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Optical charge state control of spin defects in 4H-
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Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-

based quantum technologies. Spin qubits exist in specific charge states of these defects,

where the ability to control these states can provide enhanced spin-dependent readout and

long-term charge stability. We investigate this charge state control for two major spin qubits

in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conver-

sion between the bright and dark states of these defects. We measure increased photo-

luminescence from divacancy ensembles by up to three orders of magnitude using near-

ultraviolet excitation, depending on the substrate, and without degrading the electron spin

coherence time. This charge conversion remains stable for hours at cryogenic temperatures,

allowing spatial and persistent patterning of the charge state populations. We develop a

comprehensive model of the defects and optical processes involved, offering a strong basis to

improve material design and to develop quantum applications in SiC.
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Optically active color centers in wide bandgap semi-
conductors have shown considerable potential for a
variety of spin-based quantum technologies, from quan-

tum computing and quantum memories1 to nano-scale sensing2–
4. Spin defects in silicon carbide (SiC) in particular combine the
optical properties required for single-spin measurements5–10 with
wafer-scale growth and silicon-like fabrication capabilities
developed for high-power electronics. However, optimizing these
systems for spin qubit applications requires an understanding of
not only their spin and optical properties, as demonstrated in the
negatively charged silicon vacancy V�

Si

� �
5, 11 and the neutral

divacancy (VV0)10, 12–14, but also an understanding of their
charge properties.

Impurities in SiC and their charge states have been investigated
for conventional electronics applications, as they play an
important role in transport properties and in carrier compensa-
tion. Most studies involve deep level transient spectroscopy
(DLTS)15, 16, electron spin resonance (ESR)17, 18 and density
functional theory (DFT)19–21 with a strong focus on the carbon
vacancy (VC)16, 22, 23; fewer works have addressed VSi and VV
defects24. For the purpose of quantum information, it is desirable
to understand the complete physics of the defects themselves, not
just their influence on transport or other electrical characteristics
of the substrate.

Here we investigate the effect of optical illumination on the
stability of the relevant (optically bright) charge states of VV and
VSi, the ability to control and convert these states between dif-
ferent charge levels, and the implications for quantum applica-
tions. We investigate these questions using a combination of
techniques including photoluminescence (PL), optically detected
magnetic resonance (ODMR) and electron spin resonance (ESR).
The VV and VSi charge states are both stabilized to the VV0 and
V�
Si states required to observe PL, whose intensity can be

enhanced by up to three orders of magnitude depending on the
material (local defect concentrations and Fermi level). For VV in
particular, we observe bidirectional charge conversion between
the neutral (bright qubit state) and a dark charge state using
mainly near-ultraviolet (365–405 nm) and near-infrared (976 nm)
light. This charge conversion is stable at cryogenic temperature
and does not affect the ODMR contrast nor the electron spin
coherence time, and can therefore be readily applied to increase
PL emission from ensembles.

Charge state conversion can have multiple origins, including
one-photon and two-photon ionization, free carrier
recombination, and charge transfer between defects. In
order to fully understand the involved processes, we measure
the charge dynamics of VV, VSi and nitrogen (N) under
illumination, where N is the main dopant in our semi-insulating
4H-SiC samples. Excitation dependence with wavelengths
ranging from 365 to 1310 nm were measured and simulated,
offering a comprehensive picture of charge transfer between
these defects. In particular, this allows us to identify VV− as being
the possible dark charge state of the divacancy, while V�

Si most
likely converts to the dark V0

Si charge state with above-bandgap
light.

Control and understanding of these charge dynamics is crucial
for maximizing spin qubit readout, choosing adequate back-
ground impurity concentrations in samples and optimizing
designs of SiC nano-devices for quantum applications. Such
methods have also been applied in the nitrogen-vacancy (NV)
center in diamond for quantum optics applications25, enabling
for example reduced spectral diffusion26 or Stark tuning of the
optical transitions through photo excitation of trapped charges27.
More exotic applications of charge dynamics include high density
data storage28, STED super-resolution imaging29, 30 and charge
quantum buses31.

