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Sentiment Analysis (SA) is a novel branch of Natural Language Processing (NLP)

that measures emotions or attitudes behind a written text. First applications of SA in

healthcare were the detection of disease-related emotional polarities in social media.

Now it is possible to extract more complex attitudes (rank attitudes from 1 to 5, assign

appraisal values, apply multiple text classifiers) or feelings through NLP techniques, with

clear benefits in cardiology; as emotions were proved to be veritable risk factors for the

development of cardiovascular diseases (CVD). Our narrative review aimed to summarize

the current directions of SA in cardiology and raise the awareness of cardiologists about

the potentiality of this novel domain. This paper introduces the readers to basic concepts

surrounding medical SA and the need for SA in cardiovascular healthcare. Our synthesis

of the current literature proved SA’s clinical potential in CVD. However, many other clinical

utilities, such as the assessment of emotional consequences of illness, patient-physician

relationship, physician intuitions in CVD are not yet explored. These issues constitute

future research directions, along with proposing detailed regulations, popularizing health

social media among elders, developing insightful definitions of emotional polarity, and

investing research into the development of powerful SA algorithms.

Keywords: sentiment analysis, cardiovascular, artificial intelligence, machine learning, social media

INTRODUCTION

Sentiment Analysis (SA) or “opinion mining” is a novel branch of Natural Language Processing
(NLP) that measures emotions or attitudes behind a written text. At the most basic level, SA
tools classify pieces of text as having positive, negative, or neutral emotions, although current
technologies support much more complex analysis of emotions in the written text (1).

Several artificial intelligence (AI)/machine learning (ML) technologies and other types of
computational techniques have been proposed and proved their benefits in bettering diagnostic
accuracy and treatment efficacy (2). The existence of intuition and the documentation of
its importance in patient management urges the enrichment of medical AI/ML and other
computational methods with the ability to detect and assess emotions to attain higher performance
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in solving health problems. Using SA to examine doctors’ written
notes on intensive-care-unit patients, the paper showed that
doctors’ intuitions (“gut feelings”) were an essential factor in
determining the disease management for each patient (3).

To further explore the effectiveness of SA in medical context,
a review investigating the SA methods used for examining
emotions in healthcare tweets has been published (4). However,
no review has focused, so far, on evaluating the utility of SA in
cardiology. Cardiovascular diseases (CVD) arouse a particular
interest as they are the deadliest diseases in the world (5). Recent
studies suggest that SA could be extremely useful in cardiology,
especially in the context of extensive use of telemedicine due to
the COVID-19 pandemic (6).

The increasing use of social platforms may be the foundation
for developing SA-based models applied to various fields in
cardiology. A study on drug safety showed that adding SA
features improves the performance of state-of-the-art methods
to identify adverse drug reactions (ADR). These models used
a corpus of posts from Twitter and other online forums. SA
features significantly increased the F-measure of adverse reaction
detection (for 81 drugs, including cardiovascular medication)
from 72.14 to 73.22% in the Twitter corpus of posts. The
improvement of ADR detection by SA became possible due to
the rapidly growing popularity of social media and health forums
(7, 8).

Our narrative review aims to: (1) summarize the current
directions of SA in cardiology and the results achieved so far
in a systematic manner, (2) raise the awareness of cardiologists
about the potentiality of this novel and promising domain
that will soon become a practical reality, and (3) open new
perspectives regarding the dialogue between AI specialists and
cardiologists. Given the small number of studies so far, a
systematic methodology is not suitable, therefore the purpose of
this review is purely narrative.

