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Abstract

Background: Drug repurposing enables the discovery of potential cancer treatments

using publically available data from over 4000 published Food and Drug Administration

approved and experimental drugs. However, the ability to effectively evaluate the drug's

efficacy remains a challenge. Impediments to broad applicability include inaccuracies in

many of the computational drug‐target algorithms and a lack of clinically relevant biologic

modeling systems to validate the computational data for subsequent translation.

Methods: We have integrated our computational proteochemometric systems net-

work pharmacology platform, DrugGenEx‐Net, with primary, continuous cultures of

conditionally reprogrammed (CR) normal and prostate cancer (PCa) cells derived

from treatment‐naive patients with primary PCa.

Results: Using the transcriptomic data from two matched pairs of benign and tumor‐
derived CR cells, we constructed drug networks to describe the biological pertur-

bation associated with each prostate cell subtype at multiple levels of biological

action. We prioritized the drugs by analyzing these networks for statistical coin-

cidence with the drug action networks originating from known and predicted drug‐
protein targets. Prioritized drugs shared between the two patients’ PCa cells

included carfilzomib (CFZ), bortezomib (BTZ), sulforaphane, and phenethyl iso-

thiocyanate. The effects of these compounds were then tested in the CR cells, in
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vitro. We observed that the IC50 values of the normal PCa CR cells for CFZ and BTZ

were higher than their matched tumor CR cells. Transcriptomic analysis of

CFZ‐treated CR cells revealed that genes involved in cell proliferation, proteases,

and downstream targets of serine proteases were inhibited while KLK7 and KLK8

were induced in the tumor‐derived CR cells.

Conclusions: Given that the drugs in the database are extremely well‐characterized
and that the patient‐derived cells are easily scalable for high throughput drug

screening, this combined in vitro and in silico approach may significantly advance

personalized PCa treatment and for other cancer applications.

K E YWORD S

conditionally reprogrammed cells, drug repurposing, primary prostate, systems network

pharmacology, tissue

1 | INTRODUCTION

Prostate cancer (PCa) remains the second most common cancer in

men, with ∼1 in 6 men being diagnosed with PCa in their lifetime.

Once diagnosed with PCa, most men undergo curative therapy,

normally radiation, or surgery. While the 5‐year median survival rate

for localized PCa approaches 100%, ∼30% of patients will have a

biochemical recurrence and androgen deprivation therapy (ADT)

remains the standard of care for these patients.

The death rate in patients with Gleason score 8 PCa has been re-

ported as almost double that of Gleason score 6.1,2 Men who progress to

castrate‐resistant prostate cancer (CRPC) following ADT face a limited

treatment repertoire, including docetaxel chemotherapy, next‐generation
androgen/androgen receptor blockading drugs, sipuleucel‐T (autologous

immunotherapy), and radium‐223.3‐5 The overall survival rates and

quality of life for patients who have progressed to CRPC remains pro-

blematic due to the inability to effectively treat CRPC. In addition to

better treatments for CRPC, there is an intense and justifiable need to

identify or develop new therapeutics that more effectively prevent the

need for ADT and the subsequent progression to CRPC.

To help achieve the goal of preventing PCa progression to CRPC,

robust in silico approaches that identify approved drugs that may be

cytotoxic to PCa cells, followed by validation of the predicted drug‐target
interactions in biologically accurate model systems, are required. The

ability to accurately predict drug efficacy at the gene, cellular, and

organismal level is extremely challenging. We developed a novel pro-

teochemometric drug repurpose method called “Train, Match, Fit, and

Streamline” (TMFS) and a subsequent, refined version called

RePurposeVS to predict alternative drug targets for all Food and Drug

Administration (FDA)‐approved and experimental drugs.6 Most recently,

we integrated our repurposing methodology with network pharmacology

called DrugGenEx‐Net and applied these approaches for use in melano-

ma and triple‐negative breast cancer (DrugGenEx‐TNBC).7,8 As an

example, our proteochemometric method successfully identified me-

bendazole as having the structural potential to inhibit kinases, especially

BRAF (both wild type and mutant [BRAFV600]), and is a potential

therapeutic option for melanoma patients in combination with trameti-

nib.9 Coupling network pharmacology with drug repurposing offers so-

lutions to the problems encountered when a target is not well

characterized structurally and/or is not known to be druggable,7 as these

targets are likely to be members of a pathway/network that contains

other molecules that may already be druggable.