Results
PL enhancement of VV0 using UV illumination. We initially
observe a drastic increase in PL intensity of VV0, by about 50
times at 6 K, when continuously illuminating a semi-insulating
4H-SiC sample with a 405 nm (“UV”) laser diode, in addition to
the 976 nm (1.27 eV) laser required for PL excitation. This is
shown in Fig. 1a where the full PL spectrum for all the diva-
cancies (PL1−PL66) is taken with (blue) and without (black) 405
nm (3.06 eV) excitation. Both c axis (PL1, PL2) and basal defects
(PL3, PL4) show an increase in their PL intensity, with slight
variation between defects, which we ascribe to charge conversion
of the divacancy toward its observable neutral state. On the other
hand, PL5 and PL6 remain completely unaffected, adding another
unique feature to these currently unidentified defects on top of
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Fig. 1 Effect of near-bandgap illumination on 4H-SiC divacancies. a PL
spectrum with 976 nm excitation of the various divacancies in 4H-SiC, as
designated in ref. 6, without and with continuous illumination at 405 nm
(≈5mW optical power). All the observed PL lines except PL5 and PL6 are
enhanced by the UV excitation, including both c axis and basal defects. b
Gain in the PL signal (integrated across PL1–4) as a function of excitation
wavelength (energy) around the 4H-SiC bandgap (3.28 eV at 5 K49). Power
was normalized to 0.4 μW across the entire energy range. The onset of
change in the curve is shifted from the bandgap energy due to absorption of
longitudinal acoustic phonons (about 70–80meV). The UV absorption and
corresponding electron-hole generation rate follows the curve in red, as
given in ref. 49. c Lifetime of the VV0 charge state after a 405 nm pulse at
6 K. No significant decay (standard deviation of signal is 2%) is observed
after 12 h

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01993-4

2 NATURE COMMUNICATIONS | 8:  1876 |DOI: 10.1038/s41467-017-01993-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


their strong room temperature PL emission. The VV0 PL
enhancement with UV was observed in all semi-insulating wafers
we measured, with gains ranging by a factor of 2−1000 (Sup-
plementary Fig. 2), including samples obtained from separate
commercial suppliers (Cree or Norstel), different growth batches,
or even simply from separate positions within the same wafer.
This strongly indicates an influence from the local environment,
e.g., from the remaining concentration of N dopants or other
impurities which is known to locally differ in as-grown wafers32.
The PL intensity with UV remains fairly constant however from
sample to sample.

In order to understand the effect of 405 nm illumination, and
optimize the enhancement, the excitation wavelength is swept
across the 4H-SiC bandgap energy (3.28 eV, 380 nm) as shown in
Fig. 1b. The PL gain slowly increases with excitation energy, and
around 3.33–3.35 eV, slightly above the 4H-SiC bandgap (3.28
eV), it drastically turns up. This suggests two separate processes
are altering the VV charge state from either VV− or

VV+ to VV0: at low energies, we will see this is due to direct
photoionization, while at high energies, the gain results from
capture of photo-generated carriers.

We now consider charge dynamics under illumination, starting
from the stability of the conversion observed after UV excitation.
As illustrated in Fig. 1c, the system is initially pumped with 405
nm toward a high VV0 population (strong PL intensity), followed
by a long delay to allow for relaxation and finally measurement
using 976 nm. No change is observed over the course of 12 h, a
result largely expected for a deep defect at cryogenic temperature
(6 K). More interestingly, the PL intensity always drops to a low
level after turning off the UV excitation while 976 nm was
continuously on. Combined with this long stability, this implies
that the use of 976 nm to excite VV PL is simultaneously
converting the VV out of its neutral-charge state, toward a dark
state (more details are given later on). This has significant
consequences as wavelengths near 976 nm have been extensively
used in recent PL- and ODMR-related works8, 33, 34, owing to
being close to the absorption maximum of the ground to excited
state transition of VV0, as well as being easily available
commercially. These previous studies may therefore have been
partially perturbed by charge conversion.

Illumination effects on VV0 spin properties. Above-bandgap
excitation can be used to efficiently convert VV toward its
neutral-charge state, and more importantly drastically increases
the PL intensity. For practical applications, however, we verify
this has no effect on the spin properties of VV0. In Fig. 2a, we first
measure the ODMR contrast of PL2 at 50 G, i.e., the ratio of
ODMR over PL intensity, which provides a direct measure of how
the spin states may be affected during illumination. For these
experiments, the 405 nm laser is replaced by a 365 nm (also called
“UV”) light-emitting diode which is more efficient at charge
conversion since it is above bandgap in energy. No difference in
contrast is observed with or without 365 nm, and the charge
conversion therefore does not significantly affect the spin state
nor the readout mechanism. However, the signal-to-noise ratio
improves by ~70 times with illumination due to increased VV0

charge population. More details are given in the Supplementary
Fig. 6, Supplementary Note 2 regarding the ODMR experiments
presented here.