MATERIALS AND METHODS

We searched PubMed/Medline and Google Scholar for studies
in English addressing the topic of SA in cardiology, from
inception to february 2022. The following search string was
used: (“Sentiment analysis” OR “Emotions recognition” OR
“Sentiment recognition”) AND (“Heart failure” OR “Cardiac
insufficiency” OR “Coronary Artery Disease” OR “CAD” OR
“Coronary syndrome” OR “Coronary” OR “Stable angina” OR
“Angina pectoris” OR “Ischemic heart disease” OR “IHD” OR
“Ischemic” OR “Ischemia” OR “Myocardial infarction” OR
“Infarction” OR “Atrial fibrillation” OR “AF” OR “Stroke” OR
“Arrhythmia” OR “Heart rate” OR “Pulse” OR “Sudden death”
OR “Sudden cardiac death” OR “Cardiovascular prevention”).

We reviewed an initial number of 550 studies, and after
excluding the duplicates, 498 studies remained. After excluding
the studies irrelevant to our objectives, we selected 11 papers
that address SA methods focusing on cardiovascular diseases.
Papers were included regardless of whether they constituted
original research, reviews, opinions, reports. Any type of study
was considered eligible for inclusion. Three researchers realized

the agreement between the studies selected. All included studies
are illustrated in Table 1.

The main directions of research regarding SA in cardiology
identified from the retained studies are: the identification of
emotional risk factors for CVD, the detection of positive/negative
attitudes of CV patients toward their disease and its clinical
implications, the detection of cardiac arrhythmia, the triage of
CV patients, spotting feedback from patients and newspapers
regarding drugs, therapeutic procedures, or medical devices and
the integration of SA modules in new technological concepts
for monitoring CV patients. Each of these topics is discussed
below in an attempt to synthesize the current literature on SA
in cardiovascular diseases, right after introducing the reader to
basic concepts regarding medical SA and justifying how SA can
contribute to increasing quality in cardiovascular healthcare.

MEDICAL SENTIMENT
ANALYSIS—INTRODUCTORY CONCEPTS

What Is SA in Medicine?
Medical SA is the field of study that analyzes patients’
and doctors’ opinions, sentiments, attitudes, and emotions
toward various clinical contexts (treatment side-effects, medical
diagnosis concerns, emotional consequences of illness, emotional
context during the onset or evolution of a specific disease,
patient-physician relationship, physician attitudes in clinical
notes) expressed in written text (20). While traditional AI
deals with facts and logical, objective data analysis, sentiment
research refers to opinions—correctly identifying subjective
emotional communication.

Several medical entities associable with sentiments
have been defined: health status (improved/worsened,
good/bad), medical condition (improved/worsened),
diagnosis (certain/uncertain/preliminary), medical procedure
(positive/negative outcome), medication (helpful/useless/adverse
events) (20).

Sentiment Classification
Sentiment classification comprises two comprehensive
categories: lexicon-based and ML/NLP-based classifications
(21). The classifiers build upon sentiment lexicons (i.e., a
collection of polar or opinion words, associated with their
sentiment polarity, that is, positive or negative) are lexicon-based
(or rule-based classifiers). Sentiment lexicons are produced
manually or semiautomatically (22) and regularly stored as
dictionaries. Conversely, ML/NLP-based classifiers are built
using training datasets or annotated data collections.

Types of SA
Some of the most popular types of SA are: fine-grained SA,
emotion detection, aspect-based SA and multilingual SA (23).
Fine-grained SA considers an expanded number of polarity
categories (e.g., very positive / positive / neutral / negative /
very negative). Emotion detection uses lexicons or ML/NLP
systems to detect sentiments. Aspect-based SA highlights which
particular aspects or features people are mentioning in a positive,
neutral, or negative way (23). Multilingual SA techniques
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TABLE 1 | Characteristics of the included studies reporting SA solutions for cardiovascular diseases research.