In this study, we applied the RePurpose network pharmacology

platform and DrugGenEx‐Net and GenEx‐TNBC7,8 to the transcriptomic

data from our published Gleason 6 and Gleason 8 conditionally repro-

grammed (CR) malignant prostate cells and their patient‐matched benign

cells.10‐14 Using this approach, we identified drugs that were already in

clinical trials for PCa, including carfilzomib (CFZ),15 sulforaphane

(SFN),16 and others that are not currently in clinical trials, such as phe-

nethyl isothiocyanate (PTC), SB220025, and glutathione (GSH). We show

that the tumor‐derived prostate CR cells had enhanced sensitivity to

bortezomib (BTZ) and CFZ, a first‐line therapy for multiple myelo-

ma,17 and that CFZ treatment resulted in the preferential regulation of

proteasome and protease genes and of genes involved in cell cycle

progression and proliferative signaling. Collectively, our data suggest that

relative ease of use of the patient‐derived CR primary prostate cells,

combined with computational modeling and in vitro efficacy testing,

provides the feasibility to begin scale these approaches into larger pre-

clinical studies and eventually into personalized clinical trials.

2 | MATERIALS AND METHODS

2.1 | Cell lines and cell culture

Human radical prostatectomy samples were collected under the auspices

and approval of the Georgetown University and Massachusetts General

Hospital Institutional Review Boards. Following detailed pathological

analyses that documented that the tissue sections collected were more

than 70% tumor cells, the specimens were processed via protease dis-

sociation as previously described.11,18 Primary cultures were established

at Georgetown University using the CR method, and drug senstivity
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experiments were performed in conditioned media (CM) as previously

described.19 Genetic profiles, obtained by performing metaphase spreads

for the normal and tumor‐derived CR cells were performed. The Gleason

6 and 8 PCa CR cells remained diploid but show increasing incidences of

chromosomal aberrations, with the Gleason 8 cells from patient 2 ex-

hibiting numerous translocations and markers while the normal prostate

CR cells are diploid 46XY with no known translocations.14

2.2 | Development of drug‐target biological
associations

Experimentally validated drug‐protein interactions, as well as known

agonism or antagonism, were curated from publicly available databases

into a master set of direct biological targets for approved and experi-

mental drugs. These data were obtained from the Drug‐Gene Interaction

Database20 and the Comparative Toxicogenomics Database.21 Drug‐
protein interactions were marked as agonistic, antagonistic, or unknown.

Interactions with proteins whose genes were not assessed in our gene

expression analysis were discarded. The resulting drug‐target set contains
a total of 8054 drugs and 21, 353 interactions. In addition, we utilized a

modified version of our TMFSmethod called RePurposeVS for generating

reliable binding signature predictions.6,22

2.3 | Development of multi‐level drug‐target
biological associations

Higher‐level drug‐biological interactions, including drug‐pathway

and drug‐Gene Ontology (GO) function (drug‐function), were

inferred from the protein targets for a given drug. Protein‐pathway

and protein‐function annotations were obtained from Con-

sensusPathDB23 and Database for Annotation, Visualization, and

Integrated Discovery (DAVID) Functional Annotation Tool

(FAT),24 respectively. Pathways and functions whose component

gene products were modulated in a known direction by a drug were

considered to be modulated in that same direction. Thus for a given

drug, a pathway or function could be marked as either upregulated,

downregulated, unknown, or both up‐ and downregulated.