A second crucial property is the electron spin coherence of the
defect. From Fig. 1c, the charge stability at cryogenic temperature
(6 K) is shown to be much longer than any coherence timescale34;
however, we check that even with constant 365 nm illumination
(~0.2 mW) and corresponding electron-hole pair generation, the
coherence time remains unaffected. At 400 G, the ensemble
electron spin coherence T2 is measured to be 0.7 ms and remains
completely unaffected by either light or free carriers (Fig. 2b),
while much longer averaging (>×200) was required to obtain
similar signal-to-noise ratios without 365 nm illumination. This is
not an obvious result as scattering or exchange interaction with
free carriers can easily reduce T1 or T2 of defect spins35.

Until now, all measurements were realized on as-grown
commercial wafers with naturally occurring impurity concentra-
tions. However, carbon ion implantation or electron irradiation14

is often used to increase the PL intensity and to improve spatial
resolution. The type of defects created by lattice damage during
these processes cannot be well controlled, though it may be
partially managed by annealing, and the local Fermi level may
shift away from the desired charge state. We test this with a 500
nm thick layer of implanted divacancies (Methods section). When
measuring the PL2 ODMR spectrum of this sample (at ≈400 G),
as shown in Fig. 2c, we obtain a broad “bulk” signal observable
across the entire sample depth using simply 976 nm excitation.
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Fig. 2 Charge conversion effect on the spin properties. ODMR signals are
given as relative photoluminescence intensities (ΔPL) under microwave
excitation. a CW-ODMR spectrum at 50 G and measured through a
monochromator at the 1130.6 nm PL2 zero-phonon line to ensure no other
contribution in the optical signal. The intensity is given as the ratio (i.e.,
contrast) between the ODMR and PL intensity, which remains constant
with and without 365 nm illumination, indicating unchanged spin
polarization and readout mechanisms. b Hahn echo decay experiment for
PL2 at ≈400 G, measured with pulsed-ODMR at 6 K. The 365 nm
excitation is continuous throughout the sequence, resulting in a signal
increase while the coherence time is unaffected. Decay with 976 nm
excitation only was averaged 241 times more than the decay with also 365
nm illumination. Line (in black) is a stretched exponential fit (stretch factor
≈2) to the data. c CW-ODMR (PL2 at ≈400 G) of a 4H-SiC sample with a
500 nm carbon-implant layer below the surface. The divacancies created at
the layer are barely visible before 365 nm excitation. The implanted layer
peak is also shifted from the bulk due to a magnetic field gradient across
the sample
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When 365 nm is turned on (with constant absorption over the
sample depth), the bulk intensity increases as expected, but more
importantly a narrower and more intense peak appears. The latter
is assigned to the implanted layer which, being confined in depth,
is less sensitive to inhomogeneity in the static magnetic field. Rabi
experiments at the peak layer frequency yielded as expected an
increased contrast (Supplementary Fig. 7), demonstrating that the
UV charge stabilization can be critical in such samples.

VV charge state conversion. We now consider in more depth the
charge mechanisms within 4H-SiC, in particular the effect of 976
nm illumination which appears to convert VV toward a dark
charge state (VV− or VV+). Since 976 nm is used both for PL
excitation and causes charge conversion, it is necessary to sepa-
rate the two contributions from the PL intensity, which can be
achieved by looking at the conversion dynamics under pulsed
light. This is realized using a three-pulse scheme: reset with either
976 or 365 nm, pump with a wavelength ranging from 365 to
1310 nm using various laser diodes, and measurement with 976
nm. Typical decay curves as a function of pumping duration are
shown in Fig. 3a with different initial reset lasers, pump wave-
length, pump power and temperatures.

