instability (62), which have poor prognostic
implications. SLF is a long association fiber that originates
from posterior regions of the brain and projects to the frontal
lobe. However, among few studies which have investigated DTI
findings in relation to depression, lower FA in the left SLF
near the midline and superior frontal lobe is reported in dPD
versus ndPD in one whole brain study (63). The authors have
discussed this finding through the cognitive aspect of depression.
A meta-analysis has also implicated the disruption of SLF in
major depressive disorder (MDD) (64). However, within-patients
analysis of our cohort did not reveal any subgroup-differences in
SLF, which would indirectly point toward to non-contribution of
this tract with depression and RBD. This is in agreement with our
previous studies on dPD (37, 38, 65).

ILF was only disrupted in the PD groups with comorbid
depression compared to HC. ILF fast and directly integrates
visual categorization and recognition data between extrastriate
visual cortex and temporal gyri which subsequently project to
the limbic structures (66). High-order visual problems such as
visually evoked memory and emotional impairments are linked

to ILF disruptions, as a key component of the visual-limbic
pathway (67, 68). ILF is among the main fibers involved in
the major depressive disorder, proved by the mentioned meta-
analysis of whole brain voxel-based DTI studies (64). The same
association was also demonstrated in dPD (63, 69) and mild
cognitive impairment and dementia in PD (55, 58) based on
whole brain tract-based spatial statistics studies. This finding
may signal the higher risk of cognitive impairment in terms of
executive and visuospatial dysfunction in dPD. ILF disruption
most consistently observed in the left hemisphere is in agreement
with the perception that depression is a result of left hemispheric
dysfunction (70). Interestingly, it is revealed that right-onset PD
predict more severe depressive symptoms in the course of the
disease (71). These may explain our finding of ILF lateralization
in comorbid depression in PD. Apart from ILF alterations in
dPD, our results are also indicative of reduced connectivity in
left ILF in DEP-/RBD+ compared to DEP-/RBD-, which is in
line with the study by Ford et al. (72). However, few other
studies comparing PD-RBD patients with PD-non-RBD have not
reached to this association. May longitudinal follow-up of these
patients reveal subsequent depressive symptoms followed by ILF
disruption, should be investigated in well-designed cohorts.

Cingulate, the prominent limbic structure and the well-
known structure of emotion and cognition activates during REM
sleep (73). Cingulum injury has been shown in abnormalities
in attention, memory and emotional processing (74). Existing
literature is already enriched with cingulum associations in
depression and its pathognomonic REM sleep dysregulations
(75, 76) and also depression, apathy, impulse control deficit
and dementia in PD (77–80). More severe lesions of this tract
predispose to poorer treatment response in late-life depression
(81) and is a stimulating target to treat resistant depression
(82). This area is also attributed to comorbid RBD in PD
patients recruited from PPMI database (83, 84). Overall, it is
not surprising that disrupted cingulum bundle is correlated with
depressive symptoms and RBD in PD patients.

CC with more than 200 million axonal projections, is the
largest fiber bundle in the central nervous system, which
actively transfers information between homologous areas of
two cerebral hemispheres (85). This commissure has a major
role in the regulation of cognitive and emotional function and
bilateral limb movement (86). Extensive corpus callosal damage
is described in early PD (87), which becomes more severe
with motor worsening (88). Reduction of callosal integrity is
implicated in the freezing of gait and postural instability in
non-tremor dominant PD (89). This phenotype is more often
accompanied by cognitive decline and mood disorders (33, 90).
In line with these observations, diffusion MRI connectometry
has revealed reduced integrity in CC in the neuropathology of
comorbid RBD (84) and depression (65) in PD. Same association
is shown regarding cognitive decline and its severity in PD
(33).

The results of between PD subgroups evaluation showed that
superior andmiddle cerebellar peduncles have lower connectivity
consistently comparing PD patients with RBD compared to those
without RBD. Cerebellum has heavy connections to the cerebral
cortex via brainstem structures. Disruptions of this circuitry
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and asynchronization of cerebral and cerebellar functions are
related to sleep-wake state abnormalities (91, 92). As a result,
cerebellar pathology is often present in sleep disorders (93),
and its cortical volume reduction has been shown in RBD
(83, 94), although the exact contributed pathways are yet to
be elucidated. It is now well documented that sleep has a
major role in memory consolidation (95). Cerebellar increased
activity during sleep in order to integrate learned motor skills
is well-documented (96), and gray matter reductions of the
cerebellum have resulted in the impaired consolidation of action
memories (97). The interconnected sleep and cerebellar cognitive
and motor-related functions may point toward the more severe
motor and cognitive impairments associated with PD-RBD
(9). Metabolic imaging studies have interestingly proposed
cerebellum as a PD prodromal biomarker, as a part of a metabolic
network associated with the severe motor subtype of PD (98).
Idiopathic RBD patients with altered cerebellar metabolism are
also at higher risk of photoconverting to neurodegeneration
(99). Our consistent results of significant altered white matter in
cerebellar peduncles is in line with disturbed cortico-cerebellar
connections in PD-RBD patients in contrast to PD patients
without RBD. Another DWI connectometry analysis also has
manifested middle cerebellar peduncle as a discriminative
indicator between these two groups of patients recruited from
PPMI (84). Recent neuroanatomical studies have shown the
important role of the cerebellum in emotional regulation and
high-order cognitive coordination through extensive networks
with the cerebral cortex, limbic system and thalamus via superior
and middle cerebellar peduncles (100–105). There is a tendency
to lateralization in the cerebellum in processing cognition and
affection. Lesions of the right cerebellum, in connection to
the left cerebral cortex, result in cognitive dysfunctions and
positive or approach related emotional disturbances (103, 106).
A diffusional kurtosis study has found disrupted superior and
middle cerebellar peduncles in related to depression, with a
particular relationship between disease duration and right SCP
(107). The right posterior cerebellar white matter was also
associated with treatment resistance in depression in a voxel-
based DTI study (105). Functional brain studies have shown
the involvement of cerebellar abnormality in depressed PD and
also severe PD (108, 109). While connectivity of superior and
middle cerebellar peduncles was significantly lower in related
to comorbid RBD without depression in this study, reduced
connectivity is seen only in right SCP, the main output route
from the cerebellum to the left prefrontal cortex, in depressed
PD patients with comorbid RBD and there is no such association
with depressed PD without concomitant RBD. This may be a
result of a small number of patients or may point to the specific
patterns of comorbidity of depression and RBD in PD. Future
studies with a larger number of patients are needed to investigate
the generalizability of these results.

