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Abstract: In the present study, we estimated genetic diversity and population structure in 186 acces-
sions of Triticum and Aegilops species using 24 simple sequence repeat markers (SSR). Furthermore, an
association analysis was performed for antioxidant activities, including guaiacol peroxidase (GPX),
ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT), and dry matter (DM) under two
control and drought stress conditions. Our findings showed that drought treatment significantly
decreased DM, whereas activities of all antioxidant enzymes were increased compared to the control
conditions. The results of correlation analysis indicated that, under drought stress conditions, all
biochemical traits had a positive and significant association with each other and with dry matter. In
the molecular section, the results of the analysis of molecular variance (AMOVA) indicated that the
molecular variation within species is more than within them. The dendrogram obtained by cluster
analysis showed that grouping the investigated accessions was in accordance with their genomic
constitutions. The results of association analysis revealed 8 and 9 significant marker–trait associations
(MTA) under control and drought stress conditions, respectively. Among identified MTAs, two
associations were simultaneously found in both growing conditions. Moreover, several SSR markers
were associated with multiple traits across both conditions. In conclusion, our results could provide
worthwhile information regarding marker-assisted selection for the activity of antioxidant enzymes
in future breeding programs.
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1. Introduction

Water availability is one of the most important parameters in determining global
agricultural crop productivity [1]. Among abiotic stress, drought is known as one of the
most important effects-reducing crop productivity worldwide. It has been reported that
inaccessibility to water is responsible for more than 50% of the variance in final plants’
performance. Hence it is the most common source of performance losses throughout the
world, and developing more drought-tolerant varieties is one of the key strategies for food
security [2]. Plants will be faced with a water deficit at least of some duration in their life
cycle; hence, they use several defense mechanisms to survive and adapt to water scarcity
conditions [3]. When drought stress is prolonged, it will result in the over-generation of
reactive oxygen species (ROS), which in turn cause oxidative stress [4]. ROSs are the result
of the partial decrease of atmospheric oxygen (O2

·). These types of oxygen basically have
four forms, including singlet oxygen (1O2), superoxide radical (O2

−), hydrogen peroxide
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(H2O2), and hydroxide radical (HO·) [5]. The over-accumulation of these species due to any
type of environmental stressors can result in several damages at the cellular and molecular
levels, which in turn leads to cell and plant death [6].

Plants have several defense mechanisms that enable them to detoxify over-accumulated
ROS. One of these mechanisms is the scavenging system. This system consists of two types
of enzymatic and non-enzymatic groups of antioxidants. The first group includes the detox-
ification product malondialdehyde (MDA), monodehydroascorbate reductase (MDHAR),
catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase
(APX), and glutathione reductase (GR). The second group consists of glutathione (GSH),
carotenoids, ascorbate acid (AsA), and tocopherols [6]. Of these, enzymatic antioxidants
have the key roles in increasing tolerance to various abiotic stresses, and in several types of
studies, they are considered biomarkers for the identification of tolerant samples at both
the seedling and whole-plant stages [7–14].

Progress in molecular tools and biotechnological approaches have led to the devel-
opment of the markers associated with any type of plant properties. One of the advanced
molecular techniques is association analysis. Over the decades, association analysis has
kept its novelty in plant breeding. By discovering relationships between phenotyping and
genotyping values within large quantities of networks of data, we can glean insights into
many aspects of plant growth and development. In general, this approach has been suc-
cessfully applied in plant, animal, and human research [15]. In plant breeding, association
analysis has been employed for detecting genomic regions for various agronomic traits,
biochemical properties, root-system-architecture features, and physiological traits, as well
as tolerance to environmental stresses [15–23]. As has been proven, the existence of a high
level of genetic diversity among the studied samples is one of the basic prerequisites in
association analysis. In this regard, the use of local germplasm and/or wild relatives can
provide acceptable results.