Authors Objectives Data sources SA methods Results

1. Detecting emotional risk factors for CVD

Eichstaedt et al., (9) Analyze social-media

language to identify

community-level

psychological correlates of

age-adjusted mortality from

AHD

Data from 1,347 US

counties for which AHD

mortality rates, health

variables, and 50,000

tweeted words were

available

Cross-sectional regression

model based on Twitter

language

Negativity emerged as significant

risk factor (partial rs = 0.06, 95%

confidence interval, or CI =

[0.00, 0.11], to 0.12, 95% CI =

[0.07, 0.17]) for CAD mortality

Hemalatha et al., (10) Identify relevant MI risk

factors using Twitter data

Twitter users with a MI

history

LR for positive/negative

emotion classification, with

words weighted using

TF.IDF

Not available

Medina Sada et al., (11) Identify the relation between

the sentiment of tweets and

CVD

Tweets in the counties along

Interstate 20 in Texas

Naïve Bayes, Multinomial

Naïve Bayes, Bernoulli Naïve

Bayes, Support Vector, and

Linear Support Vector

High positive-to-negative ratio

and positive-to-population ratio

tend to associate with counties

with low CVD rate

2. Detecting positive/negative attitudes of CV patients toward their disease

Verma et al., (12) Assess public health impact

of CVD and patients’

adherence and attitudes

toward the disease

Tweets in english related to

CVD

Not specified The percentage of positive

tweets are 45%, neutral tweets

are 30 and 25% are negative

tweets

Pimenta et al., (13) Identify which fitness and

nutrition apps that support

behavior change (which

could reduce CVD mortality)

elicits a positive response

from the users

User store reviews of a

sample of fitness and

nutrition apps

Text mining with Sketch

Engine online app

StepsApp pedometer had the

highest percentage of positive

tags while VeryFitPro had the

lowest

3. Detection of cardiac arrhythmia

Behadada et al., (14) Provides insights into

arrhythmia detections from

big data information sources

Expert knowledge, data and

textual information from

Pubmed articles and

MIT-BIH database

Semi-automatically fuzzy

partition rules and

grammar-based text

extraction SA

Accuracy of 93% and a high level

of interpretability of 0.646 for the

detection of cardiac arrhythmia

4. Triage of CV patients

Lowres et al., (15) Assessing the feasibility of

using an ML program to

triage incoming SMS text

messaging replies as

requiring health professional

review or not

3,118 SMS text messaging

replies received from 2

clinical trials

Naïve Bayes, OneVsRest,

Random Forest Decision

Trees, Gradient Boosted

Trees, Multilayer Perceptron

The multilayer perceptron model

achieved the highest accuracy

(AUC 0.86)

5. Feedbacks from patients and newspapers: reviews on drugs, therapeutic procedures, or medical devices

Pérez et al., (16) Identify opinions on the

drugs prescribed for

chronic-degenerative

diseases (including

hypertension medication)

Blogs and specialized

websites in the Spanish

language

Hybrid approach

(supervised machine

learning and use of

semantics through a tagged

corpus)

The analysis of the sentiments of

the opinions on the prescribed

drugs is successful and reduces

time and effort

Austin et al., (17) Understand patients’

attitudes toward LVAD

therapy

Posts, comments, and titles

from MyLVAD.com

Lexicon-based SA Positive sentiment words are the

most frequent. In comparison to

other LVAD complications,

“infection” is mentioned

disproportionately more times.

Emerging Markets, (18) Assess whether Biotricity

(health tech company

targeting mainly chronic

CVDs) trends positively or

not in the media

News media InfoTrie Financial SA

Solutions

Biotricity has been trending

positively, achieving a news buzz

score of 10 out of 10, with a

market sentiment score of 4.0

6. SA modules integrated in new technological concepts for monitoring CV patients

Sharma et al., (19) Propose a smart conceptual

framework for monitoring

patients with CV or diabetes

Social media and other

online resources (for the SA

component)

Hybrid system merging SA

techniques, data mining,

ML, IoT, bio-sensors,

chatbots, contextual entity

search, granular computing

Not available

Cardiovascular disease (CVD); Atherosclerotic heart disease (AHD); United States (US); Coronary arteries diseases (CAD); Myocardial infarction (MI); Logistic regression (LR); Term

Frequency * Inverse document frequency (TF.IDF); Left ventricular assist device (LVAD); Machine Learning (ML); Internet of Things (IoT).
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have been developed in order to analyses data in different
languages (24).