2.4 | Differential gene expression and functional
annotation using patient‐derived cancer and normal
tissue samples

To determine differentially expressed genes (DEGs), a fold change

cutoff for the cancer sample relative to the normal sample of greater

than 2.5 or less than −2.5 was implemented from 47 315 total genes

with no greater than 1500 upregulated and 1500 downregulated

genes of the largest absolute fold change.

For each patient gene expression data set, upregulated and

downregulated gene lists separately underwent functional enrich-

ment analysis to determine those pathways and functions that were

overrepresented in the set of genes differentially expressed by ma-

lignant prostatic tissue. Functional enrichment was carried out using

the web interface tools with a P‐value cutoff of < .05. These tools

include ConsensusPathDB23 for pathway annotation and DAVID

FAT24 for function annotation.

FAT was also used to annotate pathways and functions for a

given drug via its predicted direct and indirect targets through

protein‐protein interactions (PPIs) using False Discovery Rate (FDR)

less than 0.25. The final tier for biological characterization of DEGs is

based on PPIs, which were curated from the STRING database using

a “high confidence” score cutoff of more than 0.7.25 Any PPI pairs

where one of the partners did not exist in our protein target data set

were excluded. A gene list comprised of the drugs' predicted and

known direct targets and interacting partners was subjected to the

DAVID annotation. For example, if Drug A was predicted to interact

with Target A and Target B, and Target A also interacted with Pro-

tein C while Target B interacted with Protein D and Protein E, then

the gene list for Drug A would consist of the following: Target A,

Target B, Protein C, Protein D, and Protein E. The master set of PPIs

were narrowed down to a disease‐PPI network which only included

those gene products (A) whose genes were assessed in our patient‐
derived gene expression analysis and (B) where at least one gene

product was differentially expressed in our analysis.

2.5 | Statistical overrepresentation analysis
between drug and disease networks using a causal
analysis algorithm

The above computational strategies resulted in drug‐biological and
disease‐biological molecular association networks that were assessed

for statistical co‐occurrence for each drug at every biological tier.

This was done using an algorithmic strategy first implemented in the

GenEx‐TNBC platform,6,8 in which drug‐biologic interactions of an

antagonistic nature matched with upregulated disease components,

and vice versa. When the nature of the drug interaction is unknown

or undefined, it can match with either up‐ or downregulated disease‐
biological components. These disease and drug‐biological compo-

nents were matched in this way at each level of biological activity,

including genes, pathways, functions, and PPIs.

Statistical analysis of the significance of the interaction between

matching disease and drug components was carried out using the

hypergeometric test in R. Calculated probabilities for each tier were

log‐normalized and summated to rank drugs according to potential

therapeutic efficacy, as we described previously.6,8 Briefly, each

drug's Z‐score (Zi), which represents the final quantification of the

drug‐PCa patient sample association, was calculated for a ranking

using the following equation

= + + +Zi aA bB cC dD (1)

where, A, B, C, and D correspond to the normalized hypergeometric

test P‐values for drug‐gene product, pathway, function, and PPI
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associations, respectively. a, b, c, and d represent coefficient values of

2, 1, 1, and 1 with respect to each biological tier. As we previously

described, coefficient values were determined to best prioritize di-

rect drug‐gene product interactions over indirect interactions at

higher‐order biological tiers while also allowing for the prioritization

of drugs that do not necessarily have direct interactions but may be

therapeutic through indirect mechanisms.7 Using the final calculated

Z‐score, drugs are ranked in descending order (eg, the drug with the

highest Z‐score is considered the number one top‐ranked drug for a

particular PCa patient sample. Thus, a high Z‐score indicates a drug's

polypharmacological and multitiered potential to serve as a ther-

apeutic for a given PCa patient sample.