In Fig. 3b, fitted steady states and decay rates (see Methods
section regarding the fitting) are plotted as a function of pump
excitation wavelength. Steady-state intensities are all normalized
by the steady-state PL intensity after UV pumping. A clear
transition is observed between 940 and 976 nm, at about 1.3 eV,
for both steady-state values and decay rates, with shorter
wavelengths being increasingly more efficient at charge conver-
sion toward VV0. In addition, we measure a single wavelength at
1310 nm (0.95 eV) that tentatively suggests a second transition
(between 976 and 1310 nm), where the VV0 charge state becomes
insensitive to excitation (no observed decay).

The wavelength transitions can be related to photoionization
energies and, though the Franck−Condon shift is unknown here,
to formation energies obtained from DFT calculations20, 36 and
reproduced in Fig. 3c. The divacancy defect in 4H-SiC has four
stable charge states: +, 0, − and 2−. The (+/0) and (0/−) transition
levels are calculated to be, respectively, ~Ev + 1 eV and ~Ec − 1.1
eV, with Ev and Ec the valence and conduction band energies. On
the one hand, these energies correspond closely to ionization
from either VV+ or VV− (dark) to VV0 (bright), and therefore to
the observed 1.3 eV optical transition. On the other hand, the
minimum energy to photoionize VV0 to the dark state will be
around 2 eV, requiring a two-photon absorption mechanism
using 976 nm illumination. VV0 can absorb one photon to reach
its excited state followed by a second photon to ionize either to
VV+ or to VV− (Supplementary Fig. 5). As two-photon
absorption requires at least the ZPL energy (~1.1 eV, PL1−PL4)
to reach the excited state, we expect no decay from VV0 should
occur below this energy as was observed using 1310 nm
illumination.

Both VV− and VV+ are candidates for the dark VV charge
state, however, VV− is more likely from our results. Our semi-
insulating samples are compensated N-type samples with
nitrogen (N) as primary dopant and carbon vacancies (VC) for
compensation. Both species have states lying close to the
conduction band (Supplementary Fig. 4). After UV illumination,
free electrons will easily be recaptured by N (Fig. 4c) and possibly
VC, allowing free holes to convert VV from VV− to VV0. In the
following sections we assume that VV− is the dark state, though
additional studies will be needed to fully resolve this question. It
should be mentioned that during review of this paper we became
aware of a similar work37 on optical charge conversion of
divacancies in 4H-SiC that hypothesizes VV+ instead of VV−.

We attempt to model the observed dynamics using the rate-
equation model shown in Fig. 3d, based on charge transfer
between the divacancy and a trap of unknown origin. More
details are given in both the Methods section and Supplementary
Note 1. Simulated decays and their corresponding rates and
steady states are shown in Fig. 3a, b. Three experimental
characteristics are nicely reproduced by the model here: (i) the
jump in charge conversion efficiency for above bandgap
illumination, (ii) the VV− to VV0 transition fitted to be 1.295
(5) eV, and (iii) the VV0 to VV− transition set at the ZPL energy
(1.1 eV).

Finally, a temperature dependence of 976 nm pumping (365
nm reset) is taken between 5.5 and 210 K, with corresponding
steady-states value shown in Fig. 3e. Above 100 K, the effect of
976 nm pumping compared to 365 nm pumping is drastically
reduced. The simulation is able to reproduce this feature owing to
thermal electron-hole generation, with possible origins being the
thermal emission of shallow defects, such as nitrogen (≈0.05–0.1
eV) and boron (≈0.3 eV), capture barriers or changes in carrier
lifetimes. From the simulation fit, this process has a characteristic
activation energy around 0.1–0.2 eV depending on the fit dataset.

In summary, we identify a sharp transition of the VV charge
dynamics at around 1.3 eV (960 nm), likely corresponding to the
ionization of VV− to VV0. Below 1.3 eV in energy, two-photon
absorption drives the charge state toward VV−, while above, VV
is preferentially in VV0 and remains stable for many hours after
illumination. In addition, UV light above bandgap strongly drives
the system toward VV0.

Charge transfer between major defects. The experiments
described previously made use of PL as a direct measurement of
the divacancy neutral-charge state, combined with photo excita-
tion to probe relevant energy levels as well as trapping or
recombination dynamics. However, understanding all the major
defects in 4H-SiC, not just the divacancy, is required to obtain a
comprehensive picture of the sample behavior under illumina-
tion. While PL of VSi can be measured, other important spin
impurities, such as VC or N are not photo-active, with no optical
excited states in the bandgap. We thus turn toward electron spin
resonance (ESR) to provide information on all the spin species.