The wild relatives of crop plants are potentially served as important gene resources for
improving world agricultural production and maintaining sustainable agro-ecosystems [13].
The introgression of novel genes from germplasm has been identified as one of the worth-
while strategies for increasing crop tolerance to various abiotic stresses and also improving
its productivity [24]. As such, under stressful conditions, breeders must decrease the
impact of environmental stresses on final performance through improving the genetic
background [25]. Among crop plants, wheat (Triticum aestivum L.) has a crucial role in
supplying food security and calories consumed by people worldwide. Furthermore, wheat
has a huge gene pool, and most studies were focused on its germplasm’s potential [26].
The genera Aegilops and Triticum are two important members in wheat germplasm, so the
species belonging to these genera have significant roles in wheat domestication. Based
on numerous studies, any of these species are an ideal source of genes and even alleles
related to biotic stress tolerance predominantly for cold, drought, heat, and salinity toler-
ance [14,22,25,27–31]. A piece of complete information regarding the potential of the wild
relatives of wheat was recently reviewed by Pour-Aboughadareh et al. [25]. As a result, all
Aegilops and Triticum species could provide an interesting gene pool for wheat breeders.

Numerous physiological and biochemical studies have been performed on drought
tolerance in wheat; however, information regarding the antioxidant capability of this
germplasm and also the genomic regions associated with these biochemical features is
limited. Hence, the main aim of the present research was to reveal the association between
some antioxidant enzymes such as GPX, CAT, APX, and POX with several microsatellite
markers (SSR) in a set of wheat accessions under drought stress conditions.

2. Materials and Methods
2.1. Plant Materials and Experimental Layout

A set of 186 accessions belonging to four species, including Ae. tauschii Coss (48 samples),
Ae. cylindrica Host (47 samples), T. aestivum L. (47 samples), and Ae.s crassa Boiss (44 sam-
ples), were studied for phenotypic and genotypic diversity in some biochemical properties.
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All samples were provided by the Ilam University Genebank (IUGB) and the National Plant
Genebank of Iran (NPGBI) (Supplementary Table S1).

A factorial pot experiment with three replications was carried out in a research
glasshouse at the Department of Agronomy and Plant Breeding, Tehran University, Karaj,
Iran, in 2018–2019. After breaking seed dormancy, all samples were sown in plastic pots
(40 cm height and 20 cm diameter), filled with equal parts soil, humus, and sand. After
complete germination, all seedlings were grown under optimal conditions of temperature
(25/15 ± 2 ◦C during the day and night) and photoperiod (16/8 h light/dark). After the
appearance of three true leaves, drought stress was initiated based on the field capacity (FC)
of each pot. The FC was determined according to the method suggested by Souza et al. [32].
Half of the pots were kept under full field capacity (FC = 95± 5%) as the control conditions,
and the other half were subjected to drought stress (FC = 30 ± 5%) as the drought stress
conditions, for 20 days. After 30 days, the shoot biomass, along with the activities of several
antioxidant enzymes, were determined.

2.2. Phenotyping Assay

Thirty days after sowing and applying drought stress, leaves of tested samples were
subjected to the extraction of crude enzymes based on a method proposed by Pagariya
et al. [33]. For this, 100 mg of fresh leaves was homogenized in 1 mL extraction buffer. The
extraction buffer contained 0.1 mM EDTA, phosphate buffer (pH 7.4), 0.1% x-Triton, and
1% polyvinyl pyrrolidone (PVP). The extracts were filtered and immediately centrifuged at
15,000× g for 20 min at 4 ◦C. Antioxidant enzyme activities, such as peroxidase (POD), cata-
lase (CAT), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX), were determined
based on the separated supernatants as described by Manoranjan and Dinabandhu [34],
Hadwan [35], Chance and Maehly [36], and Nakano and Asada [37], respectively. Finally,
the shoots of each sample were harvested and oven-dried at 70 ◦C for 72 h. After that, the
dry tissues were weighed and recorded as dry matter (DM).

