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Since the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiation, many

studies have suggested various in silico features based on ionic charges, action

potentials (AP), or intracellular calcium (Ca) to assess proarrhythmic risk. These

in silico features are computed through electrophysiological simulations using

in vitro experimental datasets as input, therefore changing with the quality of

in vitro experimental data; however, research to validate the robustness of in

silico features for proarrhythmic risk assessment of drugs depending on in vitro

datasets has not been conducted. This study aims to verify the availability of in

silico features commonly used in assessing the cardiac toxicity of drugs through

an ordinal logistic regression model and three in vitro datasets measured under

different experimental environments and with different purposes. We

performed in silico drug simulations using the Tomek-Ohara Rudy (ToR-

ORD) ventricular myocyte model and computed 12 in silico features

comprising six AP features, four Ca features, and two ion charge features,

which reflected the effect and characteristics of each in vitro data for CiPA

28 drugs. We then compared the classific performances of ordinal logistic

regressions according to these 12 in silico features and used in vitro datasets to

validate which in silico feature is the best for assessing the proarrhythmic risk of

drugs at high, intermediate, and low levels. All 12 in silico features helped

determine high-risky torsadogenic drugs, regardless of the in vitro datasets

used in the in silico simulation as input. In the three types of in silico features, AP

features were the most reliable for determining the three Torsade de Pointes

(TdP) risk standards. Among AP features, AP duration at 50% repolarization

(APD50) was the best when individually using in silico features per in vitro

dataset. In contrast, the AP repolarization velocity (dVm/dtMax_repol) was the best

when merging all in silico features computed through three in vitro datasets.
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1 Introduction

The S7B and E14 guidelines established by the International

Council for Harmonization (ICH) are used during in vitro and in

vivo drug safety assessments to determine the eventual

development and distribution of discovered drug candidates.

Many Torsade de Pointes (TdP)-inducible drugs have been

successfully detected through these conventional guidelines

with high sensitivity that inspect whether TdP is induced or

not based on a human ether-à-go-go (hERG) blockage and QT

prolongation (Cavero and Crumb, 2005; Shah, 2005; Sager et al.,

2014). However, their low specificity has disrupted the

development of new drugs, not only for negative-effect drugs

but also for positive potential drugs (Colatsky et al., 2016;

Fermini et al., 2016; Strauss et al., 2019). As a new paradigm

to revise the current guidelines, the Comprehensive in vitro

Proarrhythmia Assay (CiPA) was suggested at the Think Tank

Meeting at the US Food and Drug Administration (FDA)

headquarters in 2013 by 13 advanced medical institutions

from seven countries (Sager et al., 2014). The CiPA comprises

four components: the in vitro assessment of multiple human

cardiac currents, in silico assessment of computer-reconstructed

cellular models, in vivo electrocardiograph (ECG) assessment,

and in vitro assessment using stem cell-derived ventricular

cardiomyocytes.

Many studies have suggested various in silico features based

on ionic charges, action potential (AP), and intracellular calcium

(Ca) to assess proarrhythmic risk since the initiation of the CiPA

(Mirams et al., 2011; Lancaster and Sobie, 2016). The ionic charge

features qNet (Dutta et al., 2017) and qInward (Li et al., 2017),

which are the amounts of charge in the Inet (INaL, ICaL, IKr, IKs,

IK1, and Ito) and inward current (INaL and ICaL), respectively,

showed an excellent ability to distinguish the proarrhythmic risk

of drugs. Moreover, AP upstroke velocity (dVm/dtMax), peak AP

(VmPeak), AP duration at 90% repolarization (APD90), AP

duration at 50% repolarization (APD50), APD triangulation

(APtri), and AP resting (Vmrest) are also commonly used as

standard AP metrics to determine TdP risk as well as to predict

electrophysiological instability (Mirams et al., 2011; Lancaster

and Sobie, 2016). Similar to the AP metrics, Ca durations at 90%

repolarization (CaD90), Ca durations at 50% repolarization

(CaD50), Ca triangulation (CaDtri), and peak Ca (Capeak) were

extracted as Ca metrics from the intracellular Ca concentration

trace (Lancaster and Sobie, 2016).

These in silico features are computed through

electrophysiological simulations using in vitro experimental

data as input, therefore changing based on the quality of

in vitro experimental data; however, research to validate the

robustness of in silico features for proarrhythmic risk assessment

of drugs depends on in vitro datasets has not been conducted.

This study aims to verify the availability of in silico features

commonly used in assessing the cardiac toxicity of drugs through

an ordinal logistic regression model and three in vitro datasets

measured under different experimental environments and with

different purposes. For this purpose, we computed 12 in silico

features comprising six AP features, four Ca features, and two ion

charge features through in silico drug simulation using three

in vitro experimental datasets as input. Then, we compared the

classification performances of ordinal logistic regression models

according to these 12 in silico features and used three in vitro

datasets to validate which in silico feature is the best for assessing

the TdP risk of drugs at high, intermediate, and low levels.

