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Abstract

Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway
of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel
clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn’s disease. However, its role in disease progression
remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was
confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive
inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-
inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in
inflammatory cells and circulating TNFa levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT
reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus,
NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have
therapeutic efficacy in immune-mediated inflammatory disorders.
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Introduction

In humans, chronic inflammatory diseases represent a major

medical challenge, both in terms of our understanding of their

underlying mechanisms as well as their treatments. In a disease

such as rheumatoid arthritis (RA), the pathological roles of pro-

inflammatory cytokines such as TNFa, interleukin (IL)-1b, and IL-

6 have been demonstrated. Therapeutic inhibitors of these targets,

such as etanercept, a p75-TNFR immunoglobulin Fc fusion

protein, infliximab, a TNF specific monoclonal antibody, and

anakinra, an IL-1R antagonist, represent major treatment

advances in this disease (reviewed in [1]). Nevertheless, a

therapeutic response and efficacy are not always achieved and

may be of limited duration. There is thus still a major need to

understand pathways which sustain chronic inflammation in these

diseases with the hope that treatment can be improved.

Nicotinamide adenine dinucleotide (NAD) is an important

coenzyme found in all cells that plays key roles as carrier of

electrons in the redox reaction, but also as cofactor for NAD-

consuming enzymes. Evidence suggests that TNFa and other

inflammatory stimuli affect NAD metabolism. For example,

endotoxin, the potent stimulus of innate immunity, induces a

dramatic increase in the expression of NAMPT, a crucial enzyme

involved in the salvage pathway of NAD, recycling NAD from

nicotinamide[2–4]. NAMPT was originally called pre-B-cell

colony-enhancing factor (PBEF), a putative cytokine involved in

B-cell development[5], and was later suggested to act as an

adipokine secreted by visceral fat called visfatin[6]. The expression

of NAMPT is upregulated during activation of immune cells such

as monocytes, macrophages, dendritic cells, T cells, and B

cells[4,7–9], as well as in amniotic epithelial cells upon stimulation

with lipopolysaccharide (LPS), TNFa, IL-1b, or IL-6[10].

Moreover, it was suggested that NAMPT has potential implica-

tions in the pathogenesis of acute lung injury[11], Crohn’s disease

(CD), ulcerative colitis (UC), and RA. Indeed, its expression is

increased in colonic biopsy specimens of patients with CD and UC

compared to healthy controls[12]. In RA, expression of NAMPT

is upregulated in the inflamed synovial tissue of mice with antigen-

induced arthritis, and in plasma and synovial fluid from RA

patients[13–15]. However, the exact pathophysiological signifi-

cance of this upregulation is still unknown. Finally, it has also been

shown that this enzyme, found in an extracellular form, has pro-

inflammatory as well as immunomodulating properties. In

particular, recombinant NAMPT activated human leukocytes

and synoviocytes and induced pro-inflammatory cytokines in vitro,

and IL-6 upon injection in mice[12,15].
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APO866 (also known as FK866 and WK175) has been identified

as a specific competitive low molecular weight inhibitor of NAMPT

enzymatic function. The crystal structures of NAMPT, alone and in

complex with the reaction product nicotinamide mononucleotide

(NMN) or the inhibitor APO866, have been recently pub-

lished[16,17]. The structures showed that APO866 is bound in a

tunnel at the interface of the NAMPT dimer, and competes directly

with the nicotinamide substrate. Using tumor cell lines, it was found

that APO866 inhibited NAMPT catalyzing the transformation of

nicotinamide into NAD, but not a closely related enzyme

transforming nicotinic acid into NAD. APO866 was thus found to

deplete intracellular NAD content, resulting in apoptotic cell death

in many cancer cell lines without any DNA damaging effect[18–20].

These data suggested the use of APO866 for treatment of diseases

involving deregulated apoptosis, such as cancer. Here, we took

advantage of the availability of this specific inhibitor to further

explore the involvement of NAMPT enzymatic function in

inflammatory arthritis.

Results

Expression of NAMPT is up-regulated in collagen-induced
arthritis

We first examined expression of NAMPT during collagen-induced

arthritis (CIA) in mice, a model that shares many histopathological

features with RA in humans. During CIA, the level of NAMPT was

significantly elevated in sera (P = 0.0288) and paw tissue extracts

(P = 0.0025) from arthritic mice compared to non-arthritic naı̈ve

controls as measured by ELISA (Fig. 1a and b, respectively). These

results were also supported by NAMPT immunohistochemistry.

Indeed, we found massive staining of arthritic paw and knee joints

from CIA (Fig. 1c), but markedly reduced staining in non-arthritic

joints or joints from naı̈ve mice (results not shown). In affected joints,

NAMPT staining was prominent in synoviocytes of the synovial

lining layer (SLL), sub-intimal synovium and pannus (P) and in some

inflammatory cells (see arthritic paw, Fig 1c). Most of the blood vessels

were also positive. In addition, some positive chondrocytes were

observed in both normal and arthritic joints.