Another white matter structure with consistently differed
connectivity in between-patients’ subgroups comparison was
fornix. Fornix, a limbic structure, is the main output tract of the
hippocampus to diencephalon and basal forebrain. This structure
is an important component of both episodic memory and
emotional circuits (110–112). Fornix degeneration is proposed

as a strong predictor of upcoming cognitive impairment, as it
precedes hippocampal atrophy (113). Comorbid mild cognitive
impairment and late-life depression, a possible representation
of neurodegenerative disorders, has been related to reduced
FA in fornix (114). This result has also been linked to
treatment-refractory major depressive disorder (115). In another
DTI studies, higher mean diffusivity (MD) in fornix has
been revealed in PD patients (116) and with association
with short-term nonverbal memory impairment in these
patients (117). Experimental studies on animal models have
demonstrated that so-called hypocretin neurons in perifornical
region regulate sleep/wake cycle (118, 119) and neuronal loss
may cause increased REM sleep portion (120, 121) and sleep
disorders such as narcolepsy (122, 123). Interestingly, hypocretin
neurotransmission system is shown to be affected in a post-
mortem study of PD patients (124). Anatomical disruptions are
also reported in iRBD (125) and the generation of excessive
daytime sleepiness in PD patients (126). Our previous studies
and the current study are the first to directly attribute fornix
to comorbid depression and RBD in early PD. Left fornix
disruption, resulted in disconnection of the left or verbal sphere
of the hippocampus may contribute to memory deficits for
verbal stimuli, in contrast to visuospatial input processed in the
right side (127). Although executive dysfunction is considered
as the hallmark cognitive deficit in PD, it has been cleared
that verbal memory impairment has the greatest impact of all
cognitive domains in PD (128–132). Poor performance on verbal
memory tasks is also shown to be associated with sleep problems
such as RBD in PD patients (133). Unsurprisingly, depressive
disorders are accompanied by impairment in verbal memory as
well (134).

There are some discrepancies in results from the current
study and our two previous studies (Table 3). In order to
control for the effect of the motor and other non-motor
symptoms, we attempted to include patients with matched
scores on other tests in the current study. This resulted in
overlap in our patient selection from PPMI cohort. Using a
new version of DSI studio may have also imposed more precise
outcomes. Not using gold-standard diagnostic assessments
for RBD and depression, polysomnography and clinically
approved depression using DSM criteria, may be a source
of error that should be kept in mind in interpreting our
results. Despite GDS and RBDSQ scores, PD patients had
worse olfaction function compared to HC and this would
have contributed to the observed connectivity differences in
the first part of the analysis. Longitudinal studies on larger
subgroups of PD patients will address the accuracy of these
results and better specify the role of each tract disruption
in emergence of comorbid symptoms in heterogenous PD. In
other words, tracts with differed connectivity in only within PD
patients’ comparison, such as cerebellar peduncles which most
consistently were attributed to PD-RBD, and fornix in dPD-RBD
may serve as markers useful for PD subtyping, which would be
helpful in establishing better prognostic evaluation and more
individualized treatment strategies. Needless to mention that
these are preliminary findings that should be approved by future
research.
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CONCLUSION

The results of this study support the entangled pathophysiology
of depression and RBD which both predict poor outcomes
regarding motor symptoms and cognitive decline in PD patients.
As discussed above, specific commissural (CC), projection (CST,
SCP, MCP) and long association fibers (cingulum, fornix, ILF,
UF, IFOF) have been previously shown to serve as neural
underpinnings of malignant subtypes of PD besides reputable
associations with RBD and depression. So, disruption in these
tracts may serve as an underlying pathology of REM sleep and
mood dysregulations in early PD which also warn the emergence
of debilitating motor and cognitive symptoms. A novel result of
this study is the disruption of short association fibers (commonly
known as U-fibers) in PD neurodegeneration that should be
addressed in future research. A small number of patients in each
group and not using gold standard tools to diagnose NMS in
PPMI database should raise suspicion as multiple sources of error
in this study. Shared neural substrates in RBD and depression in
early PD is promising to discover high-risk individuals for future
PD. Follow-up studies with larger number of patients will clear
whether small regional diversities observed in between-patients-
groups comparisons are linked to a specific pattern of RBD and
depression in PD or may be justified by small sample sizes.
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