2 Methods

2.1 Comprehensive in vitro proarrhythmia
assay drug dataset

We used three CiPA experimental datasets from Li et al. Li

et al. (2019), Chantest et al., and Nanion et al. Han et al. (2020),

consisting of in vitro data for the same 28 drugs but with

differences in their experimental conditions. The list of

28 CiPA drugs consisting of eight high-risk, eleven

intermediate-risk, and nine low-risk drugs is in Table 1. Each

dataset had an inhibition rate measured through a voltage clamp

in seven ion channels of INa, INaL, IKr, IKs, IK1, Ito, and ICaL
according to four concentration variations of the 28 CiPA drugs

(https://github.com/FDA/CiPA/). All the datasets were

preprocessed by following Crumb et al.’s methodology Crumb

et al. (2016). First, the uncertainty of the in vitro dataset was

quantified using the Markov chain Monte Carlo (MCMC)

method proposed by Chang et al. (2017), generating

2,000 Hill curves within a 95% confidence interval. The half-

maximal inhibitory concentration (IC50) and the slope

coefficients at IC50 (Hill coefficients, h) were obtained from

the 2,000 of Hill curves. These 2,000 IC50 and h values were

used for in silico drug simulation as inputs to simulate the static

binding of a drug for ion channels.

2.2 In-silico simulation and features

The in silico simulation was conducted using the Tomek-

Ohara Rudy (ToR-ORd) model, a calibrated ORD ventricular

myocyte electrophysiology model with the updated ICaL, IKr, and

Na+-Ca2+ exchangers to reproduce the depolarization,

repolarization, and calcium dynamics of the AP trace and

calcium transient (O’Hara et al., 2011; Tomek et al., 2019).

The inhibited ionic current by the drug block was

implemented by multiplying the drug-induced conductance

block formulation instead of the original conductance as

follows (Eqs. 1–3), Mirams et al., 2011):

I′ion � G′
ion ·mion(Vm − Eion) (1)
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G′
ion � IF · Gion (2)

inhibition factor (IF) � 1

1 + ( [D]
IC50)

h
(3)

where I′ion represents the remaining ionic currents after drug

block, and G′
ion is the conductance block due to drug; Vm is the

membrane potential; Gion, mion, and Eion are the maximum

conductance, gate variable, and equilibrium potential of the

specific ionic current, respectively; and D is the drug

concentration, which is set as 1-, 2-, 3-, and 4-fold the Cmax

of a drug for the experimental uncertainty not becoming high

(the Cmax value of each drug is listed in Table 1). All in silico

drug simulations were performed under the steady-state

condition of ventricular myocytes by saving the state values of

the gates and currents after 10,000 beats without drug effect and

inputting them as the initial values (Dutta et al., 2017). The AP

shapes and corresponding ionic current profiles were generated

by 1,000-stimulations at a 2,000 ms cycle length with a 0.1-ms

time resolution; here, 2,000 ms of cycle length are 30 bpm of

heart rate and mimic the bradycardia condition, where QT

interval is prolonged and can be developed into TdP.

In silico features were calculated from the AP shapes and

ionic current profiles when the repolarization velocity was

maximal within the last 250 beats, which reached a steady

state. Here, the beat in the maximal repolarization velocity

reflects the worst situation for myocytes, such as the early

after-depolarization. The extracted in silico features consisted

of six AP features, four Ca features, and two ion charge

features computed from each drug concentration. AP

features were the velocities of the AP upstroke (dVm/

dtMax) and AP repolarization (dVm/dtMax_repol), VmPeak,

APD90, APD50, and the difference between APD90 and

APD50 (APDtri). The Ca features were CaPeak, CaD90,

CaD50, and the difference between CaD90 and CaD50

(CaDtri). The ion charge features were qNet and qInward.

As mentioned in Section 2.1, we bootstrapped in vitro

experimental data and obtained 2,000 IC50 and h values for

each drug from 2,000 Hill curves. In silico drug simulation used

these 2,000 IC50 and h values as input tomimic the drug effect on

ventricular myocyte, generating 2,000 AP shapes, Ca curves, and

ionic curves per drug concentration. Since drug simulation was

performed in four concentration conditions, which were

Cmax×1, Cmax×2, Cmax×3, and Cmax×4, we generated

8,000 in silico biomarkers (2,000 IC50 and h values × four

concentrations) for each drug. The average in silico features

across the four drug concentrations were used for the input of

the ordinal logistic regression model to assess the proarrhythmic

risk, considering the balance between optimal risk stratification

and reliable feature calculation, based on the TdP metric

calculation method of Li et al. Li et al. (2019); that is, 2,000 in

silico features were calculated per drug.

2.3 Model training and testing

The ordinal logistic regression model implemented using R

was trained using 12 CiPA train drugs; the training drug set had

24,000 in silico features (12 drugs × averaging 2,000 in silico

TABLE 1 List of the 28 drugs and their corresponding Cmax values.