The introductory concepts in medical SA are summarized in
Figure 1.

JUSTIFYING THE NEED TO INTEGRATE
MODERN SENTIMENT ANALYSIS
SOLUTIONS IN CARDIOLOGY: HOW
SENTIMENT ANALYSIS CAN CONTRIBUTE
TO INCREASING QUALITY IN
CARDIOVASCULAR HEALTHCARE

CVD and emotional disorders seem to influence each other in
a bidirectional manner (25). Coronary arteries diseases (CAD)
and their impact in triggering emotional disorders is well
documented. Moreover, emotional disturbances have the power
to induce or worsen existing coronary artery diseases (25).
Emotional disturbances were reported as potent cardiovascular
(CV) risk factors (25).

There is a need to integrate the assessment of the
emotional status in the cardiovascular risk prediction, a
desideratum long considered unattainable due to a high
degree of subjectivity regarding human sentiments and
insufficient technical developments (25). The considerable
technological and AI progress provides the opportunity to
start developing strategies for building solutions capable
of systematically assessing emotions. Since patients express
their thoughts and feelings more openly in online than ever
before (26), SA is becoming an essential tool to monitor
and understand these sentiments and provide predictive
models (27).

The increasing popularity of social platforms and discussion
forums enabling the collection of unlimited amounts of written
text and opinions, creates a favorable ground for testing
novel SA methods. A descriptive study identified 4.9 million
Tweets about CVD having common topics such as risk factors,
awareness, and management of CVD (28). Using the vast
amount of Twitter data on CVD, a study predicted county-
level heart disease mortality based on the assessment of
psychological language in Twitter posts (9). Given the SA
superiority over standard predictive models (29), SA integration
would lead to higher performance models and more complex
CV predictions.

An obstacle to further improvement of AI/ML models
is that 90% of the world’s data is unstructured (30). While
exam results are reported in a structured way, observations,
intuitions, opinions, and experiences are communicated in
an unstructured manner throughout clinical records, notes
or online. Unstructured data is extremely time-consuming to
analyses and it is unusable by the standard AI/ML solutions.
This represents a missed opportunity for understanding patients’
experience in an increasingly “connected” world. Thereby,
SA and its ability to systematically review unstructured
data is ready to overrun old limitations and produce
higher-quality results.

In addition to these major benefits, several other perquisites
have been highlighted in the literature. Firstly, data mining and
SA may be used to explore the issues surrounding controversial
research subjects, guidelines’ changes or new recommendations
in CV medicine (31).

Secondly, according to the Information Strategy for the
National Health Service (NHS) in England, SA may be valuable
for patients in facilitating choice of hospitals (32) by predicting,
from free-text, “a reasonably accurate assessment of patients’
opinion about different performance aspects of a hospital” (27).

Thirdly, online public testimonies carry classical indicators
(such as self-reported quality of life indicators during and post
treatment) and other relevant indicators (such as attitudes toward
political legislation, loss of healthcare coverage, raising support,
spreading awareness) that are difficult to capture by conventional
means of self-reporting. Social listening can provide valuable
feedback from patients and can help healthcare professionals and
regulators to personalize and improve treatment regimens and
improve public health surveillance strategies (33).

A SYNTHESIS OF THE CURRENT
LITERATURE ON SA IN CARDIOVASCULAR
DISEASES

Emotional Risk Factors for CVD
Poor emotion regulation was associated with CV risk in several
studies (34, 35). Moreover, educational programs aimed at
improving emotion regulation strategies among patients in
cardiac rehabilitation proved to be feasible (36).