2.6 | Drug sensitivity assays

Drug sensitivity assay experiments were performed as described

previously.18 Briefly, 3000 prostate CR cells were seeded per well

of 96 well plates in CM. Each CR ‐ line was seeded in triplicate. CM

was added to a final volume of 100 μL. After 24 hour of seeding,

CM containing drugs SFN, PTC, CFZ, BTZ, SB220025, or GSH was

added. Cell survival was assessed after 72 hour using the WST‐1
reagent (Sigma #11644807001). Data were analyzed using Prism5

(GraphPad software, Inc, ver 5.0a). Each experiment was per-

formed in triplicate.

2.7 | RNA sequencing analysis

RNA from CR cells cultures grown in J2 CM was isolated from cell

pellets of malignant and normal cell lines using an RNA Easy Kit

(Qiagen Cat No. 74104). Expression analysis was performed in the

Georgetown‐Lombardi Genomics and Epigenomics Shared Resource

using the HumanHT‐12 v4 Expression BeadChip. Briefly, normalized

data were imported into the R computing environment and analyzed

using the Linear Models for Microarray Data package (LIMMA,

3.30.13)26 as part of the larger Bioconductor project (www.

Bioconductor.org).27 A linear model was fit for the normalized log

ratios of every gene using the “lmFit” function within LIMMA to

estimate all systematic variability in the data. Using functions in

LIMMA, pairwise comparisons were performed between tumor and

normal cells cultured in CM to compute moderated t statistics, log‐
odds ratios of differential expression (based on empirical Bayes for

shrinkage of standard errors), and adjusted P‐values using the

Benjamini‐Hochberg method.28

2.7.1 | Pathway analysis

Gene interaction networks, biofunctions, and pathway analysis

were performed using Ingenuity Pathway Analysis (IPA)

(Ingenuity Systems; Mountain View, CA) and GO Panther

tools.29 The DEGs were mapped to molecular functions and

genetic networks available from the Ingenuity database. For

protein class enrichment, the DEGs were uploaded into Panther

tools and were mapped to the category of “protein class.” Venn

diagrams (Venny 2.1.0)30 yielded the list of genes exclusively

regulated in tumor or normal CR cells. For canonical pathway

analyses, z‐scores as a statistical measure of the match between

expected relationship direction and observed gene expression

were used, as previously described.14,18

3 | RESULTS

3.1 | Microarray analysis and identification of drugs
by network pharmacology

Two matched pairs of normal and tumor PCa samples were col-

lected under the approval of the Institutional Review Boards of the

Massachusetts General Hospital and Georgetown University

Medical Center. The samples came from patients who underwent

radical prostatectomy for Gleason 6 (patient 1) and Gleason

8 (patient 2) PCa and have been previously described.10‐14,31

Chromosomal analyses revealed that both of the tumor‐derived
CR cells remained diploid, however, increased incidences of

chromosomal aberrations were observed in the tumor‐derived
cells from patient 2, which exhibited numerous chromosomal

translocations and markers.14

Gene transcription microarrays were performed by Illumina

bead array on the matched normal and tumor cells cultured in CM

as previously described.14,18,19 The data were analyzed by IPA

based on differential gene expression between the normal CR cells

and the matched tumor‐derived CR cells as described.14,18 Gene

expression analysis identified a total of 122 DEGs in the tumor vs

normal cells (fold change [FC] 1.5, P ≤ .09) in patient 1 and

203 genes (FC 1.5, P ≤ .09) in patient 2 (Table S1). GO analysis of

the array data from the tumor vs normal CR cells revealed that

hallmarks of cancer, including increased cancer, tumorigenesis,

cancer cell invasion, and proliferation of epithelial cells, were more

prominent in the PCa CR cells from patient 2 (Gleason 8) as

compared with patient 1 (Gleason 6) (Figure 1A). Furthermore, the

GO analysis revealed reductions in genes associated with cellular

homeostasis and apoptosis in the tumor‐derived CR cells from

patient 2 (Figure 1A).