Proarrhythmic risk level Train drug Test drug

Drug name Cmax (nM) Drug name Cmax (nM)

High Risk Quinidine 3,237 Disopyramide 742

Sotalol 14,690 Ibutilide 100

Dofetilide 2 Vandetanib 255

Bepridil 33 Azimilide 70

Intermediate Risk Cisapride 2.6 Clarithromycin 1,206

Terfenadine 4 Clozapine 71

Chlorpromazine 38 Domperidone 19

Ondansetron 139 Droperidol 6.3

Pimozide 0.43

Astemizole 0.26

Risperidone 1.81

Low Risk Verapamil 81 Metoprolol 1,800

Ranolazine 1,948.20 Nifedipine 7.7

Diltiazem 122 Nitrendipine 3.02

Mexiletine 4,129 Tamoxifen 21

Loratadine 0.45
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features across the four concentrations). Based on the

distribution of in silico features in the training drug set, we

decided on two threshold values for distinguishing high-,

intermediate-, and low-risk drug toxicities. Threshold

1 identifies the low-risk and high/intermediate risk, and

threshold 2 marks the high-risk and intermediate-risk/low (Li

et al., 2019).

All models were validated using 16 CiPA test drugs through

the 10,000-repeated testing method, as shown in Figure 1. The

test drugs set consisted of 32,000 in silico features (16 drugs ×

averaging 2,000 in silico features across the four concentrations).

First, we randomly chose one sample from 2,000 in silico features

samples for each drug and then combined the samples to form

one set; one test set consisted of 16 feature samples for 16 test

drugs (one sample for each drug). We repeated this procedure

10,000 times, generating 10,000 test sets. Then, the model was

evaluated 10,000 times using these 10,000 test sets (Li et al.,

2019). As a result, we plotted 10,000 of the receiver operating

curves (ROC) and compared the area under the curves (AUCs),

likelihood ratio (LR), accuracy, and F1 score to evaluate the

classification performance and classifier output quality.

Positive likelihood ratio (LR+) � sensitivity

1 − specificity
(4)

Negative likelihood ratio (LR−) � 1 − sensitivity

specificity
(5)

Accuracy � TP + TN
TP + TN + FN + FP

(6)

F1 score � 2
precision · recall
precision + recall

(7)

Sensitivity (recall) � TP/(TP + FN) (8)
Specif icity � TN/(TN + FP) (9)
Precision � TP/(TP + FP) (10)

where TP and TN are “true positives” and “true negatives,”which

mean that the model correctly answers the actual positive/

negative problems, respectively. Conversely, FP and FN are

“false positives” and “false negatives,” which represent the

mispredicted cases for the actual negative/positive problem as

positive/negative.

3 Results

We performed an F-test and two-sample t-tests to validate

the in silico biomarkers computed through drug simulations

using the ToR-ORd model depends on the in vitro

experimental dataset as independent sets. Summaries of the in

silico biomarkers computed through the drug simulations per

in vitro experimental dataset can be found in Supplementary

Table S1. The F-test showed that the variance of each dataset was

different; accordingly, the two-sample t-test was performed by

assuming unequal variance. All biomarkers differed significantly

according to the in vitro datasets (p-value < 0.001,

Supplementary Table S2).

FIGURE 1
Schematic of the 10,000-repeated testing method; OLR, ordinal logistic regression; AUC, area under the receiver operating curve; LR,
likelihood ratio; Acc, accuracy.
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Through the logistic regression model, we determined

thresholds for assessing the TdP-risk depending on the

in vitro datasets, including a combined set of the three

datasets. According to the in silico features for

distinguishing the three levels of the proarrhythmic risk,

two threshold values of ordinal logistic regression models

are shown in Table 2. Threshold 1 is the boundary value to

sort those with low risk from those with high/intermediate

risk, while threshold 2 separates those with high risk from

intermediate/low risk. The difference between thresholds

1 and 2 in the AP and ionic charge features was the largest

in the Li dataset and the smallest in the Nanion dataset. For

the Ca features, the difference between thresholds 1 and 2 was

the largest in the Li dataset but smallest in the Chantest

dataset. In the Nanion dataset, CaD90 was unsuitable for

assessing the proarrhythmic risk of the drugs when the

ordinal logistic regression was used. The distribution of

features in all the datasets and the corresponding

thresholds are shown in Supplementary Figures S1–S16.

Summaries of the ordinal logistic regression model are

shown in Tables 3–5 and Supplementary Tables S3–S5. AP

features appeared to be more helpful in classifying high-risk

drugs than other risk levels (Table 3 and Supplementary

Table S3). Especially, the classification accuracies for the

high-risk levels of the Chantest dataset were over 0.90 AUCs

when using dVm/dtMax_repol, APD90, APD50, and APDtri; the

LRs of these features were also within excellent ranges (LR+>
10, LR-<0.1) and the F1 scores were over 0.80. The dVm/

dtMax_repol, APD90, APD50, and APDtri were moderate, above

0.70 AUCs for classifying high-risk drugs in the Li dataset

and the merged set of the three datasets and for classifying

intermediate-risk drugs in the Nanion dataset. However, in

the Nanion dataset, the AP features were ineffective for

classifying between low- and high-risk. When individually

assessing the TdP risk using each dataset, comparing not only

the performances of the ordinal logistic regression models

but also the LRs, the features APD50 and APD90 showed the

best performance in the Li and Chantest datasets, while

APDtri showed the best performance in the Nanion

dataset. However, when using the merged dataset, dVm/

dtMax_repol was the best feature for assessing TdP risk

(Figure 2).