2.3. Genotyping Assay

The total DNA for all investigated samples was isolated based on the CTAB proto-
col [38]. The quality of isolated DNAs was confirmed using 0.8% agarose gel electrophore-
sis. To achieve molecular data, a set of microsatellite primers was selected based on the
D genome of bread wheat, which was previously developed by Roder et al. [39] (Table 1).
All PCR reactions were run out in a 20 µL reaction mixture comprising 10 µL master mix
2XPCR (ready-to-use PCR master mix 2X; Ampliqon), 6 µL double-distilled water, 2 µL of
template DNA, and 2 µL of each primer. Amplification reactions were carried out as fol-
lows: an initial denaturation step at 95 ◦C for 5 min, followed by 35 cycles of denaturation
at 95 ◦C for 45 s, a primer-annealing temperature that varied between 51.3 and 69.3 ◦C for
45 s, and primer elongation at 72 ◦C for 60 s; the final extension at 72 ◦C was held for 5 min.
The amplified products were visualized on a 2% agarose gel stained with safe view II using
a UV-based imaging system.

Table 1. Estimated informativeness parameters for the utilized SSR markers in the present study.

Primer Chromosome Position Sequence (5′ to 3′) Na He H PIC

Xgwm-16 5D
Forward GCTTGGACTAGCTAGAGTATCATAC

2 0.93 0.50 0.37Reverse CAATCTTCAATTCTGTCGCACGG

Xgwm-44 7D
Forward GTTGAGCTTTTCAGTTCGGC

2 0.73 0.46 0.36Reverse ACTGGCATCCACTGAGCTG

Xgwm-111 7D
Forward TCTGTAGGCTCTCTCCGACTG

2 0.28 0.24 0.21Reverse ACCTGATCAGATCCCACTCG
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Table 1. Cont.