The transcriptomic data were then processed by our previously

published computational platform to build drug‐biological and

disease‐biological molecular association networks and to prioritize

thousands of approved and experimental drugs for therapeutic po-

tential in PCa.6‐8,22 We constructed networks to define the biological

perturbations that distinguish the PCa CR cells from their patient‐
matched normal cells. These networks were analyzed for statistical

coincidence with drug action networks stemming from known drug‐
protein targets, while accounting for the direction of disease mod-

ulation, to prioritize the drugs for testing in the patient's cells. We

identified more than 10 FDA approved and experimental drugs for
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each of the PCa CR cells as possible inhibitors of key cancer‐
associated genes and pathways. A complete list of drugs and the

associated genes and pathways is provided for patient 1 and patient

2 (Tables S2 and S3).

3.2 | Target genes and pathways

The top scoring “hits” are shown (Figure 1B). Those that are currently

undergoing clinical trials include SFN, CFZ, and BTZ, while GSH, PTC,

and the p38 inhibitor, SB220025, are not currently in trials

(Figure 1B).

IPA and DrugGenEx‐Net and GenEx‐TNBC7,8 pathway ana-

lyses performed on the predicted genes showed that the protea-

some inhibitors (BTZ and CFZ) and the isothiocyanates (SFN and

PTC), target distinct signaling pathways (Figure 1C). With the

exception of thyroid hormone receptor‐α within the TR/RXR ac-

tivation pathway, which was a unique candidate target of BTZ,

both CFZ and BTZ were predicted to target similar sets of genes

(Tables S2 and S3). The highest impact of both proteasome in-

hibitors was predicted to be on the protein ubiquitination path-

way, while for both SFN and PTC, the 14‐3‐3, HIPPO and ERK5

signaling pathways were predicted to be highly impacted pathways

(Figure 1C). The full list of targeted genes and pathways is pro-

vided (Tables S2 and S3).

3.3 | Drug sensitivity profiling

To validate the integrated drug repurpose network pharmacology

platform predictions, the IC50 values of the normal and tumor CR

cells from both patients were established for GSH, SB220025, SFN,

PTC, CFZ, and BTZ. The dose‐response curves were performed on

cells in CM as previously described.21 The calculated IC50's of the

matched normal and tumor CR cells from patient 1 and 2 are shown

(Figures 2A,B and S1). Patient 1's tumor‐derived CR cells were more

sensitive to SFN, CFZ, and BTZ than the benign CR cells (P < .05).

Patient 2's tumor cells also showed significant responses to CFZ and

BTZ (P < .01; Figure 2A), however, no differences in sensitivity be-

tween the normal and tumor‐derived CR cells from patient 2 were

seen for either SFN or PTC (Figure 2B). No significant differential

responses were found for SB00225 or GSH for either patient's cells

(Figure S1). The full dose‐response curves for CFZ and BTZ for both

patients are shown (Figure 2C‐F).

3.4 | Analyses of tumor‐derived CR cells to identify
genes associated with increased sensitivity

Because of the heightened sensitivity of the PCa‐derived CR cells to

CFZ and BTZ (Figure 2), the transcriptomic data of the untreated

tumor and normal CR cells was next used to classify DEGs into

protein classes using protein Panther (analysis through evolutionary

relationships) tools29 (Figure 3A). The hydrolases and enzyme mod-

ulators were the most enriched protein class in the tumor‐derived CR

cells. Furthermore, subclassification of the hydrolases revealed that

the proteases were the most enriched protein class in the tumor‐
derived CR cells (Figure 3B), however, notable differences between

the CR cells were seen. For example, lipases and esterases were

enriched in the tumor CR cells from patient 1 while phosphodies-

terases and deaminases were more highly enriched in the tumor CR

cells from patient 2 (Figure 3B).