The performance of the ordinal logistic regression model

using Ca features was generally worse than when using AP

features (Table 4 and Supplementary Table S4). Ca features

aside from CaD90 were moderate for classifying the TdP-risk in

the Nanion dataset only. CaD90 was not distinguished into the

three TdP-risk levels of drugs using an ordinal logistic

regression model. However, CaD50 can classify drugs into

the three TdP-risk groups primarily in the Nanion dataset,

with a tolerable accuracy of over 0.70 AUCs; the LR+ and LR- of

the low- and high-risk groups were satisfied to be minimally

acceptable (LR+> 2, LR-<0.5). The F1 scores were only good for
those with intermediate risk as 0.71 but moderate for those with

low- and high-risk at both 0.67. For the Chantest dataset, Capeak
could only be used to determine the high-risk drugs, with

0.71 AUC and LRs only satisfying the minimum acceptable

conditions. Similarly, CaD50 showed functional potential for

assessing only the high-risk with 0.71 AUC for the Li dataset

and 0.75 AUC for the merged dataset, respectively. The LRs of

high-risk drugs in the merged dataset reached the minimum

acceptable levels (LR+ = 3.0 and LR- = 0.33), while in the Li

dataset, only LR + reached 6.0, satisfying a minimum acceptable

condition; the LR- value was 1.47.

TABLE 2 Thresholds of 12 in silico biomarkers for classifying TdP risk. Threshold 1 (TH1) was used to distinguish the low-risk from the intermediate/
high-risk groups, while threshold 2 (TH2) was used to distinguish the high-risk from the low/intermediate-risk groups. Merged, the combined set
containing all three datasets.

In-silico features Li et al. Chantest et al. Nanion et al. Merged

TH1 TH2 TH1 TH2 TH1 TH2 TH1 TH2

dVm/dtMax_repol (mV) −0.382 −0.287 −0.3994 −0.3697 −0.450 −0.471 −0.414 −0.370

dVm/dtMax (mV) 297.1 285.3 294.6 291.3 296.9 293.9 296.3 289.2

VmPeak (mV) 21.6 22.7 22 22.3 21.7 22.1 21.7 22.3

APD90 (ms) 341.3 394.4 335.8 351.7 314.1 302.9 329.3 355.3

APD50 (ms) 293.5 338.8 288.7 301.7 271.1 261.4 283.3 305.2

APDtri (ms) 47.8 55.6 47.1 50 42.9 41.5 45.9 49.9

CaPeak (nM) 0.00025 0.00027 0.000269 0.000279 0.000270 0.000275 0.000263 0.000276

CaD90 (ms) 592.5 604.4 579.1 574.9 − − 581.4 581.0

CaD50 (ms) 284.3 296.5 278.1 277.4 272.2 267.9 277.9 281.7

CaDtri (ms) 309.4 303.9 301.0 297.8 300.7 296.6 303.5 299.2

qNet 0.128 0.071 0.132 0.113 0.147 0.150 0.139 0.108

qInward 0.938 1.041 0.936 0.977 0.934 0.960 0.932 0.996
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Table 5 and Supplementary Table S5 show summaries of the

classification performance using the two ionic charge features of

qNet and qinward. Generally, qNet seemed more helpful than

qInward in determining the TdP-risk levels of the in silico

features computed using the ToR-ORD model. The performance

using qNet was excellent for classifying the high-risk group in the

Chantest dataset, with 0.92 AUC (F1 score = 0.80); good for

classifying low risk in the Chantest dataset, with 0.76 AUC

(F1 score = 0.67) and high-risk in the Li dataset, with 0.75 AUC

(F1 score = 0.67). In theNanion dataset, the performance using qNet

was similar to the dVm/dtMax_repol when using the AP features; even

though qNet could only potentially classify high risk, with 0.75 AUC

and the minimum acceptable LRs, qInward was unsuitable for

assessing the TdP-risk in the Nanion dataset. Accordingly, qNet

sorted the in silico features of the merged datasets into low- and

high-risk, both at 0.71 AUCs.

4 Discussion

This study validated 12 in silico features computed using the

ToR-ORD model to assess the proarrhythmic risk based on

ordinal logistic regression. These in silico features were

generated from drug simulations using three different in vitro

experimental datasets. The classification performance from

ordinal logistic regression using each feature was compared to

find the best in silico features to assess the torsadogenic risk of

drugs. The main findings of this study are as follows:

1. All 12 in silico features computed through the ToR-ORD

model help determine the high-risky torsadogenic drugs,

regardless of the in vitro datasets used.

2. In the three types of in silico features, AP features were the

most reliable for determning the three TdP-risk standards.