Whereas emotion regulation is a teachable skill that may
play a role in preventing CVD, emotions must first be
systematically recognized and documented before deciding
whether the intervention of educational programs is appropriate.
Several models of emotional recognition, capable of ensuring a
systematic evaluation of sentiments, have been proposed based
on eye-tracking (37–39), heart sound signals (40), cardiovascular
response in daily life using the k-Nearest-Neighbor classifier (41),
heart rate data collected from wearable devices (42), or even
computational evaluation of facial expressions (43).

The Twitter platform was used on a large scale to assess
the psychological language as a risk factor for atherosclerotic
CAD by applying SA analysis (9). Hostility and chronic stress
are known risk factors for CVD (44). All language patterns
highlighting negative psychological traits (anger, negative-
relationship, negative-emotion, and disengagement) emerged as
significant risk factors [partial rs= 0.06, 95% confidence interval,
or CI = (0.00, 0.11), to 0.12, 95% CI = (0.07,0.17)] for CAD
mortality while the use of engagement words [r = −0.09, 95%
CI = (−0.14, −0.04)] and positive-emotion words [partial r =
–.05, 95% CI = (–.00, –.11)] appeared significantly protective.
Surprisingly, a regressionmodel “based only on Twitter language”
predicts CAD mortality significantly better than a model with 10
common demographic, socioeconomic, and health risk factors
(e.g., smoking, diabetes, hypertension, and obesity) (9).

A SA/ML methodology has been proposed to identify the
relevant myocardial infarction (MI) emotional risk factors using

Frontiers in Public Health | www.frontiersin.org 4 April 2022 | Volume 10 | Article 880207

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Brezulianu et al. Sentiment Analysis in Cardiology

FIGURE 1 | Introductory concepts in medical SA: applicable clinical contexts, medical entities associable with sentiments, classification, and types of SA.

Twitter data (10). Even if it seems unbelievable, the authors
explore the possibility of screening tweets for MI risk factors as
a tool to be used in preventive medicine. However, no results are
yet provided.

AcuteMI was repeatedly studied as an important consequence
of stressful social disasters and social stress [e.g., the influence
on MI of the death of a beloved (45), earthquakes (46), or war
(47)]. In this context, a Korean team used the SA/ML algorithm
of Semantria Lexalytics and managed to prove the effects of the
Sewol Ferry Disaster on social stress by examining data from the
top social media platforms used worldwide (YouTube, Twitter,
and Facebook) (45).

Another way to harness the capabilities of SA was to analyze
tweets in an attempt to find the relation between the sentiment of
tweets and CVD in the counties along Interstate 20 in Texas (11).
The sentiment of tweets from each region was determined by
five classifiers (Naïve Bayes, Multinomial Naïve Bayes, Bernoulli
Naïve Bayes, Support Vector, and Linear Support Vector) and
was compared with the regional CVD rates. The Positive-to-
Population rate is related to the CVD data map and Negative-
to-Population rates have inverse relations to the CVD data
map. This descriptive study highlights the potential of SA
in epidemiological research, generating causal hypotheses and
finding trends of diseases.
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Detecting Positive/Negative Attitudes of
CV Patients Toward Their Disease in Order
to Identify Strategies for Bettering
Attitudes and Behaviors
Patients’ attitude toward their disease may be an important drive
for treatment adherence and a significant buffer of the impact
of illness (48). However, the prevalence of positive attitudes
toward the disease may often be low (49). SA is capable of
contributing with systematized analysis and information on
subjective attitudes (where traditional healthcare management is
not able), fine-tuning deeper preventive strategies.

A method using SA was built to understand public health
impact of CVD and patients’ attitudes toward the disease in
order to develop personalized therapeutic strategies depending
on patients’ adherence (12). Less than half of the tweets on CVD
(45%) were found positive raising awareness on the importance
of positive behavior change.

Addressing Behavioral change interventions could drastically
reduce overall mortality from CVD (13). Behavior Change
Techniques Taxonomy version 1 (BCTTv1) was applied to a
sample of fitness and nutrition mobile apps and SA was used
to identify which apps that support behavior change elicits a
positive response from the users (13). StepsApp Pedometer had
the highest percentage of positive tags while VeryFitPro had
the lowest.