Primer Chromosome Position Sequence (5′ to 3′) Na He H PIC

Xgwm-121 5D & 7D
Forward TCCTCTACAAACAAACACAC

2 0.88 0.49 0.37Reverse CTCGCAACTAGAGGTGTATG

Xgwm-271 5D
Forward CAAGATCGTGGAGCCAGC

2 0.59 0.41 0.33Reverse AGCTGCTAGCTTTTGGGACA

Xgwm-272 5D
Forward TGCTCTTTGGCGAATATATGG

2 0.18 0.16 0.15Reverse GTTCAAAACAAATTAAAAGGCCC

Xgwm-292 5D
Forward TCACCGTGGTCACCGAC

2 0.42 0.33 0.28Reverse CCACCGAGCCGATAATGTAC

Xgwm-296 2D
Forward AATTCAACCTACCAATCTCTG

2 0.92 0.50 0.37Reverse GCCTAATAAACTGAAAACGAG

Xgwm-301 2D
Forward GAGGAGTAAGACACATGCCC

2 0.99 0.50 0.37Reverse GTGGCTGGAGATTCAGGTTC

Xgwm-325 6D
Forward TTTCTTCTGTCGTTCTCTTCCC

2 1 0.50 0.38Reverse TTTTTACGCGTCAACGACG

Xgwm-349 2D
Forward GGCTTCCAGAAAACAACAGG

2 0.97 0.50 0.37Reverse ATCGGTGCGTACCATCCTAC

Xgwm-382 2D
Forward GTCAGATAACGCCGTCCAAT

2 0.84 0.49 0.37Reverse CTACGTGCACCACCATTTTG

Xgwm-455 2D
Forward ATTCGGTTCGCTAGCTACCA

2 0.70 0.45 0.35Reverse ACGGAGAGCAACCTGCC

Xgwm-469 6D
Forward CAACTCAGTGCTCACACAACG

2 1 0.50 0.38Reverse CGATAACCACTCATCCACACC

Xgwm-515 2D
Forward AACACAATGGCAAATGCAGA

2 0.36 0.29 0.25Reverse CCTTCCTAGTAAGTGTGCCTCA

Xgwm-565 5D
Forward GCGTCAGATATGCCTACCTAGG

2 0.71 0.46 0.35Reverse AGTGAGTTAGCCCTGAGCCA

Xgwm-583 5D
Forward TTCACACCCAACCAATAGCA

2 0.73 0.46 0.36Reverse TCTAGGCAGACACATGCCTG

Xgwm-608 2D & 5D
Forward ACATTGTGTGTGCGGCC

2 0.77 0.47 0.36Reverse GATCCCTCTCCGCTAGAAGC

Xgwm-624 4D
Forward TTGATATTAAATCTCTCTATGTG

2 0.65 0.44 0.34Reverse AATTTTATTTGAGCTATGCG

Xgwm-157 2D
Forward GTCGTCGCGGTAAGCTTG

2 1 0.50 0.38Reverse GAGTGAACACACGAGGCTTG

Xgwm-212 5D
Forward AAGCAACATTTGCTGCAATG

2 0.57 0.41 0.33Reverse TGCAGTTAACTTGTTGAAAGGA

Xgwm-232 1D
Forward ATCTCAACGGCAAGCCG

2 0.24 0.21 0.19Reverse CTGATGCAAGCAATCCACC

Xgwm-311 2D
Forward TCACGTGGAAGACGCTCC

2 0.77 0.47 0.36Reverse CTACGTGCACCACCATTTTG

Xgwm-484 2D
Forward ACATCGCTCTTCACAAACCC

2 0.95 0.50 0.37Reverse AGTTCCGGTCATGGCTAGG

Mean 1.96 0.69 0.41 0.32

Na, He, H, and PIC indicate the number of amplified alleles, average heterozygosity, gene diversity, and polymor-
phism information content, respectively.

2.4. Data Analysis

A general linear model (GLM) was used to assess the main [drought stress treat-
ments (D) and accessions (A)] and interaction effects (D × A) using R software [40]. The
percentage changes in antioxidant profiles and dry biomass were estimated as used by Pour-
Aboughadareh et al. [9]. To identify the most tolerant individuals from each species, the
stress tolerance index (STI) was calculated using the iPASTIC toolkit [41]. To group the mea-
sured traits and to study the relationships among biochemical features with dry biomass,
principal component analysis (PCA) was performed using the ‘factoextra’, ‘ggdendro’, and
‘ggplot2’ packages of R software [40].
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In the molecular section, all banding patterns obtained from PCR products were used
to make the binary matrices. To test the efficiency of used primers, several informativeness
parameters such as average heterozygosity (He), polymorphism information content (PIC),
and gene diversity (H) were calculated. An analysis of molecular variance (AMOVA)
was done with the aim of the dissection of genetic variation between and within species
using the GenAlEx package ver. 6.5 [42]. To compare the level of genetic diversity in
the investigated species, some genetic indices, including the number of observed alleles
(Na), the effective number of alleles (Ne), Nei’s gene diversity (H), Shannon’s information
index (I), and the percentage of polymorphic loci (PPL), were calculated using GenAlEx
package [42]. The phylogenetic tree was drawn based on Jaccard’s genetic similarities
coefficients using MEGA ver. 5.1 software [43]. Furthermore, principal coordinate analysis
(PCoA) was computed using GenAlEx package [42]. A Bayesian clustering algorithm
was used to analyze population structure using STRUCTURE 2.3.4 software [44]. Using a
web-based STRUCTURE HARVESTER v2.3.4 [45], the optimum number of subpopulations
(∆K) was obtained. A marker–trait association analysis was performed using SSR markers
and measured biochemical traits through a mixed linear model (MLM) using TASSEL
ver2.1 software [46].

