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ABSTRACT Pseudomonas sp. strains MWU13-2100 and MWU13-2105 were isolated from a
wild cranberry bog with Pipestone loamy coarse sand soil in Truro, Massachusetts, and
taxonomically assigned based on whole-genome sequences. The draft genomes are
most closely related to P. batumici (41.4% and 41.8% dDDHd4), but with only 50.8
dDDHd4 to each other.

Like other wetlands bog soils, cranberry bog soil is a rich microbial environment, yet little is
known about interactions between microbes, or with their host plants. Pseudomonas spp.

have been implicated in suppression of fungal diseases and maintaining a beneficial environ-
ment for plant growth (1–8). Understanding the properties of these bacteria could have
potential benefits that could be translated to increasing crop yields and quality. Thus, identify-
ing soil bacteria and their products is important. Pseudomonas sp. strains MWU13-2100 and
MWU13-2105 were isolated from wild cranberry bog soil in the Cape Cod National Seashore
(42.064742,270.117562) by briefly vortexing a�2g sample from the top 5 cm of the soil pro-
file in sterile water. The supernatant was plated on King’s medium B (KMB) agar containing
50mg mL21 each of cycloheximide and ampicillin, incubated at 26°C for 48 h, colony-purified
3�, and stored in 34% glycerol at280°C. Isolates were recovered from frozen storage on fresh
KMB, and populations were inoculated into overnight KMB broth cultures. DNeasy blood and
tissue kits (Qiagen) were used for gDNA isolation, and the genome was sequenced at the
Arizona State University Genomics Core facility. Illumina-compatible genomic DNA (gDNA)
libraries were generated with a Kapa Biosystem Hyperplus library preparation kit (KK8514).
DNA was enzymatically sheared to �500bp fragments, end repaired, and A-tailed. Illumina-
compatible adapters with unique indexes (IDT 00989130v2) were individually ligated to each
sample, cleaned using pure beads (Kapa Biosciences; KK8002), and amplified with Kapa HiFi
enzyme (KK2502). Each library was analyzed for fragment size (Agilent Tapestation) and quan-
tified by qPCR (Kapa library quantification kit, KK4835; Thermo Fisher Scientific, Quantstudio 5)
before multiplex-pooling and sequencing on a Illumina MiSeq 2 � 250bp flow cell. Unicycler
v0.4.8 (9) was used to assemble the raw reads and Pilon v1.23 (10) was used to polish them in
the PATRIC Comprehensive Genome Analysis pipeline v3.6.12. Default parameters were used
for all software except for Trim in PATRIC, which was set to “true” (11). Trim Galore v0.4.0 and
QUAST v5.1 (12, 13) were used for adapter trimming and quality control Table 1. Genome
sequences were annotated using RASTtk v1.073 (14) as part of the PATRIC pipeline. MWU13-
2100 and MWU13-2105 were placed taxonomically using the Type (Strain) Genome Server
v342 (TYGS; https://tygs.dsmz.de/) (15). The isolates were most similar to P. batumici UCM B-
321T (JXDG00000000.1) but with only 41.8 and 41.4% dDDHd4 values, respectively.

Data availability. This whole-genome sequence project has been deposited at
DDBJ/EMBL/GenBank under BioProject PRJNA691338 with the accession numbers
JALLIX000000000 for MWU13-2100, and JALLIY000000000 for MWU13-2105. The versions
described in this paper are JALLIX000000000.1 and JALLIY000000000.1, respectively. Sequence
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Read Archive (SRA) are available from GenBank under the accession numbers SRR18662642
for MWU13-2100 and SRR18662649 for MWU13-2105. RASTtk annotations are available under
open license at Zenodo (https://zenodo.org/record/6399230#.YpZNMqDMKUk and https://
zenodo.org/record/6399253#.YpZNCqDMKUk).
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TABLE 1 Data summary for Pseudomonas sp. MWU13-2100 and MWU13-2105

Isolate Biosample
Genome
size (bp)

no. of
Contigs

% GC
content

Coverage
(x)

Total
reads (x106)

Total read
length (bp)

Read
length (bp) N50

MWU13-2100 SAMN27107747 6,589,945 178 61.33 105 3.01 692,910,330 229 114,002
MWU13-2105 SAMN27107502 7,183,010 102 61.51 91 2.72 650,339,742 238 281,724
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