F IGURE 1 Comparison of tumor vs normal‐derived cells. A, Gene ontology analysis for the microarray expression profile of patient 1 and
patient 2 tumor vs benign, normal CR cells cultured in J2‐conditioned media (FC 1.5, P < .09). Negative Z‐scores denote lower expression in

tumor cells and positive Z‐scores indicate induced genes. B, Ranked FDA approved chemical or drugs as predicted by DrugGenEx‐Net for
patient 1 and patient 2. C, Ingenuity Pathway Analysis (IPA) of the predicted target genes sets for carfilzomib (CFZ), bortezomib (BTZ),
phenethyl isothiocyanate (PTC), and sulforaphane (SFN) as predicted by DrugGenEx‐Net. CR, conditionally reprogrammed; FC, fold change;
FDA, Food and Drug Administration [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | Responses to drug treatment

Next, tumor and benign CR cells from both patients were treated

with CFZ at the respective tumor CR cells IC50 (28 nM for patient 1

and 6.5 nM for patient 2) or with dimethyl sulfoxide (DMSO), fol-

lowed by RNA sequencing (RNA‐seq) analysis. The RNA‐Seq data

from CFZ‐treated patient 1 tumor and normal CR cells, compared

with DMSO‐treated tumor and normal CR cells, identified 1689 and

1248 DEGs, respectively (FDR < 0.05 and FC 1.5). For patient 2, CFZ

treatment of the tumor and normal CR cells, compared with

DMSO‐treated cells, led to 9199 and 9562 DEGs, respectively. The

list of all DEGs for both patient CR cells is provided (Table S4). These

RNA‐seq data were then used to explore the effects of CFZ on

proteasome and protease genes.

In the CR cells from the patient 1, the expression levels of a broad

array of genes that comprise components of the 26S proteasome were

more significantly repressed by CFZ in the tumor‐derived vs normal

cells (blue squares) with a small subset being induced in both (red

F IGURE 2 Comparison of IC50 for both patient's tumor and normal CR cells exposed to drugs ranked by DrugGenEx‐Net. IC50 calculations
performed on the CR cells exposed to (A) CFZ and BTZ or (B) SFN or PTC for 72 hour.32: molar. (C and D) Detailed dose‐response curves of the CR

cells from patient 1 treated with CFZ or BTZ, respectively. (E and F) Detailed dose‐response curves of the CR cells from patient 2 treated with CFZ or
BTZ, respectively All values are the average ± SD of three separate experiments performed in triplicate. BTZ, bortezomib; CFZ, carfilzomib;
CR, conditionally reprogrammed; PTC, phenethyl isothiocyanate; SFN, sulforaphane [Color figure can be viewed at wileyonlinelibrary.com]
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squares; Figure 4A). The total and differentially regulated serine‐ and
metalloprotease genes impacted by CFZ are shown (Figure 4B). CFZ

treatment resulted in significant differences in expression between the

normal and tumor CR cells ‐ for PRSS21, PRSS22, MMP9, MMP11,

MMP13, MMP16, MMP25, TMPRSS3, and TMPRSS4.

In the tumor CR cells from patient 2, CFZ modestly induced a

small number of proteasomal genes that were repressed in the tumor

CR cells from patient 1. Differences in responses to CFZ of the

serine‐ and metalloprotease genes were also observed between pa-

tient 1 and patient 2, with only MMP13 and IMMP1L (inner mi-

tochondrial membrane peptidase subunit 1) showing similar

CFZ‐targeting between the two patients' cells. Overall, differential

responses to CFZ were observed both between benign and tumor‐
derived CR cells as well as between patients.

To more clearly define the effects of CFZ, IPA network analyses

were performed on the gene‐sets exclusively regulated in tumor or

normal CR cells, treated with CFZ, from both patients. The list of

exclusively up‐ and downregulated genes by CFZ in both patients,

was retrieved using Venny 2.1.0.30 The numbers in the shaded re-

gions represent differentially regulated genes shared in multiple

comparisons. The description of these comparisons is provided in

Table S5. We identified 23 common genes that were exclusively in-

duced in the tumor CR cells (FDR 0.05; FC 1.5) while 58 shared genes

were induced in the normal CR cells (Figure 5A). Among the sig-

nificantly inhibited genes (FDR 0.05; FC 1.5), there were 45 genes

inhibited that were shared in the tumor CR cells, with 56 shared

genes inhibited in the normal CR cells (Figure 5B).