3. Results
3.1. Phenotypic Variation

The results of ANOVA indicated significant variations in growth conditions [control
and drought stress environments] and investigated samples for all measured biochemical
traits and dry matter (DM). Also, the ‘drought× accession’ interaction effect was significant
for all traits except DM. The mean values for CAT activity across all accessions increased
under drought stress conditions by 79% compared with the control conditions (Figure 1A).
CAT ranged from 0.01 to 0.15 U mL−1 in the control conditions and varied between 0.03 and
0.25 U mL−1 in stress conditions. Under drought stress conditions, Ae. cylindrica showed
the highest activity of CAT compared with other species (Figure 1A). Among the tested
species, Ae. crassa and Ae. cylindrica showed the maximum values for this antioxidant
enzyme under drought stress conditions (Figure 1A). POX activity ranged from 0.01 to
0.14 with an average of 0.06 U mL−1 in the control condition and from 0.05 to 0.32 with an
average of 0.13 U mL−1 in the stress conditions. Indeed, drought stress increased the POX
activity by 109% compared with control conditions. Among species, Ae. crassa showed the
maximum value for POX under drought stress conditions (Figure 1B).

Like other antioxidant enzymes, the activity of GXP increased from drought stress
by 108%. Under control conditions, GXP varied between 4.31 and 31.95, with a mean of
10.35 U mL−1, while under stress conditions, it ranged from 9.04 to 36.40, with an average
of 21.59 U mL−1. Furthermore, the highest activity of GPX was observed for Ae. crassa
species under drought stress conditions (Figure 1C). The APX activity was significantly
affected by drought stress. This enzyme ranged from 0.03 to 0.26, with an average of 0.09 U
mL−1 under the control conditions, whereas under the drought stress conditions, it varied
between 0.03 and 0.29, with an average of 0.14. As a result, drought stress increased the
activity of this antioxidant enzyme across all samples by 44.38% when compared with the
corresponding values under control conditions. From a species viewpoint, Ae. cylindrica
showed the highest APX activity under the stress conditions (Figure 1D). As a result,
drought stress decreases the DM parameter. Under stress conditions, DM decreased by
62% compared to control conditions (range: 0.48–0.85, with a mean of 0.63 gr in the control,
and 0.05–0.51, with a mean of 0.24 g in the stress conditions). Ae. tauschii and Ae. crassa
showed the most DM under control and drought stress conditions, respectively (Figure 2A).
The STI index was calculated in order to select the most drought-tolerant accessions. This
index varied between 0.07 and 0.75, with an average of 0.39. Based on the 3D plot rendered
by STI and dry biomass under control and drought stress conditions (Figure 2B), 41 samples
were recognized as Fernandez’s group A. Of these, 22 and 18 samples belonged to Ae. crassa
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and Ae. tauschii species, respectively. Furthermore, only one sample from Ae. cylindrica was
placed in group A.

Pearson’s correlation coefficients showed that DM was significantly correlated with
all antioxidant activities under drought stress conditions. Hence, these biochemical traits
can be used as biomarkers to identify drought-tolerant accessions (Figure 3A). A principal
component analysis (PCA) was used to assay the existence of biochemical variation among
the instigated wild wheat accessions under drought stress conditions. Accordingly, the first
two principal components (PCs) accounted for 64.52% (PC1: 47.86% and PC2: 16.66) of the
total biochemical variation. According to the PCA-based biplot, all accessions were widely
separated from each other, suggesting a high level of variability among the investigated
germplasms (Figure 3B).
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3.2. Molecular Variation

In this section, 48 polymorphic fragments were generated using the 24 polymorphism
SSR primers across all Triticum and Aegilops accessions.