TABLE 3 Summary of classification performance using action potential (AP) features; classification performances according to the AP features shows
the median, minimal and maximal values after evaluating the model through the 10,000-test algorithm; AUC, the area under the receiver
operating curves; Merged, the combined set containing all three datasets; ACC, accuracy; One asterisk (*) denotes the intermediate performance
over 0.7 of median values, and two asterisks (**) denote the excellent performance over 0.8 of median values.

AP feature Dataset Acc AUC F1-score

Low Intermediate High Low Inter High

dVm/dtMax_repol Li. 0.68 0.67 (0.54–0.82) 0.53 (0.33–0.73) 0.75* (0.75–0.75) 0.57 (0.47–0.71) 0.36 (0.00–0.67) 0.67 (0.67–0.67)

Chantest 0.71* 0.72* (0.63–0.86) 0.52 (0.39–0.66) 0.92** (0.75–0.96) 0.62 (0.53–0.77) 0.22 (0.00–0.55) 0.80** (0.60–0.89)

Nanion 0.71* 0.50 (0.50–0.50) 0.72* (0.61–0.78) 0.67 (0.42–0.79) 0.00 (0.00–0.00) 0.74* (0.67–0.78) 0.50 (0.00–0.67)

Merged 0.74* 0.76* (0.67–0.95) 0.60 (0.33–0.87) 0.79* (0.58–1.00) 0.67 (0.57–0.91) 0.50 (0.00–0.86) 0.67 (0.40–1.00)

dVm/dtMax Li. 0.59 0.58 (0.29–0.76) 0.52 (0.28–0.80) 0.58 (0.50–0.83) 0.50 (0.25–0.67) 0.22 (0.00–0.77) 0.33 (0.25–0.75)

Chantest 0.65 0.63 (0.53–0.77) 0.44 (0.28–0.59) 0.83** (0.50–0.96) 0.53 (0.43–0.67) 0.00 (0.00–0.40) 0.75* (0.25–0.89)

Nanion 0.58 0.55 (0.50–0.64) 0.50 (0.33–0.50) 0.62 (0.50–0.75) 0.50 (0.48–0.56) 0.00 (0.00–0.00) 0.40 (0.00–0.67)

Merged 0.58 0.54 (0.29–0.72) 0.48 (0.28–0.71) 0.58 (0.46–0.83) 0.47 (0.25–0.62) 0.20 (0.00–0.62) 0.33 (0.22–0.75)

VmPeak Li. 0.64 0.52 (0.38–0.71) 0.56 (0.44–0.76) 0.62 (0.62–0.62) 0.36 (0.29–0.60) 0.53 (0.40–0.75) 0.40 (0.40–0.40)

Chantest 0.75* 0.70* (0.42–0.90) 0.62 (0.35–0.82) 0.79* (0.54–0.96) 0.57 (0.20–0.89) 0.57 (0.17–0.80) 0.67 (0.36–0.89)

Nanion 0.5 0.65 (0.56–0.80) 0.35 (0.28–0.59) 0.29 (0.21–0.54) 0.50 (0.40–0.75) 0.17 (0.00–0.40) 0.15 (0.13–0.40)

Merged 0.55 0.47 (0.38–0.71) 0.42 (0.29–0.63) 0.54 (0.50–0.71) 0.33 (0.29–0.60) 0.31 (0.15–0.63) 0.29 (0.25–0.57)

APD90 Li. 0.68 0.68 (0.49–0.82) 0.57 (0.33–0.71) 0.75 (0.75–0.75) 0.59 (0.44–0.71) 0.25 (0.00–0.60) 0.67 (0.67–0.67)

Chantest 0.74* 0.77* (0.63–0.82) 0.57 (0.39–0.64) 0.96** (0.79–0.96) 0.67 (0.53–0.71) 0.25 (0.00–0.44) 0.89** (0.67–0.89)

Nanion 0.73* 0.50 (0.50–0.50) 0.72* (0.61–0.78) 0.67 (0.42–0.79) 0.00 (0.00–0.00) 0.74* (0.67–0.78) 0.50 (0.00–0.67)

Merged 0.70* 0.72* (0.58–0.86) 0.55 (0.33–0.75) 0.75* (0.67–0.88) 0.62 (0.50–0.77) 0.46 (0.00–0.71) 0.67 (0.50–0.86)

APD50 Li. 0.69 0.68 (0.49–0.82) 0.59 (0.39–0.79) 0.75* (0.75–0.75) 0.59 (0.44–0.71) 0.40 (0.00–0.73) 0.67 (0.67–0.67)

Chantest 0.74* 0.77* (0.63–0.82) 0.57 (0.39–0.64) 0.96** (0.79–0.96) 0.67 (0.53–0.71) 0.25 (0.00–0.44) 0.89** (0.67–0.89)

Nanion 0.72* 0.50 (0.50–0.50) 0.72* (0.56–0.78) 0.67 (0.42–0.83) 0.00 (0.00–0.00) 0.74* (0.64–0.78) 0.50 (0.00–0.75)