NAMPT inhibition with APO866 reduces established
collagen-induced arthritis

Having confirmed that NAMPT expression is increased in CIA,

we next investigated if inhibition of NAMPT enzymatic function

with APO866 could reduce established CIA. APO866 was

administered from the day following the appearance of the first

clinical symptoms of arthritis, and continued for 15 days. APO866

had a marked protective effect on CIA observed in 3 independent

experiments, with a maximal therapeutic response when adminis-

tered at 10 mg/kg (Fig. 2a). The beneficial effect was apparent

within 10 days following the commencement of treatment and was

evidenced by a reduced mean arthritic score (Fig. 2a), as well as by a

lower mean number of affected paws (results not shown). We next

wanted to compare the therapeutic effect of APO866 to the well-

established effect of anti-TNFa treatment of CIA. APO866, at a dose

Figure 1. Induction of NAMPT expression in collagen-induced arthritis. Sera (a) and tissue extracts of paws (b) from CIA at day 14 (n = 8) and
from non-arthritic, non-immunized, naı̈ve (n = 7) mice were prepared and analyzed by NAMPT ELISA. *P,0.05 arthritic versus naı̈ve in panel a and b.
(c) NAMPT immunohistochemistry was performed on paw joints, using a specific rat anti-mouse NAMPT antibody (panels 1 and 2). Staining specificity
was confirmed using an irrelevant isotype-matched antibody as primary antibody (panels 3 and 4). Synovial lining layer (SLL), synovial membrane (S)
and pannus (P). Original magnifications: x100 for panels 1 and 3; x400 for panels 2 and 4.
doi:10.1371/journal.pone.0002267.g001
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of 10 mg/kg, was comparable to etanercept for inhibition of CIA

(Fig. 2b). To gain more insight into the inhibitory mechanism of

action of APO866 on CIA, we repeated the CIA curative experiment

using the optimal dose of APO866 and analyzed more parameters.

Paws from APO866-treated mice showed minimal signs of

inflammation after 2 weeks of treatment whereas paws from

placebo-treated mice were still inflamed (Fig. 3a), and this was also

reflected in the clinical scoring (Fig. 3b). Additionally, these in vivo

clinical observations were consistent with histology of knees and

paws, where much less inflammation was observed in the APO866-

treated group (Fig. 3d). Knee joints of placebo mice and mice treated

with APO866 were assessed for inflammatory infiltrate and synovial

hyperplasia. As shown in figure 3e, histological sections revealed a

statistically significant decrease in inflammatory infiltrate

(P = 0.0028) and hyperplasia (P = 0.0145) in mice treated with

APO866 as compared to placebo-treated controls. Serum amyloid A

protein (SAA) levels, which reflect the systemic inflammatory

response, were decreased in APO866-treated mice (Fig. 3f), although

this decrease did not reach significance (P = 0.0574), further

suggesting the anti-inflammatory effect of APO866 administration.

Amongst the potential molecular mechanisms involved in the

amelioration of CIA by APO866 is the reduction of pro-

inflammatory cytokines. Expression of different cytokines was

investigated in paw tissue extracts at the end of the experiment.

TNFa was below the level of detection of the assay. Locally

produced IL-1b and IL-6 were significantly reduced (P = 0.0308 and

P = 0.0396, respectively) in APO866-treated animals (Fig. 3g). MCP-

1 was decreased, although this decrease was not statistically

significant (P = 0.1103) (Fig. 3g), and finally a group composed of

IL-10 (Fig. 3g), IFN-c, CCL5, and IL-12p70 (not shown) remained

unchanged by APO866 treatment (P.0.05).

We observed no signs of toxicity resulting from the treatment

with APO866 since the weight of the mice was comparable

between placebo- and APO866-treated groups (Fig. 3c). Indeed,

APO866 was well tolerated, no premature death occurred in the

treated group and the corresponding histopathology of liver,

spleen, lung, gut, kidney, inguinal lymph nodes and brain in this

group was no different from control animals. In addition, liver

toxicity was also ruled out as similar low alanine aminotransferase

levels were measured in APO866-treated versus control mice (data

not shown). Importantly, no difference in the number of apoptotic

cells between placebo and APO866-treated animals was observed

in situ in affected paw tissues of arthritic mice (results not shown).

Finally, hematological examination showed similarity between the

treated and control mice (table 1).

To verify that APO866-treated mice generated an adequate

immune response against type II collagen, total anti-collagen IgG

levels were measured by ELISA at the end of the therapy (day 15).