The PIC values varied between 0.15 (Xgwm-272) and 0.38 (Xgwm-157, Xgwm-469, and
Xgwm-325), with an average of 0.32 (Table 1). The average heterozygosity (He) was 0.69,
and it ranged from 0.18 (Xgwm-272) to 1 (Xgwm-157, Xgwm-469, and Xgwm-325). The gene
diversity (H) ranged from 0.16 to 0.50, with an average of 0.41. Among the utilized primers,
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Xgwm-16, Xgwm-296, Xgwm-301, Xgwm-325, Xgwm-469, Xgwm-157, and Xgwm-484 showed
the highest gene diversity (Table 1). The results of AMOVA revealed that the percentage of
variance was higher within species than between them (64% vs. 36%). In terms of genetic
variation parameters, Ae. tauschii showed the maximum values of Na, Ne, I, He, and PPL
compared with other species. To investigate phylogenetic genetic relationships among all
investigated accessions, cluster analysis was computed (Table 2). Based on the rendered
dendrogram from this analysis, all samples were grouped into four main clear clusters.
The two first clusters separately consisted of all Ae. cylindrica and Ae. crassa accessions.
All Ae. tauschii accessions (except seven samples) created the third cluster. The fourth
cluster included all T. aestivum accessions along with the remaining samples of Ae. tauschii
(Figure 4A).

Table 2. Estimated genetic variation parameters using SSR markers in four investigated wheat
germplasm.

Species Na Ne H I PPL Variation
between Species

Variation
within Species

T. aestivum 1.65 ± 0.09 1.47 ± 0.06 0.27 ± 0.03 0.40 ± 0.04 73.47

64% 36%
Ae. tauschii 1.87 ± 0.05 1.66 ± 0.05 0.37 ± 0.02 0.53 ± 0.03 89.80
Ae. cylindrica 1.24 ± 0.09 1.16 ± 0.04 0.10 ± 0.02 0.16 ± 0.03 38.78
Ae. crassa 1.41 ± 0.10 1.31 ± 0.05 0.18 ± 0.03 0.28 ± 0.04 53.06

Mean 1.45 ± 0.05 1.40 ± 0.03 0.23 ± 0.01 0.34 ± 0.02 63.78

Na, observed number of alleles; Ne, Effective number of alleles; H, Nei’s genetic diversity; I, Shannon’s information
index; PPL, percentage of polymorphic loci.
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The SSR data matrix was used for estimating structure analysis. The results of structure
analysis showed that the optimum ∆K was 5 (Figure 4B), and the Q matrix was extracted
for marker–trait association analysis. The association analysis between biochemical traits
and SSR data was computed based on the MLM method. Under control and drought stress
conditions, eight and nine significant associations were found, respectively. The coefficient
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of determination (R2) ranged from 2.30 to 13.93% under control conditions, while it varied
between 5.86 and 13.70% under stress conditions (Table 3). Under control conditions, the
highest R2 values were observed for markers Xgwm-455, Xgwm-484, and Xgwm-296, while
markers Xgwm-455, Xgwm-515, and Xgwm-608 showed the highest R2 values under drought
stress conditions (Table 3). Under control conditions, some SSR markers were significantly
associated with DM and enzymatic activities as follows: Xgwm-212 and Xgwm-484 with
APX; Xgwm-272, Xgwm-296, and Xgwm-232 with CAT; Xgwm-349, Xgwm-455, and Xgwm-
515 with DM. Under drought stress conditions, markers Xgwm-271 and Xgwm-608 were
significantly associated with APX. The activity of GPX showed a significant association
with Xgwm-455 and Xgwm-232 markers. The association between Xgwm-515 and POX was
also significant. DM and STI were simultaneously associated with Xgwm-455 and Xgwm-
515 markers (Table 3). As a part of the results, the Xgwm-455 marker was simultaneously
associated with GPX, DM, and STI under drought stress conditions. Furthermore, Xgwm-
515 was significantly associated with POX, DM, and STI. Under both control and drought
stress conditions, markers Xgwm-455 and Xgwm-515 showed a significant association with
DM (Table 3).

Table 3. The list of significant marker–trait associations under the control and drought stress conditions.

