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Allogeneic hematopoietic cell transplant (HCT) is curative for pediatric patients with
non-malignant hematopoietic disorders, including hemoglobinopathies, bone marrow
failure syndromes, and primary immunodeficiencies. Early establishment of donor-
derived innate and adaptive immunity following HCT is associated with improved overall
survival, lower risk of infections and decreased incidence of graft failure. Immune
reconstitution (IR) is impacted by numerous clinical variables including primary disease,
donor characteristics, conditioning regimen, and graft versus host disease (GVHD).
Recent advancements in HCT have been directed at reducing toxicity of conditioning
therapy, expanding donor availability through use of alternative donor sources, and
addressing morbidity from GVHD with novel graft manipulation. These novel transplant
approaches impact the kinetics of immune recovery, which influence post-transplant
outcomes. Here we review immune reconstitution in pediatric patients undergoing
HCT for non-malignant disorders. We explore the transplant-associated factors that
influence immunologic recovery and the disease-specific associations between IR and
transplant outcomes.

Keywords: immune reconstitution, hematopoietic stem cell transplant, non-malignant disorders,
hemoglobinopathy, severe combined immunodeficiency, aplastic anemia

INTRODUCTION

Allogeneic hematopoietic cell transplant (HCT) is a key therapeutic approach for many
non-malignant hematopoietic diseases in pediatric patients, including hemoglobinopathies,
bone marrow failure syndromes, and immunodeficiencies. Effective reconstitution of donor-
derived innate and adaptive immune cell number and function following HCT is critical for
promoting donor cell engraftment, restoring protection against infections, and improving overall
survival (1, 2).

Recovery of immunity after HCT is influenced by various clinical factors, including primary
diagnosis, donor type, stem cell source, graft manipulation, conditioning regimen (i.e., intensity
of conditioning, use of irradiation, serotherapy), and pharmacologic prophylaxis, development
and treatment of graft-versus-host disease (GVHD) (1, 2). After HCT, establishment of donor
immunity is variable and occurs in phases. Innate immune reconstitution (IR) occurs first with

Abbreviations: ATG, anti-thymocyte globulin; BM, bone marrow; CMV, cytomegalovirus; GVHD, graft-versus-host disease;
HCT, hematopoietic cell transplant; IR, immune reconstitution; MAC, myeloablative conditioning; MRD, matched related
donor; MSD, matched sibling donor; NK, natural killer; PB, peripheral blood; RD, related donor; RIC, reduced intensity
conditioning; RTC, reduced toxicity conditioning; UCB, umbilical cord blood; URD, unrelated donor.
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neutrophils, monocytes, natural killer (NK) cells, and dendritic
cells expected to normalize in the first weeks to month after
HCT (1). Adaptive immune system recovery occurs more slowly
with B cell and CD8 T cell numbers normalizing between
100 days and 6 months post HCT and thymic-dependent CD4
T cell reconstitution occurring between 6 and 9 months (1).
Initial T cell reconstitution occurs through peripheral expansion
of CD8 memory T cells from the donor graft or recipient
T cells remaining after conditioning (3). These peripherally
expanded CD8 T cells are responsive to cytokines and previously
encountered viruses; however, they have limited ability to
respond to novel antigens (3). The second phase, leading
to full T cell reconstitution, relies on lymphoid progenitors
undergoing thymic differentiation into naive CD4 or CD8 T cells
expressing MHC-restricted, antigen-specific T cell receptors (3).
The kinetics of reconstitution of these distinct components of the
immune system correlate with post-transplant morbidity related
to infections, graft loss and GVHD. Here we review the factors
that influence recovery of innate and adaptive immunity in
pediatric patients undergoing HCT for non-malignant disorders
and the impact of this reconstitution on general and disease-
specific outcomes.

TRANSPLANT-ASSOCIATED FACTORS
AFFECTING IMMUNE RECONSTITUTION

Stem Cell Source
Peripheral blood (PB), bone marrow (BM), or umbilical cord
blood (UCB) stem cells can be utilized for HCT from either
related (RD) or unrelated donors (URD). These donor sources
vary in cellular composition with PB grafts having 10-fold
higher T and B cells than BM grafts and single UCB grafts
having 10–100-fold fewer nucleated cells compared to BM (1,
4, 5). The differences in graft composition impact donor IR
and infectious complications following HCT. Regarding innate
immunity, neutrophil engraftment occurs at approximately 14,
21, and 30 days after a PB, BM, and UCB HCT, respectively (6).
Interestingly, NK cell numbers normalize by 1 month post HCT
independent of graft source (6). Yet, UCB recipients have been
found to have higher numbers of NK cells at 3, 9, and 12 months
after transplant (7).

Graft source also impacts reconstitution of adaptive
immunity. HCT with UCB has been associated with higher naive
and memory B cell numbers at 6 months post HCT compared to
BM and PB grafts (8). In contrast, T cell reconstitution is delayed
after UCB HCT (7–9). UCB contains antigen-inexperienced
naive T cells; therefore, T cell recovery is entirely thymic
dependent resulting in profound early lymphopenia (7, 10, 11).
Recipients of UCB HCTs have a slower recovery of thymopoiesis
than patients receiving BM stem cells as evidenced by a lower
thymic-derived naive CD4 T cells at 6 months post HCT (7).