A CW-ESR spectrum at X-band is shown in Fig. 4a with
resonance peaks from PL1 to PL4 VV defect types, as well as a
cluster of signals near the g-factor g = 2, known to be from VSi, VC

and/or N13, 18. In order to properly resolve some of these peaks,
we subtract the ESR spectrum measured with 976 nm illumina-
tion from the spectrum obtained with either 940 or 365 nm
illumination. The differential spectra, shown in Fig. 4b, then
correspond to possible charge transfer with VV which is
extremely sensitive to these wavelengths (further considerations
are discussed in Methods section). The ESR peak intensities are
given for the main identified defects in Fig. 4c (left). With 940
nm, two sets of resonances can be clearly assigned, the strongest
due to V�

Si (TV2a or V2 center) and the weakest from N− (k site).
At this wavelength, VV− undergoes photoionization to become
VV0, emitting an electron to the conduction band which is likely
captured by V0

Si, and resulting in an increase in V�
Si . With 365 nm,

large changes can be seen around g = 2, possibly from free
electrons and VC, though the peaks are too clustered to be
resolved. On the side of g = 2, N− appears much stronger while
the V�

Si peaks completely disappeared. While this may be due to
carrier-induced spin relaxation, such behavior is also well
explained by charge dynamics: N, initially in its neutral-charge
state due to either photoionization or thermal emission (shallow
donor) before cooling down the sample, captures most of the
generated electrons to give a high N− signal. The holes now in
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majority, are captured by the various deep defects, with VV−

being converted toward VV0 (high signal), V�
Si toward V0

Si (low
signal), and possibly V0

C toward Vþ
C (high signal).

ESR measurements are often used to characterize the optimal
annealing temperature for sample preparation. Changes in ESR
intensity after sample annealing normally indicates variations in
defect concentration, but can also be confused with a shift in the
local Fermi level. After charge conversion, this second explana-
tion is much less plausible. In Fig. 4c, the ESR intensity under best
illumination condition (highest signal for each defect) was
tracked for N, VSi, and VV for different annealing temperatures.
Between 1000 and 1400 °C, the ESR signal of VSi and VV
significantly drops, which can be related to the defects becoming
mobile followed by creation of multi-vacancies such as
VC−VSi−VC

38–41.
The ESR experiments indicate a strong relationship between

VV and VSi, as they are both affected by the 940–976 nm
transition and by similar annealing temperatures. With V�

Si being
also a photo-active qubit of interest, we directly measure its PL by
exciting the sample with 780 nm (Supplementary Fig. 1)5, 42.
Three-pulse experiments for V�

Si are shown in Fig. 5 with
pumping using 365, 976 nm, as well as 780 nm as a replacement

for 940 nm which was impractical here. 365 nm pumping
drastically decreases the V�

Si intensity while both 976 and 780
nm convert back the charge state to V�

Si .
These observations are consistent with the ESR experiments.

Under 976 nm illumination, the VSi PL signal recovers very
slowly, with corresponding low ESR signal, and with little power
dependence indicating competition between different carrier
capture processes. In this case, VV0 emits holes by inefficient
two-photon absorption, while N (and likely VC) emits electrons
which will dominantly convert V0

Si toward V�
Si after capture. At

940 nm, VV− also now emits electrons allowing for faster
conversion to V�

Si . At 780 nm, it is likely that conversion via
capture is enhanced by direct photoionization of V0

Si with (0/−)
transition energy at Ev +1.3–1.5 eV (20, 43, reproduced in
Supplementary Fig. 4). For completeness, the VSi (−/2−)
transition with a formation energy of Ec −0.6–0.8 eV is likely
also excited at any wavelength below 976 nm, and therefore VSi is
more likely to be trapped in V�

Si than in the 2− charge state. 780
nm illumination is therefore suitable for both V�

Si PL excitation
and V�

Si charge stabilization.
The full VV/ VSi /N charge conversion picture under

illumination is finally summarized in Fig. 6 for the three critical
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wavelengths explored in this work: 976, 940, and 365 nm. VC was
not taken into account due to lack of experimental measurements.