No significant difference was observed in anti-collagen IgG levels

between control and APO866-treated mice (Vehicle-treated mice

mice: 140+/220.2 arbitrary units (n = 18), APO866-treated mice:

106.5+/217.6 arbitrary units (n = 15)). Accordingly, cellular

immune responses against type II collagen were similar between

groups as assessed by inguinal lymph node T cell proliferation

assays (results not shown). Collectively, these data show that the

beneficial effects of APO866 on established CIA were neither due

to toxicity nor to impaired immune response to collagen II, but

suggest an impaired secretion of inflammatory cytokines.

NAMPT inhibition reduces intracellular NAD
concentration in inflammatory cells and circulating TNFa
during endotoxemia

Next, we investigated the cellular target of NAMPT inhibition

with APO866. We have not been able to measure intracellular NAD

levels in inflammatory cells isolated from the paws of CIA mice due

to the paucity of the cells and the difficulty to isolate them with high

purity. To bypass these technical difficulties, we turned to a model of

peritonitis where many inflammatory cells are recruited to the

peritoneal cavity upon thioglycollate administration and are easily

isolated with minimal manipulation. Thus, naı̈ve mice were treated

ip with thioglycollate to elicit inflammatory cells, and then APO866

was administered ip at 10 mg/kg. Peritoneal exudates inflammatory

cells (PEC) were obtained by lavage at different time points after

treatment, and intracellular NAD levels were determined using an

enzymatic assay. Figure 4a shows that APO866 induced a significant

time-dependent NAD depletion in PEC in vivo with a nadir at 9 h

(P = 0.0248) and recovery around 14 h after injection (P = 0.3778).

We also tested the ability of APO866 to reduce TNFa levels in vivo

based on a classical model of experimental endotoxemia in mice.

Naı̈ve mice were treated ip with thioglycollate to elicit inflammatory

cells, and then were treated ip with placebo or 10 mg/kg APO866

Figure 2. Effect of NAMPT inhibition with APO866 on established collagen-induced arthritis. (a) Dose-response effect of APO866: test
mice were treated twice daily ip with APO866 2, 5, or 10 mg/kg (n = 10 in each group) during 15 days. Placebo mice received vehicle only (n = 10). (b)
Severity of arthritis in CIA mice receiving APO866 10 mg/kg ip twice daily or etanercept 15 mg/kg every three days (n = 10 in each group) over
15 days. Mice groups were compared by two-way ANOVA. *P,0.05 APO866 or etanercept versus placebo in panel a and b.
doi:10.1371/journal.pone.0002267.g002
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7 h before an ip injection of LPS. Mice were bled 90 min later for

evaluation of serum TNFa levels. As shown in figure 4b, APO866

induced a significant decrease in circulating TNFa levels compared

to placebo (P = 0.011). This decrease in TNFa secretion was

accompanied by a significant decrease (P = 0.02) in intracellular

NAD in PECs obtained from the same mice (Fig. 4b).

Specific inhibition of NAMPT enzymatic function with
APO866 reduces intracellular NAD concentration and
pro-inflammatory cytokine production in mouse and
human inflammatory cells

To gain further insight in the potential molecular mechanisms

involved in the amelioration of inflammation in CIA by APO866,

the effect of pharmacological inhibition of NAMPT with APO866

on highly purified inflammatory cells was determined in vitro in a

closed system. To this end, thioglycollate-elicited mouse inflam-

matory peritoneal cells (PEC) were cultured for 4 h with increasing

doses of APO866, and then stimulated overnight with Pansorbin

(heat-killed, formalin fixed Staphylococcus aureus Cowan I cells

(SAC)) to induce inflammatory cytokines secretion. Intracellular

NAD level was measured using an enzymatic assay and culture

supernatants were tested for TNFa, IL-1b and IL-6 content by

ELISA. IL-1b was below the level of detection of the assay. In this

system, APO866 reduced in a dose-dependent manner both

intracellular NAD concentration and pro-inflammatory cytokines

TNFa, and IL-6 (Fig. 5a). Similar results were obtained upon

stimulation with LPS (data not shown). Importantly, inhibition of

Figure 3. Clinical, histological and biochemical effects of NAMPT inhibition on established arthritis. Test mice (n = 20) were twice daily
treated ip with 10 mg/kg of APO866 from the first day onward of appearance of clinical arthritis (clinical score .1) during 14 days. Placebo mice
(n = 20) received vehicle only. (a) Representative photographs of paws of CIA mice APO866-treated or placebo-treated. Groups of animals were
compared with respect to variation of their clinical scoring (b), and of their weight (c) by statistical analysis using the two-way ANOVA. (d) Histological
features of arthritic joints: representative knee and paw histology from placebo and APO866-treated mice after 14 days of treatment. In the placebo
group (pictures 1 and 2), the synovial membrane (noted S on picture) was significantly thicker than in treated animals (pictures 3 and 4). An effect on
the articular cartilage (C) was also observed, with a decreased loss of Safranin-O staining in the treated group (compare panel 1 and 3 for knees and 2
and 4 for paws). Original magnification640. (e) A semi-quantitative histological evaluation was performed on the knee sections using a 4 points (0–3)
scoring system to evaluate inflammatory infiltrate and synovial hyperplasia. (f) Circulating SAA levels: Sera from placebo- and APO866-treated CIA
mice at day 14 (n = 8 and n = 7, respectively) were prepared and analyzed by SAA ELISA according to the manufacturer’s instructions. (g) Cytokine
levels in paw extracts: At the end of the experiment, IL-1b, IL-6, MCP-1, and IL-10 levels in paw extracts were determined as described in Methods.
*P,0.05 APO866 versus placebo in panels b, e and g.
doi:10.1371/journal.pone.0002267.g003
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pro-inflammatory cytokine secretion was not due to cell death