Various types of SA tools were used to examine the impact
and improvement in diseases such as CVD, as SA contributes
in designing strategies to improve patients understanding and
behavior (50).

Detection of Cardiac Arrhythmia
Computers can be trained to learn as humans do. Behadada et al.
(14) proved that computers, as students, can learn from experts,
textual data (scientific articles) and experience (experiments
data). The authors introduced a novel method to define semi-
automatically fuzzy partition rules to provide a powerful and
accurate insight into the detection of cardiac arrhythmia.
Fuzzy logic allows merging three completely different sources
of knowledge by learning to define and integrate rule bases.
The expert is invited to express his/her knowledge through
linguistic (expert) rules. Moreover, the rules induced from data
are called induced rules. Finally, the automated extraction of
fuzzy partition rules from Pubmed articles identifies relevant
arrhythmia insights and intuitions (mood described by text
fragments) through grammar-based text extraction and SA.
All extracted rules are merged into a unique knowledge base
resulting in the definition of a common universe for the different
knowledge domains. The evaluation carried out showed an
accuracy rate of 93% and a high level of interpretability of 0.646
for the detection of cardiac arrhythmia.

Compared to the traditionalML solutions, besides an excellent
accuracy, the approach proposed by Behadada et al. (14) comes
with the major advantage of a high interpretability, as the
computer is able to highlight all knowledge rules that led to a
certain result.

Triage of CV Patients
In a cardiovascular secondary prevention setting, the feasibility
of using an ML program to triage and classify incoming SMS
text messaging replies as requiring health professional review
or not, was assessed and reported (15). The SMS messaging
programs are a cost-efficient way for patients monitored in
secondary prevention centers to regularly report their health
status. However, the additional staff required to monitor and
moderate the patients’ SMS text messaging replies may negatively
impact the cost-effectiveness of the SMS-based system. In order
to reduce these costs, Lowres et al. (15) proposed five ML
models (Naïve Bayes, OneVsRest, Random Forest Decision
Trees, Gradient Boosted Trees, and Multilayer Perceptron) and
an ensemble model for the automatic triaging of SMS replies.
The Multilayer Perceptron model achieved the highest accuracy
(AUC 0.86; 4.85% false negatives; and 4.63% false positives).
After future validations against larger datasets, the authors
are optimistic that the ML solution will significantly reduce
staff workload.

Feedbacks From Patients and
Newspapers: Reviews on Drugs,
Therapeutic Procedures, or Medical
Devices
Medication and medical devices reviews are important to
improve their quality, safety, adherence and use (51). Side effects
may influence patients’ adherence, thus pharmacovigilance is a
key strategy to improve adherence (51).

The “SentiScrap” system applies SA through a hybrid
approach (supervised machine learning and use of semantics
through a tagged corpus) to identify opinions, comments, and
polarity of the drugs prescribed for chronic-degenerative diseases
(including hypertension medication), available in blogs and
specialized websites in the Spanish language (16). Such a solution
is of great help to health specialists as it reduces the time and
effort to systematically search for patients’ opinions, comments
and experiences regarding the use of drugs, facilitating clinical
decision making.

Medical devices’ reviews were also considered for sentiment
assessment. A lexicon-based SA was performed to pool
together patients’ experiences (fears, opinions, thoughts) from
MyLVAD.com regarding their implanted left ventricular assist
device (LVAD) (17). The results of the analysis indicate dominant
positive sentiment {a net sentiment ratio [(number of positive
words—number of negative words)/(number of total words)]
of 2.1%} and a common use of the word “infection” (208
mentions) compared to other words denoting complications
such as “stroke” (29 mentions), “bleeding” (30 mentions), and
“thrombosis” or “clot” (32 mentions). This type of analysis might
help to elucidate hidden, subjective segments of patients’ health
which factor into the objective measures of health.