Control Conditions Drought Stress Conditions

Trait Marker p R2% Trait Marker p R2%

APX Xgwm-212 0.049 8.15 APX Xgwm-271 0.021 6.18
Xgwm-484 0.009 13.79 Xgwm-608 0.006 11.51

CAT Xgwm-272 0.046 7.18 GPX Xgwm-455 0.019 8.10
Xgwm-296 0.002 13.03 Xgwm-232 0.014 7.38
Xgwm-232 0.010 6.51 POX Xgwm-515 0.023 8.45

DM Xgwm-349 0.044 6.79 DM Xgwm-455 0.005 13.70
Xgwm-455 0.0001 13.94 Xgwm-515 0.008 13.18
Xgwm-515 0.0001 8.89 STI Xgwm-455 0.013 6.84

Xgwm-515 0.037 9.71

4. Discussion

Aegilops and Triticum species are the most important relatives of bread wheat. Knowl-
edge of genetic diversity in these natural resources can provide an opportunity for future
wheat-breeding programs [47]. Despite various studies that have exhibited the excellent
breeding potential of these species, their genetic potential is still mainly underutilized [48].
Hence, estimating the population structure in wheat germplasm is one of the main steps of
the utilization of breeding potential.

Drought or water-deficit stress is one of the main consequences arising from changes
in climate. Thus, screening wheat germplasm in different growth and development stages
is an important task for improving its drought tolerance in future breeding programs [49].
Therefore, we assessed the responses of a core collection of bread wheat genotypes and wild
relatives possessing the D genome to drought stress at the early stage of growth in terms of
dry matter and four antioxidant enzymes. Our results showed a high level of physiological
and biochemical variation among the investigated accessions (Figures 1 and 2). This result
was in accordance with the previous studies on the response of the wild relatives of wheat
to drought stress [11,13,18,50].

As part of the phenotypic assay, highly positive and significant associations were
observed among dry matter and activities of CAT, APX, GPX, and POX enzymes under
drought stress conditions (Figure 3A). Indeed, this finding confirms the value of the worthi-
ness of the data in the marker–trait association analysis [15]. Multivariate methods provide
powerful classifiers to capture phenotypic diversity and can identify separate groups
related to functional plant adaptation and regional origin [51]. In this work, principal com-
ponent analysis (PCA) showed that the biochemical traits and dry matter captured 64.52%
of the total variation, suggesting that the antioxidant profiles were efficient in showing the
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genetic variation among the investigated wheat accessions (Figure 3B). The biplot-based
PCA simultaneously indicated the interrelationships among between biochemical profile
and dry matter (DM), as well as the distribution of samples based on the two first PCs. The
first PC showed a positive and significant association with DM and other biochemical traits;
hence, it is named the effective component under drought stress. As shown by the angles
among traits’ vectors, all antioxidant enzymes were positively correlated with DM. For-
merly, these associations were confirmed by the Pearson’s coefficients (Figure 3B). Likewise,
several reports indicated that PCA is an efficient multivariate method to display the level
of phenotypic variation and intercept associations between measured traits [9,15,52–55].

To identify the most drought-tolerant accessions, we used a 3D plot rendered using
STI index and dry matter values under both control and drought stress conditions. Among
drought-tolerance indices, STI has a good capability of identifying the most tolerant geno-
types, and this fact has been confirmed in numerous studies [56–59]. Accordingly, out of
186 accessions, 41 samples were identified as the most tolerant accessions. All recognized
samples (except one accession) belonged to Ae. crassa and Ae. cylindrica species (Figure 2B).