induction, as in the same culture conditions, APO866 did not affect

cell survival, as assessed by intracellular esterase activity and DNA

incorporation of ethidium bromide (Fig. 5a) or AnnexinV-propidium

iodide staining, cell count, or trypan blue exclusion (data not shown).

Anti-inflammatory properties of APO866 were then tested on

human cells. Human monocytes isolated from PBMC obtained

from healthy volunteers were cultured for 4 h with increasing

doses of APO866, and then stimulated overnight with LPS. As

observed for mouse cells, APO866 inhibited NAD, TNFa, IL-1b
and IL-6 in a dose-dependent fashion, while preserving cell

viability (Fig. 5b). Similar results were obtained using other

inflammatory human cells, such as total PBMCs, and human

monocyte-derived dendritic cells, or upon stimulation with SAC

(data not shown). Thus, inhibition of NAMPT enzymatic function

with APO866 efficiently reduced both human and mouse cell pro-

inflammatory cytokines secretion by a mechanism independent of

cell death. To further emphasize the specificity of the APO866 for

its target NAMPT, PECs were incubated for 4 h with or without

APO866 and exogenous NMN, the product of the NAMPT-

catalyzed reaction inhibited by APO866. The cells were then

stimulated overnight with LPS to induce pro-inflammatory

cytokines secretion. As shown in figure 6, addition of NMN

restored both intracellular NAD levels and TNFa and IL-6

production in PEC even in the presence of APO866, further

supporting the notion that NAMPT represents the only molecular

target of APO866. Moreover, these results strongly support the

contention that the link between visfatin/NAMPT and inflamma-

tion might be only related to its enzymatic activity as a NAD

biosynthetic enzyme.

Discussion

In the present article, we have identified anti-inflammatory

properties of APO866 by inhibition of NAMPT enzymatic

function. In CIA, NAMPT expression was increased and

therapeutic administration of its inhibitor APO866 ameliorated

disease severity, and no weight loss or other signs of toxicity were

observed. The inhibition of CIA by APO866 at the dose used was

Table 1. Haematological examination of vehicle and APO866-
treated mice.

PLACEBO APO866

mean SD mean SD

RBC (103/mm3) 13.6 4.9 9.4 1.4

WBC (106/mm3) 12.1 0.4 11.5 0.7

HGB (g/dl) 14.8 0.6 14.1 0.8

HCT (%) 55 2.4 52.8 2.6

PLT (103/mm3) 1832.6 77 1688 181

%LYMPHO 54.6 7.6 60 7.4

%MONO 12.1 2.1 10.4 1.3

%NEUTRO 33.3 6.7 29.7 6.5

CIA was induced as described in Material and Methods. Test mice (n = 10) were
twice daily treated ip with placebo or 10 mg/kg of APO866 from the first day
onward of appearance of clinical arthritis (clinical score .1) during 14 days. At
day 15, blood was collected in EDTA-coated tubes and cells counted with
VetABC instrument.
doi:10.1371/journal.pone.0002267.t001

Figure 4. APO866 reduces intracellular NAD in PEC in vivo and inhibits TNFa production after LPS challenge. (a) Mice were treated with
thioglycollate to elicit PEC, and then received 10 mg/kg APO866 by ip injection. PEC were obtained by lavage after different time points and
intracellular NAD was determined. Data are mean+sem of 3 mice per group. (b) Mice were treated with thioglycollate to elicit PEC, and then received
10 mg/kg APO866 or placebo by ip injection 7 h before ip challenge with LPS. Serum TNFa at 90 min (mean+sem of 3 mice per group is shown. PEC
were obtained by lavage and intracellular NAD was determined. Data are mean+sem of 3 mice per group. This panel is representative of at least 4
experiments performed. P,0.05 9 h versus 0 h in panel a, or APO866 versus placebo in panel b.
doi:10.1371/journal.pone.0002267.g004
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as efficient as TNFa blockade by etanercept and was associated