Biotricity Inc. is amedical diagnostic and consumer healthcare
tech company that is a leading producer of remote medical
monitoring devices. Biotricity’s main targets are chronic CVDs.
With the help of the analytics firm InfoTrie Financial Solutions’
Sentiment Analysis it was proved that Biotricity has been
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trending positively in the media, achieving a news buzz score of
10 out of 10, with a market sentiment score of 4.0 (18).

SA Modules Integrated in New
Technological Concepts for Monitoring CV
Patients
A smart conceptual framework for monitoring patients with
CV or diabetes was proposed (19). The concept respresents a
hybrid healthcare system designed to merge distinct emerging
computing techniques such as data mining, ML, Internet of
Things (IoT), bio-sensors, SA, chatbots, contextual entity search,
and granular computing. Bio-sensors and IoT are used for the
continuous monitoring of the patient’s health parameters and
emergency notifications. SA is intended to mine social media
and other online resources in order to keep the patient and the
healthcare professional up to date regarding CV and diabetes
updated informations. Data mining and ML are used for patient
classification, diagnosis, and health predictions. This hybrid AI
and smart framework may provide an effective and economical
solution to CV and diabetes patients by minimizing various
implicit and explicit medical expenses, optimizing the use of
vital medical resources andmanpower, and further enhancing the
patient care.

CHALLENGES AND OBSTACLES OF
SENTIMENT ANALYSIS IN
CARDIOVASCULAR HEALTH

SA is indeed a promising field that can add valuable insights to
the traditional and objective measures of health and contribute
to clinical decision making. However, SA is the hardest task in
NLP as analyzing sentiments in an accurate manner is a difficult
task even for humans.

Context and meaning play a crucial role in interpreting
emotions. For instance, this Twitter post: “Safe to say she
may have been shocked to hear that the research does not
suggest that high colesterol is a risk factor for heart disease” was
automatically classed as negative by an automated SA algorithm,
due to the potentially negative concepts such as “shocked”, “high
cholesterol”, “risk factor” and “heart disease” (52). However,
the actual meaning is positive as the author is referring to the
positive fact that the cited research does not incriminate negative
associations. A major and mandatory challenge to SA techniques
is to be able to integrate context (such as cultural, medical,
political, legal, economic) andmeaning. Moreover, in some cases,
it is necessary to know much more than emotional polarity. For

real life impact, SA algorithms should be equippedwith the ability
to categorize and organize subjective information, detect irony
and sarcasm, comparisons, and emojis.

In general, the measure of how well humans annotators can
decide on the same labels (inter-annotator agreement) is low
when it comes to SA (53). Since machines learns from the data
they are fed, SA models might not be as accurate as other types
of classifiers. This challenge may be overcome after developing
more rigorous definitions of emotional polarity and neutrality.

Another aspect to consider is that only 10% of individuals
between the ages of 50–64 use social media sites such as Twitter
(54). This limitation is worthy of consideration until social media
platforms will become more popular among older patients.

One further obstacle is represented by the ethical implications
of utilizing online publically available data from social media
platforms for research purposes (55). Current regulations do
not yet fully consider this aspect, although this is probably just
a matter of time until ethical implications will be rigorously
addressed and clarified.

CONCLUSIONS

This paper introduced the readers to basic concepts surrounding
medical SA and justified how SA can contribute to increasing
quality in cardiovascular healthcare, emphasizing the need to
invest more research into this new, promising and challenging
domain. Our synthesis of the current literature on SA in
CVDs proves its clinical potential. It also shows that the
domain is only at the beginning. Many other clinical utilities,
such as the assessment of emotional consequences of illness,
patient-physician relationship, physician intuitions in CVD are
not yet explored. These remain important research directions
for the future, along with proposing detailed regulations for
ethical implications, popularizing health social media and online
expression among elders, developing more insightful definitions
of emotional polarity and neutrality, and investing research into
the discovery of powerful SA algorithms that are able to integrate
global context and meaning.
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