The IPA network analyses identified genes involved in cell pro-

liferation, including STAT1, TGFB, CD109, PDGFC), MMP13, and

downstream targets of serine proteases (SESN3 and FAP) as being

inhibited in both of the tumor‐derived CR cells (Figure 5C). KLK7 was

induced by CFZ (Figure 5C) and KLK7 has been shown to be sup-

pressed during PCa progression with its loss correlating with higher

Gleason score.33 No significant effects on these genes were observed

in the benign CR cells (Figure S2).

4 | DISCUSSION

Despite the potential for cost‐effectiveness, drug repurposing by

computational and chemical screening approaches remains complex

and can be time, labor, and resource intensive.34 To address the

aforementioned shortcomings, we used an integrated predictive

network pharmacology platform to accurately and rapidly predict

new drug‐target interactions and their new uses from the available

transcriptomic data.22 While other attempts at drug repurposing for

CRPC have been attempted, we believe this is a first of its type study

using treatment‐naive primary prostate cells in culture to identify

and subsequently verify drug efficacy.35 Our platform has success-

fully predicted the novel applications of celecoxib36 and the anti-

parasitic, mebendazole9 for use in cancer treatment. Similarly, the

successes achieved with our CR approach to treat lethal diseases is

evident by our earlier studies.37 Our recent studies have further

established that the CR culture conditions support long term geno-

mic stability and can validate drug response in vivo and in vitro18 and,

therefore, may be vital resources for personalized drug identification.

In the present study, the transcriptomic data from normal and

tumor‐derived primary prostate cells was used to identify the drug‐
ligand interactions. The cells were then used to test the sensitivity to

the predicted drugs, such as CFZ, and to begin to define the

F IGURE 3 Differentially regulated genes. A, The list of differentially expressed genes, annotated to protein class using Panther tools.

Hydrolases were identified as the most enriched protein class in tumor versus normal cells in both patients (*). B, Analyses of the subcategories
of proteases differentially regulated in the tumor cells from both patients. DEGs, differentially expressed genes [Color figure can be viewed at
wileyonlinelibrary.com]
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mechanisms of differential cell targeting. The increased sensitivity of

the tumor CR cells to CFZ was associated with alterations in pro-

tease gene expression, however, the effects of CFZ differed between

patients. For example, patient 1 tumor CR cells showed robust re-

ductions in genes associated with the 26S proteasome and serine‐
and metalloproteases, while genes such as PSMD6 and PSMA3, which

were induced in patient 2, were repressed in patient 1. We then

chose to define targets that were co‐regulated between patients.

Both PRSS23 and PSMG3 were induced in all CR cells, making these

genes unlikely targets for differential drug sensitivity. Of the pro-

tease genes, only MMP13, which was repressed in the tumor‐derived
CR cells, and IMMP1L, which was induced in the benign CR cells and

below detection in the tumor‐derived CR cells, were differentially

regulated. IMMP1L is a part of the mitochondrial inner membrane

peptidase complex and is involved in generating mature proteins in

the mitochondria. While little is known about its role in PCa,

F IGURE 4 Differential effects of CFZ treatment on gene expression. A, Impact of CFZ on proteasomal subunit genes in the CR cells from
patient 1. B, Impact of CFZ on serine proteases and metalloproteases in CR cells from patient 1. Differential effects of CFZ treatment on (C)