with decreased local IL-1b and IL-6 secretion. In the same

arthritic paw tissue extracts, TNFa was below the detection limit

but this does not preclude a role for TNFa in this model since

TNFa could act early on in the disease process. Moreover, a single

ip administration of APO866 at a dose of 10 mg/kg lowered

intracellular NAD levels in inflammatory cells in a time-dependent

fashion and circulating TNFa was reduced following an endotoxin

challenge in vivo. In vitro, NAMPT inhibition was found to reduce

TNFa, IL-1b, and IL-6 secretion upon stimulation of inflamma-

tory cells with bacterial agents. Moreover, the inhibition of pro-

inflammatory cytokines correlated with a decreased intracellular

NAD concentration in inflammatory cells, while the viability of the

cells was not affected. The effect of APO866 was reversed by

supplementation with NMN, the NAMPT-catalyzed reaction

product, further confirming data on the specificity of APO866

for NAMPT obtained in previous studies[16–20]. Our study

suggests that inhibition of NAMPT enzymatic function and

reduction of intracellular NAD content by low doses of APO866

might be an effective treatment of certain autoimmune or

autoinflammatory disorders, in particular those where cytokines

such as TNFa, IL-1b, and IL-6 have been shown to play a major

role in the initiation and maintenance of the disease.

Inhibition of TNFa, IL-1b, and IL-6 production is beneficial in

several inflammatory diseases including arthritis and numerous

efforts have been devoted in the design of novel therapies aimed at

blocking the production and/or the biological effects of these

important pro-inflammatory cytokines[21]. The exact molecular

mechanism linking NAMPT inhibition by APO866 and blockade

of cytokine production is still a matter of speculation, but several

avenues are open for discussion. Among other functions, NAD is a

co-factor for NAD-consuming enzymes with multiple roles in

cellular regulation[22], such as mono-ADP-ribosyltransferases

(mARTs), poly(ADP-ribose) polymerases (PARPs), and sirtuins

[23,24]. A member of the PARP family, PARP-1, has been

proposed to act as a co-activator of NF-kB during the pathogenesis

of inflammatory disorders, including RA[25]. By decreasing

intracellular NAD levels, APO866 might indirectly affect PARP-

1 function and alter the expression of pro-inflammatory cytokines.

Alternatively, by inhibiting NAMPT, and preventing the trans-

formation of nicotinamide into NAD, APO866 could also

indirectly alter inflammation by inducing the accumulation of

nicotinamide, which is a known anti-inflammatory agent. Indeed,

nicotinamide protects from the toxic effects of staphylococcal

enterotoxin B[26], and inhibits LPS-induced TNFa in vivo in

mice[27]. Finally, the inhibitory effect of APO866 on TNFa could

be accounted for by its impact on sirtuins as it was shown that

NAMPT could regulate the activity of NAD-dependent Sirt1 in

mammalian cells[28].

It has been recently reported that NAMPT is present in an

extracellular secreted form and can regulate activation of human

leukocytes and synoviocytes by increasing surface expression of

costimulatory molecules and by inducing IL-1b, IL-6, and TNFa
production through a putative membrane receptor[12,15]. In

addition, NAMPT was shown to be produced by visceral fat as a

secreted adipokine called visfatin that exhibited insulin mimetic

functions through binding to the insulin receptor[6]. At present,

the exact mechanism of action of this extracellular protein on the

activation of immune cells or in insulin regulation is a matter of

controversy. Indeed, the article describing the insulin mimetic

function of visfatin actin through the insulin receptor has been

retracted from Science[29], and Revollo et al. have very recently

shown that NAMPT/PBEF/visfatin functions as an intra- and

extracellular NAD biosynthetic enzyme and these authors were

unable to reproduce the insulin-mimetic activity of visfatin[30]. In

this context, we have been unable to reproduce the reported

results supporting the notion that recombinant visfatin may act as

an extracellular pro-inflammatory cytokine through binding to a

putative receptor on human PBMCs, even at doses above the

physiologocal levels (results not shown). In addition, our in vitro

results with inflammatory cells show that the inhibition of TNFa
and IL-6 by the specific inhibitor of NAMPT APO866 was

accompanied by a decrease in intracellular NAD and both

intracellular NAD and TNFa and IL-6 secretion were reversed by

Figure 5. Inhibition of NAMPT enzymatic function with APO866 reduces intracellular NAD concentration and pro-inflammatory
cytokine production in mouse and human inflammatory cells, without affecting viability. (a) Mouse PEC and (b) human monocytes were
cultured for 4 h with increasing doses of APO866, and then stimulated overnight with SAC or LPS, respectively. At the end of the culture, the culture
supernatants were tested for TNFa, IL-1b and IL-6 content by ELISA, cell viability was assessed using the Live/Dead kit, and intracellular NAD
concentration was determined as described in Methods. Data are mean 6 SEM of triplicates. This panel is representative of at least 3 experiments
performed.
doi:10.1371/journal.pone.0002267.g005