Furthermore, a high level of molecular variation was also revealed among the in-
vestigated wheat accessions through SSR markers. The used primers generated two
polymorphic bands across all investigated accessions (Table 1). Based on three marker-
informativeness parameters (PIC, He, and H), we found that the used primers had a good
efficiency for assessing the genetic diversity and population structure analyses. In other
words, this finding reveals an acceptable competence of the used primers in marker–trait
association analysis in the investigated germplasm. According to the result of ANOVA, a
high degree of molecular diversity was found within species (Table 2). Previously, several
researchers estimated the genetic diversity in wheat germplasm through various molecular
marker techniques. For instance, Moradkhani et al. [60] using microsatellite markers re-
ported a vast genetic diversity in some Aegilops populations. Pour-Aboughadareh et al. [61]
using the ISSR technique revealed the high genetic diversity among Triticum boeoticum
populations collected from different regions of Iran. Furthermore, Naghavi et al. [62],
Pour-Aboughadareh et al. [63], Arabbeigi et al. [28], and Etminan et al. [64] reported a high
level of genetic diversity among Iranian wild relatives of wheat using various markers
such as ISSR, SSR, SCoT, and CBDP markers. As shown in Table 2, the genetic diversity in
the Ae. tauschii population was greater than what was found among other species. This
result suggests a good breeding potential of this species for exploring new genes and even
alleles with the aim of utilization in breeding programs. In this regard, numerous studies
mentioned the fact that Ae. tauschii can serve as an ideal breeding resource especially
for improving tolerance to abiotic stresses. Ahmadi et al. [54] examined a set of the wild
relatives of wheat and reported that Ae. tauschii responded well to drought stress due to its
expanded root system. This species has also shown good potential to cope with salt stress
when it was investigated under severe salinity conditions at the seedling stage [10].

After detecting a high level of biochemical and molecular variability in the studied
germplasm, we used a MLM model-based marker–trait association analysis (MTA) to
incorporate phenotypic and genotypic data [65]. The results of association analysis for
the biochemical profile and other parameters indicated that the MLM model was effec-
tive in detecting significant MTAs. This finding is in agreement with previous reports
that showed a high efficiency of the MLM method to perfectly present the significant
association [15,16,66–68]. In this study, a total of eight and nine significant SSR markers
associated with DM and activities of antioxidant enzymes in the control and drought stress
conditions, respectively (Table 3). The explained coefficient of determinations (R2) for the
identified MTAs were high (varied between 2.30 and 13.93% in the control and between
5.86 and 13.70% in the drought stress conditions), suggesting many genes contribute to the
main part of the measured quantitative traits [15].

Under control conditions, significant MTAs were as follows; Xgwm-212 and Xgwm-484
with APX, Xgwm-272, Xgwm-296, and Xgwm-232 with CAT, and Xgwm-349, Xgwm-455, and
Xgwm-515 with DM. Under drought stress conditions, markers Xgwm-271 and Xgwm-608
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were significantly associated with APX. Two markers Xgwm-455 and Xgwm-232 showed a
significant association with GPX. The association between Xgwm-515 and POX was also
significant. The DM and STI were simultaneously associated with Xgwm-455 and Xgwm-515
markers. Furthermore, the Xgwm-455 marker was simultaneously associated with GPX, DM,
and STI under drought stress conditions (Table 3); this result is more desirable in breeding
programs [16]. Among the significant associations, Xgwm-455 and Xgwm-515 markers
revealed a significant association with DM under both growing conditions. In other words,
this finding reveals that the growing conditions are not effective in these MTAs. Indeed,
this result confirms that these genomic regions are associated with different growth and
development features across two growing conditions. Hence, these markers are important
to wheat breeding for biochemical adaptation in drought-prone environments [69].

5. Conclusions

Antioxidant enzymes play a key role in the defense of plants and help them to cope
with the oxidative stress induced by various types of environmental stresses. The identifi-
cation of molecular markers associated with these biochemical parameters can accelerate
the screening of tolerant genetic materials in breeding programs. The results of this study
illustrated that wild relatives of wheat have a high level of biochemical and molecular
variability. Furthermore, the SSR marker system was a powerful technique for identifying
significant marker–trait associations in this germplasm. Our results indicated that the
interaction between growth conditions and accessions is not influenced by some MTAs.
Therefore, the results obtained from the present study contribute to the knowledge of
genetics and breeding for key biochemical activities in wheat.
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