Merged 0.71* 0.72* (0.63–0.86) 0.55 (0.33–0.80) 0.75* (0.67–0.88) 0.62 (0.53–0.77) 0.46 (0.00–0.77) 0.67 (0.50–0.86)

APDtri Li. 0.66 0.64 (0.49–0.73) 0.57 (0.39–0.64) 0.75* (0.75–0.75) 0.56 (0.44–0.62) 0.25 (0.00–0.44) 0.67 (0.67–0.67)

Chantest 0.72* 0.67 (0.58–0.82) 0.52 (0.39–0.64) 0.96** (0.79–0.96) 0.57 (0.50–0.71) 0.22 (0.00–0.44) 0.89** (0.67–0.89)

Nanion 0.70* 0.50 (0.50–0.50) 0.71* (0.52–0.83) 0.75* (0.46–0.79) 0.00 (0.00–0.00) 0.71* (0.53–0.82) 0.60 (0.22–0.67)

Merged 0.66 0.63 (0.49–0.82) 0.53 (0.33–0.71) 0.75* (0.71–0.88) 0.53 (0.44–0.71) 0.36 (0.00–0.60) 0.67 (0.57–0.86)
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3. Among AP features, APD50 was the best to determine the

three TdP-risk standards when individually using in silico

features per in vitro dataset without merging them. In

contrast, when merging three datasets, the dVm/dtMax_repol

is the best feature.

The Li and Chantest datasets showed similar aspects in

classifying the TdP-risk using ordinal logistic regression

according to the in silico features. We believe that this was

because the in vitro experimental dataset of Chantest et al.

was obtained by strictly following the methodology of Li et al.

Han et al. (2020). Both datasets showed better performance

results for dVm/dtMax_repol than for dVm/dtMax (Table 2 and

Figure 2). We guess this was because of the limited time

resolution set in the writing steps of the AP trace in the in

silico simulation; we set the time resolution for calculation as

TABLE 4 Summary of classification performance using calcium (Ca) features; classification performances according to the AP features shows the
median, minimal and maximal values after evaluating the model through the 10,000-test algorithm; AUC, the area under the receiver operating
curves; Merged, the combined set containing all three datasets; ACC, accuracy; One asterisk (*) denotes the intermediate performance over 0.7 of
median values, and two asterisks (**) denote the excellent performance over 0.8 of median values.

Ca feature Dataset ACC AUC F1-score

Low Inter High Low Inter High

CaPeak Li. 0.53 0.61 (0.37–0.65) 0.42 (0.17–0.73) 0.42 (0.17–0.62) 0.44 (0.18–0.50) 0.31 (0.00–0.67) 0.20 (0.00–0.44)

Chantest 0.67 0.65 (0.42–0.75) 0.56 (0.35–0.82) 0.71* (0.38–0.83) 0.50 (0.20–0.67) 0.53 (0.17–0.80) 0.55 (0.18–0.75)

Nanion 0.53 0.75* (0.56–0.80) 0.40 (0.28–0.59) 0.33 (0.25–0.58) 0.67 (0.40–0.75) 0.18 (0.00–0.46) 0.17 (0.14–0.43)

Merged 0.51 0.43 (0.34–0.57) 0.48 (0.28–0.66) 0.38 (0.25–0.67) 0.31 (0.27–0.46) 0.33 (0.00–0.57) 0.00 (0.00–0.50)

CaD90 Li. 0.54 0.44 (0.44–0.58) 0.50 (0.39–0.57) 0.62 (0.62–0.79) 0.37 (0.37–0.50) 0.00 (0.00–0.25) 0.44 (0.44–0.67)

Chantest 0.39 0.37 (0.27–0.62) 0.50 (0.33–0.66) 0.12 (0.08–0.29) 0.18 (0.00–0.50) 0.00 (0.00–0.55) 0.00 (0.00–0.15)

Nanion - - - - - - -

Merged 0.46 0.43 (0.28–0.56) 0.50 (0.39–0.71) 0.33 (0.12–0.46) 0.31 (0.15–0.40) 0.00 (0.00–0.60) 0.17 (0.00–0.31)

CaD50 Li. 0.55 0.44 (0.44–0.63) 0.39 (0.28–0.52) 0.71* (0.71–0.71) 0.37 (0.37–0.53) 0.00 (0.00–0.22) 0.57 (0.57–0.57)

Chantest 0.39 0.37 (0.18–0.52) 0.50 (0.39–0.64) 0.12 (0.04–0.33) 0.18 (0.00–0.36) 0.00 (0.00–0.44) 0.00 (0.00–0.17)

Nanion 0.78* 0.75* (0.61–0.80) 0.71* (0.52–0.83) 0.75* (0.50–0.88) 0.67 (0.44–0.75) 0.71* (0.56–0.82) 0.67 (0.00–0.86)

Merged 0.61 0.57 (0.38–0.76) 0.52 (0.33–0.79) 0.75* (0.58–0.92) 0.46 (0.29–0.67) 0.22 (0.00–0.73) 0.60 (0.40–0.80)