Figure 6. Exogenous nicotinamide mononucleotide, NAMPT-catalyzed reaction end product, reverts the inhibitory effects of
APO866. Mouse PEC were incubated in the presence or absence of 200 nM APO866 and 10 mM nicotinamide mononucleotide (NMN). Cells were
further stimulated with LPS and intracellular NAD levels and TNFa and IL-6 secretion were determined. Data are mean6SEM of triplicates.
doi:10.1371/journal.pone.0002267.g006
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addition of NMN even in the presence of APO866, further

supporting the notion that the link between visfatin/NAMPT and

inflammation might be only related to its enzymatic activity as a

NAD biosynthetic enzyme.

The question whether NAMPT, a protein lacking a typical

signal sequence for secretion, is actively secreted or found in

extracellular compartments because of passive diffusion upon cell

death remains open. Indeed, chronic inflammation, especially in

RA, is associated with tissue damage and remodeling[31]. In this

context, cell lysis could be responsible for the release of NAMPT in

the extracellular compartment thus accounting for the increased

NAMPT concentration found in the serum and tissues of RA

patients and in mouse arthritis models ([13–15] and our results).

Of note, two groups recently reported that NAMPT is positively

secreted through a non-classical secretory pathway in adipocytes

and transfected CHO cells[32,33].

It is not unknown for anti-cancer agents to be used as anti-

inflammation drugs, histone deacetylase inhibitors and metho-

trexate being two such examples[34,35]. APO866 is currently in

several Phase II clinical trials to evaluate its efficacy in controlling

cancer growth. In vitro, incubation of tumor cells results in the

depletion of intracellular NAD, and activation of the apoptotic

cascade with release of cytochrome c, and activation of caspase 3, but

without any DNA damaging effect or alteration in p53 expres-

sion[18–20]. Furthermore, apoptosis is dramatically enhanced when

APO866 is combined with agents inducing genotoxic stress ([36] and

our own unpublished results), suggesting that the apoptosis observed

in tumor cells with APO866 is related to intrinsic DNA instability

and DNA repair activities found in transformed cells. On the

contrary, the anti-inflammatory effects of NAMPT inhibition

through APO866 were not associated with increased cell death of

inflammatory cells in vitro and no difference in the content of

apoptotic cells between placebo and APO866-treated animals was

observed in situ in affected tissues of arthritic mice (this article).

Moreover, higher doses of APO866 are required for reduction of

tumor burden in mice compared to those altering inflammation (our

own unpublished observations), suggesting different effector mech-

anisms for apoptosis of tumor cells and inhibition of pro-

inflammatory cytokine secretion in inflammatory cells.

Hypoxia can be a leading cause of angiogenesis. Recent data

provide evidence that NAMPT is up-regulated by hypoxia through

hypoxia-inducible factor 1[37,38] and demonstrate that NAMPT

promotes in vitro and in vivo angiogenesis via activation of mitogen-

activated protein kinase ERK-dependent pathway[39], thus sug-

gesting that NAMPT/visfatin might play important roles in various

angiogenesis-related disorders. In this context, the abnormally

elevated NAMPT levels reported in human and experimental

arthritis ([13,14], and our results on CIA) could well result from the

hypoxic conditions in the rheumatoid synovial microenvironment

[40,41] further contributing to the angiogenic process found in

RA[42]. Indeed, anti-angiogenic therapies have been successfully

tested in experimental models of arthritis, such as CIA[43]. It is

interesting to note that APO866 has been previously reported to

have anti-angiogenic activity in vivo in a murine model of renal cell

carcinoma at the same dose efficient in our CIA experiments[44].

The inhibitory effect of APO866 in CIA might thus be accounted

for, at least in part, by its anti-antiangiogenic activity.

In conclusion, the present paper establishes a new functional link

between NAD metabolism and inflammation, and suggests a

potential important role for NAD-dependent enzymes in the

regulation of pro-inflammatory cytokine production, including

TNF, IL-1b, and IL-6. Our data identify a new molecular pathway

that can lead to the development of novel therapeutics for the

treatment of inflammatory diseases. NAMPT has been described to

be a relevant clinical biomarker in a series of inflammatory-related

disorders and now our results suggest that NAMPT is an important

actor in the pathology of these diseases. These findings open the

possibility to test quite rapidly the clinical efficacy of NAMPT

inhibition in inflammatory diseases in man, raising new hopes for the

development of effective treatments for debilitating diseases.

Methods

Mice
Male DBA/1 and female or male C57BL/6 mice between 8–

12 weeks of age were obtained from Harlan (Horst, The

Netherlands). Animals were housed under conventional condi-

tions, water and standard laboratory chow were provided ad

libitum. All animal experiments were approved by a local ethics

committee (Service Vétérinaire Cantonal, Lausanne, Switzerland).