Summary of charge dynamics. Our overall summary of the
charge conversion is as follows: (i) Under 365 nm excitation and
electron-hole generation, N dominantly traps electrons toward N
−, while VV and VSi capture the remaining holes to become VV0

and V0
Si. (ii) Below but close to 940 nm in wavelength, VV chiefly

emits electrons and ends up in VV0, while VSi captures those
electrons to become V�

Si . N will be in an intermediate charge state
as it absorbs both electron and holes, as well as being
photoionized. (iii) At wavelengths higher than 976 nm, VV is
converted to VV− by slow hole emission to the valence band

through a two-photon process; N is still photoionized resulting
in N0 while VSi capture both holes and electrons for a slow
conversion toward V�

Si .
The charge conversion and transfer mechanisms presented

throughout this work should remain valid in most
semi-insulating materials, where defects are in comparable
concentrations. For n- or p-doped materials, impurities can of
course still be photoionized, however, electron-hole generation
with above-bandgap light will likely set the local Fermi level to a
different equilibrium than what is seen here.

Toward applications in charge patterning. To complete this
study, we turn toward applications using our ability to control the
VV charge state. In recent experiments in diamond28, optical
conversion between the NV− and NV0 states was used to
demonstrate the possibility of information storage by 3D
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patterning of the charge state. Because data can be both encoded
in 3D, as well as a gradient of charge conversion, high storage
densities can theoretically be achieved. We present a similar
demonstration of charge patterning in 4H-SiC, and though our
experiments are realized at 6 K, offer the potential for storage
across entire wafers compared to diamond. The VV charge
conversion works relatively well up to 150–200 K, and may pos-
sibly be extended to room temperature with the adequate choice
of material (dominant dopant or impurity concentration).

The patterning scheme is presented in Fig. 7a with: a UV (405
nm) pulse to initialize the sample toward VV0, a write pulse with
976 nm to selectively obtain VV− (or possibly VV+), and finally a
short read pulse using 976 nm. The measurement pulse here
weakly erases the information due to undesired charge conver-
sion, which is the main limitation to this technique. In Fig. 7b, we
test the spatial resolution of our setup by patterning a checker-
board design (left) where each square is a single pixel. This is
realized first parallel to the sample plane (middle) and then in
depth, orthogonal to the sample plane (right). Finally, for each
pixel, we allow control over the amount of charge conversion,

increasing the density of information that can be locally stored.
This is demonstrated in Fig. 7c by patterning a 500× 540 μm gray
scale image parallel to the sample surface.

Discussion
In this work, we have systematically investigated the charge
properties of divacancies in semi-insulating 4H-SiC, as well as
other relevant defects, such as VSi and N. Through optical exci-
tation with wavelengths spanning from 365 to 1310 nm, VV was
found to be stable in either its bright (neutral) or dark (negative
or positive) charge configuration. The photoionization energy
required to obtain the bright VV0 charge state was fitted to be
around 1.3 eV, while below in energy two-photon ionization most
likely converts VV to VV−. As a consequence, the commonly used
976 nm (below 1.3 eV) excitation is found to be detrimental for
PL measurements. Considering the maximum of the phonon
sideband of VV0, an excitation wavelength around 900–940 nm
would be optimal, with commercial lasers readily available in this
region. Above-bandgap excitation efficiently reshuffles the charge
states of all defects, turning VV bright (VV0) and VSi dark
(possibly V0

Si).
While all the results here were realized in ensembles of defects,

they should be equally applicable to single defects in similar SiC
materials. A possible major difference may arise from the usually
lower background impurity concentration required for single
defect samples, which would change the charge dynamics and
optical conversion. Similar to the NV center in diamond25, 44, the
appropriate wavelength could reduce blinking due to transient
charge conversion of single defects and increase their photo-
luminescence count rate.

Overall, taking into account multiple impurities was necessary
to obtain a complete picture of charge effects in the SiC samples;
such considerations are crucial for tuning wafer growth techni-
ques, samples with implanted layers, surface impurities or for
devices with complex electric potentials. Finally, we confirmed
that these optical charge conversions drastically improve the PL
intensity and do not measurably impact the spin properties
(ODMR, coherence). Combined with recent studies10, 45 char-
acterizing the spin and optical properties of VV or VSi in 4H and
3C-SiC, this work on charge conversion/stabilization helps to
complete the suite of techniques and technologies realized in NV
centers in diamond for use in SiC, while allowing for novel
applications such as optically controlling the charge of spins in
electronic devices realized in SiC. This study will also be relevant
to spin-to-charge conversion in SiC, though further work is
necessary.