CaDtri Li. 0.51 0.56 (0.37–0.61) 0.52 (0.33–0.66) 0.33 (0.12–0.62) 0.40 (0.18–0.44) 0.22 (0.00–0.55) 0.17 (0.00–0.46)

Chantest 0.43 0.47 (0.33–0.71) 0.44 (0.22–0.71) 0.17 (0.08–0.58) 0.31 (0.17–0.60) 0.00 (0.00–0.60) 0.00 (0.00–0.43)

Nanion 0.53 0.71* (0.52–0.80) 0.40 (0.28–0.60) 0.33 (0.25–0.58) 0.60 (0.36–0.75) 0.18 (0.00–0.50) 0.17 (0.14–0.43)

Merged 0.48 0.47 (0.38–0.62) 0.44 (0.22–0.71) 0.42 (0.21–0.62) 0.33 (0.29–0.50) 0.18 (0.00–0.60) 0.20 (0.00–0.44)

TABLE 5 Summary of classification performance using ion charge features; classification performances according to the AP features shows the
median, minimal and maximal values after evaluating the model through the 10,000-test algorithm; AUC, the area under the receiver operating
curves; Merged, the combined set containing all three datasets; ACC, accuracy; One asterisk (*) denotes the intermediate performance over 0.7 of
median values, and two asterisks (**) denote the excellent performance over 0.8 of median values.

Ion charge
feature

Dataset Acc AUC F1-score

Low Inter High Low Inter High

qNet Li. 0.7* 0.67 (0.58–0.82) 0.55 (0.48–0.75) 0.75 (0.75–0.75) 0.57 (0.50–0.73) 0.46 (0.33–0.71) 0.67 (0.67–0.67)

Chantest 0.73* 0.76* (0.67–0.91) 0.52 (0.39–0.79) 0.92** (0.71–0.96) 0.67 (0.57–0.83) 0.22 (0.00–0.73) 0.80** (0.55–0.89)

Nanion 0.57 0.44 (0.29–0.48) 0.50 (0.33–0.57) 0.75* (0.38–0.79) 0.37 (0.25–0.40) 0.00 (0.00–0.25) 0.60 (0.00–0.67)

Merged 0.72* 0.71* (0.61–0.90) 0.56 (0.35–0.87) 0.71* (0.62–0.88) 0.60 (0.44–0.89) 0.53 (0.17–0.86) 0.57 (0.44–0.86)

qInward Li. 0.73* 0.70* (0.55–0.70) 0.65 (0.45–0.78) 0.71* (0.62–0.88) 0.57 (0.29–0.57) 0.67 (0.47–0.78) 0.57 (0.44–0.86)

Chantest 0.57 0.70* (0.50–0.70) 0.44 (0.33–0.64) 0.62 (0.46–0.71) 0.57 (0.00–0.57) 0.00 (0.00–0.44) 0.47 (0.35–0.53)

Nanion 0.43 0.51 (0.46–0.70) 0.39 (0.28–0.50) 0.21 (0.17–0.58) 0.25 (0.22–0.57) 0.00 (0.00–0.00) 0.13 (0.12–0.44)

Merged 0.65 0.65 (0.55–0.70) 0.59 (0.28–0.79) 0.71* (0.50–0.83) 0.50 (0.29–0.57) 0.40 (0.00–0.73) 0.53 (0.38–0.67)
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0.1 ms considering the computation efficiency. In the AP

generation phase, dVm/dtMax is the upstroke velocity of the

zero step, and dVm/dtMax_repol denotes the repolarization

velocity of the third step (Shih, 1994; Grunnet, 2010). The

spike and dome morphology of the upstroke phase can be

easily lost depending on the time resolution compared to the

repolarization morphology. That is, as dVm/dtMax gets affected

more directly by the time resolution compared to dVm/

dtMax_repol, the time resolution we set in this study may not be

sufficient to consider the difference in the upstroke morphology

between proarrhythmic drugs. Despite the insufficient time

resolution, dVm/dtMax could classify the high-risk drugs in

the Chantest dataset, which means that the time resolution of

the in silico simulation also needs to be calibrated along with the

observed dataset.

Unlike the Li and Chantest datasets, the distribution of most

in silico features computed from the Nanion in vitro dataset was

too unstable to sort the proarrhythmic risk and did not show

FIGURE 2
Normalized confusion matrices for dVm/dtMax_repol, APD90, and APD50; Merged, the combined set containing all three datasets.
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satisfactory classification performance to assess the TdP-risk. We

hypothesized that this was because the ranges of the in silico

features in the low-risk and high-risk drugs overlapped widely

(Supplementary Figures S9–S12). For example, in the training

drugs, the dVm/dtMax_repol values of diltiazem, mexiletine, and

ranolazine, which are low-risk, are distributed in the high-risk

ranges, causing the threshold 1 value for low-risk to be fitted only

for verapamil. Furthermore, the dVm/dtMax_repol values in the

test drugs were also in the high-risk range, and the maximal value

of the test drugs was -0.4507, smaller than the threshold 1 value of

-0.450. Accordingly, the AUC for the low-risk drugs in the

Nanion dataset was all 0.50, from the first quarter to the third

quarter (Supplementary Figure S9). In the Nanion dataset, the

results for dVm/dtMax_repol corresponded to the likelihood ratio.