In vitro test of APO866 function
Human blood was obtained from consenting donors and

peripheral blood mononuclear cells (PBMC) were isolated using

centrifugation over Ficoll-Paque PLUS cushions (Amersham

Biosciences, Uppsala, Sweden). After washing, cells were aliquoted

at 10 million per vial and frozen in 90 % fetal calf serum (FCS) 10%

DMSO (vol/vol). For in vitro stimulations, cells were thawed, washed,

and monocytes were isolated by negative depletion using the

Monocyte Isolation kit II from Miltenyi Biotec (Bergisch Gladbach,

Germany) according to manufacturer’s instructions. Purity was more

than 90% as shown by flow cytometry staining with CD14. Cells

were resuspended in RPMI 1640 Glutamax (Invitrogen) containing

10% FCS and 1% penicillin-streptomycin, plated at 16105 /well (for

viability and NAD measurement) or 26104 /well (for cytokine

measurement) of a 96-well flat bottom plate, and incubated for 4 h at

37uC with graded concentrations of (E)-N-[4-(1-benzoylpiperidin-4-

yl) butyl]-3-(pyridine-3-yl)-acrylamide (APO866, synthesized and

provided by Astellas Pharma GmbH, Munich, Germany), after

which the cells were stimulated with 100 ng/ml lipopolysaccharide

(LPS from Escherichia coli 0111:B4, Sigma, St. Louis, MO, USA) in a

final volume of 220 ml per well. After overnight culture at 37uC, the

supernatants were removed, diluted to avoid saturation of the

ELISA, and assayed for cytokine content using DuoSet kits from

R&D Systems Europe (Abingdon, UK). Cell viability was measured

using the Live/Dead viability/cytotoxicity kit from Molecular

Probes (Eugene, OR, USA). Intracellular NAD content was

determined as described[45].

Peritoneal exudate cells (PEC) were used for studies with mouse

cells. Briefly, naive mice were injected ip with 1 ml 4%

thioglycollate (BBL thioglycollate medium brewer modified, BD,

Sparks, MD, USA). 5 days later, PEC were obtained by lavage of

the peritoneal cavity with 10 ml cold PBS. After washing, cells

were aliquoted at 10 million per vial and frozen in 90% FCS 10%

DMSO (vol/vol). Culture conditions and stimulations were carried

out as described above for human monocytes, except that the cells

were stimulated with 5 mg/ml Pansorbin (heat-killed, formalin-

fixed Staphylococcus aureus cells, SAC, Calbiochem, Nottingham,

UK)) instead of LPS. To assess the specificity of the drug, PEC

were incubated for 4 h in the presence or absence of APO866

(200 nM) and nicotinamide mononucleotide 10 mM (Sigma).

Cells were then stimulated with 100 ng/ml LPS overnight.

Cytokines and NAD content were measured as described above.

Kinetics of NAD depletion in PEC after APO866 treatment
in vivo

Naı̈ve C57BL/6 mice were injected ip with 1 ml 4%

thioglycollate to elicit PEC. 5 days later, mice were treated ip
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with 10 mg/kg APO866, and PEC were obtained by lavage of the

peritoneal cavity with 10 ml cold PBS at different time points

thereafter. Intracellular NAD content was determined, and results

were normalized for total protein content using the Micro BCA kit

according to manufacturer’s instructions (Pierce, Rockford, IL,

USA).

LPS induction of serum cytokines in vivo
Naı̈ve C57BL/6 mice were injected ip with 1 ml 4%

thioglycollate to elicit PEC. 5 days later, mice were injected ip

with placebo or 10 mg/kg APO866, and, after 7 h, were injected

ip with 1 mg LPS. 90 min later, blood was obtained from

anesthetized animals. Diluted sera were assayed for TNFa levels

using a DuoSet ELISA (R&D Systems). Mice were subsequently

killed by CO2 exposure, and PEC were obtained by lavage of the

peritoneal cavity with 10 ml cold PBS. Intracellular NAD content

was determined, and results were normalized for total protein

content using the Micro BCA kit as described above.

Induction of collagen-induced arthritis.
Native chicken or bovine type II collagen (CII) was purchased

from Morwell Diagnostics (Zumikon, Switzerland) and was

dissolved at 2 mg/ml in 0.1 M acetic acid. Male DBA/1 mice

were immunized with 100 mg of native CII, emulsified in

incomplete Freund’s adjuvant containing 5 mg/ml mycobacteri-

um tuberculosis, by intradermal injection at the base of tail. On

day 21, a booster injection of 100 mg collagen in incomplete

Freund’s adjuvant was given at the base of the tail. All

immunization reagents were purchased from Difco (Basel,

Switzerland). From day 21 after the first immunization onward,

mice were examined daily for the onset of clinical arthritis. The

severity of arthritis was scored on a 3-point scale, where

0 = normal appearance, 1 = mild swelling and/or erythema,

2 = pronounced swelling and erythema, and 3 = joint rigidity.