proteasomal subunits and (D) serine proteases and metalloproteases in CR cells from patient 2. CFZ, carfilzomib; CR, conditionally
reprogrammed; DMSO, dimethyl sulfoxide; FC, fold change [Color figure can be viewed at wileyonlinelibrary.com]
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mitochondrial inner membrane permeabilization has been found to

occur during BAX/BAK‐dependent induction of apoptotic cell

death.38 The induction of IMMP1L by CFZ may help protect the

normal CR cells against apoptosis. Interestingly, MMP13 is induced in

aggressive PCa39 and MMP13 knockdown has been shown to impact

proliferation in melanoma cells.40 Our data suggest that MMP13

targeting by CFZ may have impacts on PCa cells beyond altering the

extracellular matrix. In addition, both patients' tumor‐derived CR

cells exhibited a reduction in various signaling pathway‐related
genes, including STAT1, TGFβ, and PDGF. As CFZ failed to reduce the

levels of these genes in the normal cells, their inhibition may con-

tribute in part to the differential sensitivities observed.

Clinically, BTZ has been found to be partially effective in phase I

trials in patients with metastatic CRPC, with 25% of the patients

F IGURE 5 Genes exclusively regulated by CFZ in normal and tumor CR cells. A, Venn diagram of the sets of genes induced (FC 1.5;
FDR 0.05) by CFZ in the CR cells from patients 1 and 2. *Induced genes shared between the tumor‐derived cells. **Induced genes shared
between the normal cells. B, Venn diagram of the sets of inhibited genes (FC 1.5; FDR 0.05) by CFZ in the CR cells from patients 1 and 2.

*Inhibited genes shared between the tumor‐derived cells. **Inhibited genes shared between the = normal cells (C) Ingenuity Pathway Network
analyses of the genes that were regulated by CFZ exclusively in the tumor‐derived CR cells. CFZ, carfilzomib; CR, conditionally reprogrammed;
FC, fold change; FDR, False Discovery Rate [Color figure can be viewed at wileyonlinelibrary.com]
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showing stable PSA and 4% of patients with more than 50% decline

in PSA.15 Modest responses were also noted in a phase II trial of CFZ

in combination with other drugs in patients with metastatic CRPC,

with a decline in PSA observed in 3.5% of patients. Similarly, while

clinical41 and epidemiological42,43 studies have suggested that SFN

rich diets may impact PCa progression, ‐ in clinical trial

NCT01228084, only 1 out of 20 patients with recurrent PCa,

treatmed with 200 μmoles/d of SFN rich extracts, showed more than

a 50% decline in PSA in.16 Interestingly our data with SFN estab-

lished that the CR cells from patient 1 (Gleason 6), but not from

patient 2 (Gleason 8) showed responses to SFN. Overall, these and

other failed or inconclusive clinical trials underscore the need for

biological testing and validation of potential/predicted drugs and

drug combinations.

5 | CONCLUSIONS

Chemoprevention of PCa progression has the capacity to greatly

enhance the quality of life of men who have been treated for loca-

lized primary PCa. By combining the easily propagated, patient‐
derived CR prostate cells with network pharmacology and sub-

sequent in vitro modeling, our findings suggest that our integrated

methodology provides broad applicability to rapidly identify and test

approved drugs and provides a novel approach to perhaps prevent,

or at least delay, biochemical recurrences in patients with pri-

mary PCa.

While we are not aware of any studies investigating their use

in localized PCa, our data suggests that these drugs may be effi-

cacious, either alone or in combination with standard of care in-

terventions such a prostatectomy or radiation, in early stage and

localized PCa. If biochemical recurrence could be delayed, or

perhaps avoided, the need for ADT and the subsequent progres-

sion to CRPC may also be deferred, positively impacting both

survivorship and quality of life. In addition, DrugGenEx‐Net also

provides the ability for repeat applicability in clinical care. For

example, should tumors recur, transcriptomic data from the pa-

tient's tumors can be used to rapidly identify drugs to further

advance clinical care. Clinical trials are needed to investigate these

intriguing possibilities.
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