The LR + for high-risk drugs had a minimum acceptance level of

2, which means that if the dVm/dtMax_repol values of a drug are

over -0.471, the threshold 2 value, the drug is more likely to be

high-risk. However, the LR- for high-risk drugs was not satisfied

with a minimum acceptance level of 0.5, which means that even

though the threshold 2 value does not classify a drug as high-risk,

it can indeed be high-risk (Aggarwal and Ranganathan, 2018).

The calcium features in this study could not reflect the drug

effect in determining the proarrhythmic risk based on the poor

performance in the original logistic regression in all datasets.

Only CaD50 showed potential to classify high-risk drugs,

denoting that the repolarization time in transient calcium

might capture the relevant information due to the high TdP-

risk. Most in silico features computed from the Nanion dataset

did not have sufficient classification performance to assess the

proarrhythmic risk; however, only calcium features seemed to be

fit for classification; in particular, CaD50 can be used to categorize

the three TdP-risk levels in the Nanion dataset. We speculate that

this was due to the in silico results computed from the Nanion

dataset, which have remarkable differences in the transient

calcium current compared to other ionic currents in the

proarrhythmic drugs. Indeed, the Nanion dataset was

obtained not only by following the methodology of Li et al.,

but also by specializing in ion channel pharmacology for calcium

and sodium channels (Han et al., 2020). This result supports the

idea that in silico features calculated through drug simulations

can have electrophysiological differences along with in vitro

datasets.

The CiPA research groups suggested using an ordinal logistic

regression model using the qNet value calculated based on the

hERG assay through the inhibition rate of six to seven ionic

currents that are mainly changed by proarrhythmic drugs. They

reported excellent AUCs of 0.90 and 0.98 for classifying the low-

and high-risk drugs, respectively, based on the qNet thresholds

(Crumb et al., 2016; Li et al., 2019). Furthermore, APD90, APD50,

and diastolic Ca also showed good performances at 0.84, 0.85,

and 0.85 for low risk drugs and 0.98, 0.99, and 0.99 for high risk

drugs (Li et al., 2019). This study also calculated the TdP metric

values by strictly following their methodology, but the

classification performances here based on the these in silico

feature thresholds were lower than theirs. This may be due to

the difference between in silico cardiac cell models and the fact

that the qNet calculated from the Inet of the ToR-ORD model

using the reformulated ICaL, IKr, and Na+-Ca2+ exchanger

reflected the experimental dataset, not the original ORD

model (Tomek et al., 2019). Indeed, the qNet values of the

Nanion dataset have opposite aspects according to the TdP-

risk compared to the Li and Chantest datasets, where we observed

that a higher qNet was more dangerous to the TdP in the training

drugs (Supplementary Figure S12A). Accordingly, in the Nanion

dataset, the value of qNet threshold 1 was smaller than

threshold 2.

The ORD model is an in silico ventricular cell model

commonly used in drug research that was optimized by Dutta

et al. to observe cell responses corresponding to the drug blocks

(Dutta et al., 2017). The ToR-ORD model used in this study

revised the formulations of the ICaL, IKr, and Na
+-Ca2+ exchanger

to make ionic balances during the repolarization time, which can

more realistically mimic experimental/clinical data than the

original ORD model (Tomek et al., 2019). This study used

three experimental datasets that were measured under

different conditions and purposes to validate the 12 in silico

features. Therefore, we chose the ToR-ORD model instead of the

optimized ORD model to reflect the characteristics of each

experimental dataset.

The classification performances were not super high, even

APD50 or dVm/dtMax_repol, which though were the best,

depending on changes of the ventricular myocyte model and

in vitro experimental data used for in silico simulation (Table 2

and Figure 2). We think that classifying drug safety using just one

TdP feature is not sufficient to cover the variations of in silico

model and in vitro data. In future studies, we will find the best

model to assess drug safety by considering multiple in silico

parameters simultaneously and using advanced machine

learning techniques such as deep learning.

As a limitation of this study, we performed drug simulations

without calibrating the in silico cardiac cell model corresponding

to the experimental datasets. Previous studies have suggested

various calibration algorithms to determine the proarrhythmic

risk of drugs (Øvstebø et al., 2003; Carter et al., 2018; Tomek

et al., 2019; Han et al., 2020). The calibration methodology that

considers environment variables or individual physiological

characteristics of used ionic channels depending on the

experimental datasets helps determine TdP risk. This study

focused on validating the robustness of in silico features to

determine the TdP-risk according to the experimental datasets

obtained under different experimental environments and with

different purposes, as mentioned above. Furthermore, a standard

ordinal logistic regression model must be defined using a

criterion dataset before calibration. However, we did not

decide on one as the standard because all three in vitro

datasets used in this study were open-source. Therefore, we
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assumed that the classification performance of some features may

improve if their thresholds were calibrated, but this does not

strongly affect the main findings of this study.
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