Each limb was graded, resulting in a maximal clinical score of 12

per animal. A stock solution of APO866 at 10 mg/ml in PG 60%

in water was diluted 5-fold in 0.9% NaCl and administered ip at 2,

5, and 10 mg/kg twice daily every 12 hours. Control mice

received the same amount of vehicle (PG 12% in 0.9% NaCl). The

treatment was administered for a total of 14–15 days from the day

following appearance of the first clinical symptoms of arthritis

(clinical scoring $1), with no differences in scoring between

experimental groups at the onset of treatment. To eliminate any

bias in the experiment, clinical scoring of the mice was done by an

observer unaware of the identity of the treatment (placebo versus

APO866 at 2, 5, or 10 mg/kg twice daily by the ip route).

Etanercept (Enbrel, Wyeth, Zoug, Switzerland), used as a positive

control, was injected ip at 15 mg/kg every three days starting from

the day following appearance of clinical arthritis. All mice were

sacrificed 14–15 days after CIA became clinically detectable.

Histological analysis
Paws and knees were dissected and fixed in 10% buffered

formalin for 7 days. Fixed tissues were decalcified for 3 weeks

in 15% EDTA, dehydrated and embedded in paraffin. Sagittal

sections (8 mm) of the whole knee joint were stained with

safranin-O and counterstained with fast green/iron hematoxy-

lin. Histological sections were graded independently by two

observers unaware of animal treatment using an established

scoring system for synovial hyperplasia (from 0: no hyperplasia,

to 3: most severe hyperplasia) and inflammatory cells in

synovial fluid (from 0: no inflammation, to 3: severe inflamed

joint fluid).

Haematological examination.
Blood was collected at the end of the experiment by tail vein

bleeding in EDTA-coated tubes and blood cells were enumerated

by VetABC instrument (Medical Solution GMBH, Steinhausen,

Switzerland).

Measurement of serum amyloid A (SAA), and CII-reactive
antibodies.

Blood was collected at the end of the experiment by cardiac

puncture. Serum levels of SAA were determined using a direct

ELISA according to manufacturer’s instructions (Biosource

Europe, Nivelles, Belgium). Serum levels of total anti-mouse CII

antibodies were determined using a commercial ELISA (Chon-

drex, Morwell Diagnostics).

Tissue protein extracts preparation
At the end of the experiment, mice were killed and the left hind

paw was frozen. Paws were cut into little pieces and homogenized

in PBS containing Roche complete protease inhibitors (Roche,

Basel, Switzerland) using an Ultratorrax T8 homogenizer (IKA,

Staufen, Germany). The homogenates were centrifuged at

15000 g for 15 min at 4uC, and the supernatants stored at 220u
C. Cytokine content was evaluated using the BD mouse

inflammation cytometric bead array (CBA) kit (BD, Basel,

Switzerland) or using a DuoSet ELISA kit for determination of

IL-1b (R&D systems). Results were normalized for total protein

content using the Micro BCA kit according to manufacturer’s

instructions (Pierce, Rockford, IL, USA).

NAMPT expression
NAMPT concentration was determined in murine sera and

tissue extracts using a mouse visfatin/PBEF ELISA kit (Circulex,

LabForce, Nunningen, Switzerland)

NAMPT localization was studied by immunohistochemistry

(IHC) using a rat monoclonal antibody against murine NAMPT[4]

on paraffin-embedded sections of paws. Briefly, deparaffinized and

rehydrated sections were incubated for 30 min at room temperature

with 5% BSA and 20% normal rabbit serum. Endogenous

peroxidase activity was blocked with 3% H2O2 for 10 min. Slides

were then overlaid with the primary antibody at 5 mg/ml for 1 h at

room temperature, followed by a biotinylated anti-rat mAb. Bound

antibody was visualized using the avidin-biotin-peroxidase complex

(Vectastain Elite ABC kit, Vector Laboratories, Burlingame, CA,

USA). The color was developed by 3,39-diaminobenzidine (Sigma

Chemical Company) containing 0.01% H2O2 and slides were

counterstained with Papanicolaou. Staining specificity was con-

firmed using an isotype-matched antibody as primary antibody.

Statistical analysis
For values with non-Gaussian distribution, the significance of

differences was calculated using the Mann-Withney U test for

unpaired variables or the Wilcoxon test. For normally distributed

variables, the significance of differences was analyzed using the

Prism software (GraphPad software, Inc., Version 4) using a two-

tailed Student t test for single time point measure or a two-way

ANOVA for time course assay. All values were expressed as

mean+/2SEM. A difference between experimental groups was

considered significant when the P value was ,0.05.
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