Methods
Samples. All measurements were performed on commercially available high-
purity semi-insulating 4H-SiC diced wafers purchased from Cree32, and using a
scanning ODMR microscopy setup. Similar wafers have been used in other studies,
with measured defect concentrations of N, VV, VSi all in the order of 1014–1016 cm
−3 32, 46, 47. For the implanted sample, a high energy carbon implant ([12C] = 1013
cm−2,190 keV, 900 °C anneal for 40 min) was used, resulting in a calculated (SRIM
software) 500 nm thick layer of divacancies. For ODMR, the samples are fixed to a
printed circuit board patterned with a coplanar waveguide for magnetic resonance,
and mounted in a closed-cycle cryostat cooled down to 5–6 K (unless otherwise
mentioned). PL, ODMR, and ESR experiments were all realized on ensembles of
defects.

PL and ODMR set-ups. For VV0, the sample is excited with a 976 nm diode laser
(40 mW at sample, focused with a ×50 IR objective) and PL is measured with an
InGaAs detector (1000–1300 nm after filtering). For V�

Si , the sample is excited with
a 780 nm diode laser (10 mW at sample) and PL is measured with a Si detector
(850–950 nm after filtering, allowing simultaneous VV0 PL recording). Simplified
schematics for the PL/ODMR set-ups are given in Supplementary Fig. 1. All given
optical powers were measured at the sample. Excitation spectra are recorded by
inserting a monochromator immediately after a 100W Xe white light source in the
optical set-up. Emission spectra or measurements at selective zero-phonon lines
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(ZPL) are recorded by inserting a monochromator before the detector. For the
wavelength dependence, a set of laser diodes were successively collimated into a
300 μm multi-mode fiber and re-emitted into free space so as to ensure a constant
spot position on the sample. It should also be noted there is no significant PL
contribution from 405 or 365 nm illumination alone.

Transients and modeling. The three-pulse scheme used for the photo-dynamics
requires careful choice of the 976 nm measurement pulse duration (0.1 ms) as it is
necessary for exciting PL but can also change the charge state of VV. A long pulse
would effectively smooth the decays and prevent good fitting at short times. The
experimental decay rates and steady states are obtained from fitting with a stret-
ched exponential function, with separate fitting parameters for each power,
wavelength and temperature dependence. The actual decay curves are shown in
Supplementary Fig. 3, and all simulated lines in Fig. 3 are from the rate-equation
model. All details on this model are given in Supplementary Note 1, regarding e.g.,
simulation of the wavelength dependence (Grimmeiss model for deep trap48) and
the exact rate equations.

In total, 12 parameters are used for a simultaneous fit over a set of 70 decays
curves, with the simulation results shown by the lines in Fig. 3a, b, e. Looking at the
decays in Fig. 3a, the fits are in excellent agreement in certain ranges (833 nm
pumping) but do not account for all the charge dynamics as seen in the left figures.
For 365 nm pumping, electron-hole pair generation dominates over all
photoionization processes, and the free carrier concentration is determined by the
recombination with all involved traps, not just VV. Hence for such a simple model,
large discrepancies are expected. In addition, the simulation strictly considers a
single defect while measuring an ensemble can easily smooth features in the decays,
e.g., due to local variations in strain, charge, light intensity, etc.

Electron spin resonance. ESR experiments were realized on a X-band (dielectric
resonator, 5 mm internal diameter) ELEXSYS E580 Bruker spectrometer at 15 K. In
the differential experiments presented in Fig. 4, one important issue is the
simultaneous effect of illumination on both spin (polarization, relaxation) and
charge properties, and hence on the ESR intensity. The results presented may
convolute both aspects, unlike the PL experiments which are clearly related to the
charge state. Turning the lasers on and off would avoid this concern, however the
signal was then simply too weak to obtain any information on N, VC, or VSi. The
940 and 976 nm excitation lasers are sufficiently close in energy to limit most
effects but those related to the sharp photoionization transition in VV. In addition,
these wavelengths are both in the VV absorption sideband, but close enough to see
no appreciable differences in spin polarization due to inter-system crossing
mechanisms. Similarly, they are also above the longest ZPL wavelength of V�

Si (917
nm5), preventing any spin polarization.

Data availability. The data that support the findings of this study are available
upon request to the corresponding author.
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