T cell reconstitution also differs between BM and PB
recipients. In a single institution randomized trial, patients
who received PB grafts had faster lymphocyte recovery, most
significantly CD4 T cells, compared to BM graft recipients (4).
Consistent with slower IR, BM stem cell recipients had a 2.4-fold

higher rate of severe infections and a higher risk of infection-
related mortality (4). A larger, phase 3 trial confirmed earlier IR
and lower infection risk in patients receiving PB grafts but did not
identify any differences in mortality (12). Thus, donor IR after
HCT is highly impacted by distinct properties of the different
stem cell sources (Figure 1).

Alternative Donor Sources
While an HLA matched donor is preferred, less than 25% of
patients will have an available sibling donor and the likelihood
of identifying a matched URD in the registry is impacted
by numerous factors, including ethnicity of the patient (13).
Consequently, alternative donors have been increasingly used for
HCT with unique implications for post-HCT IR (Figure 1).

UCB has been utilized as an alternative donor source and
has distinctive IR properties as discussed above. However,
there are significant barriers to success of UCB transplants,
including graft failure and delayed neutrophil and T cell recovery,
resulting in infectious complications (10, 11, 14). Addressing
these obstacles has been an active area of investigation (6,
10, 15). UCB has lower total nucleated cell and CD34 + cell
dose (per recipient’s weight), which has been associated with
delayed hematological recovery and graft failure (11). Strategies
to improve cell dose for UCB have included double cord
blood transplant and ex vivo expansion of cord blood units.
While IR data on double UCB HCT is limited in pediatrics,
in adults, it has not consistently demonstrated an improvement
in IR compared to single UCB HCT (10, 16, 17). This may
be, in part, related to confounding factors, including the use
of T cell depletion (10). Further studies are needed to better
address this question. In contrast, recent early phase clinical
trials using ex vivo cord blood expansion have demonstrated
that neutrophil engraftment can be shorted to 9 days from
21 days (15, 18). In regard to T cell recovery, lower doses of
anti-thymocyte globulin (ATG) have been associated with faster
recovery of CD4 and CD8 T cells after UCB transplant (14,
19, 20). Additionally, use of better HLA-matched cord blood
units with higher CD3 T cell counts has been shown to improve
immune recovery (21).

The use of haploidentical donors as an acceptable alternative
stem cell source has surged with recent studies aimed to reduce
the risk of GVHD, sustain donor engraftment, and support
earlier IR (13, 22). The kinetics of IR following haploidentical
donor HCT depends on conditioning regimen, stem cell source,
and graft manipulation strategy utilized. For example, time to
neutrophil engraftment varies from a median of 11–12 days
after T cell depletion with high dose CD34 + cells to 13 days
after GCSF-mobilized haploidentical unmanipulated PB graft to
15 days after unmanipulated haploidentical BM (23). Similar
to HLA-matched transplant, monocyte and NK cell recovery
is rapid and occurs by day 15 and 30, respectively, after
haploidentical HCT (23). Regarding adaptive immunity, patients
receiving T cell replete haploidentical grafts have more rapid T
cell IR during the first 6 months after HCT compared to patients
who received T cell-depleted grafts (23). T cell function and
new naive T cell production remain low for 12–24 months after
unmanipulated haploidentical HCT (23).
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FIGURE 1 | Effects of transplant-related factors on immune reconstitution. Different types of immune cells and their differentiation are depicted. After allogeneic HCT
innate immunity (blue) recovers early (within 30 days). Reconstitution of adaptive immunity (red) is later and more variable (often up to 1 year). The kinetics of immune
recovery is influenced by primary diagnosis (&), conditioning regimen ($), use of serotherapy (‡), stem cell source (¶), and GVHD (#). Each transplant-associated
factor distinctly impacts different immune populations and differentiation stages.

Due to delayed recovery of adaptive immunity and associated
infection risks, strategies for ex vivo elimination of αβ T cells
and CD19 B cells with no pharmacologic prophylaxis for GVHD
has been utilized for haploidentical transplant in patients with
non-malignant disorders (13, 22). In a study of 23 patients,
γδ T cell recovery occurred early (∼1 month post HCT), but
αβ T cell and CD19 B cell repopulation was delayed to 9–
12 months, respectively (13). Alternative donor sources are often
used in patients with non-malignant disorders who have no
available familial or registry donor. Improving IR in this patient
population remains an active area of investigation.

Conditioning Strategies
IR is also impacted by conditioning regimen, including intensity
of chemotherapy, use of radiation, and use of serotherapy
(Figure 1). In particular, conditioning therapy can damage the
thymus and impair its function, which is essential for full T cell
reconstitution. For example, cyclophosphamide and radiation
induce acute thymic injury with loss of cellularity whereas ATG
and alemtuzumab serotherapy significantly deplete thymocytes
resulting in prolonged T cell aplasia (3).

Patients with non-malignant disorders often receive reduced
toxicity (RTC) and reduced intensity conditioning (RIC)

regimens in order to limit the morbidity associated with
myeloablative conditioning (MAC). RIC regimens are non-
myeloablative while RTC regimens are myeloablative. Both
approaches have fewer side effects and organ toxicities compared
to traditional MAC. Law et al. reported that following a RTC
regimen of alemtuzumab, busulfan, and fludarabine median
time to neutrophil recovery was 16 days while time to B cell
and T cell reconstitution was 3 and 6 months, respectively
(24). A RIC approach with alemtuzumab, fludarabine and
melphalan has been used by our group and others (25–
28). We recently reported IR and infectious complications in
patients after HCT with early alemtuzumab (day -21) (26). NK
cell recovery was rapid by day 100 and lymphocyte recovery
was dependent on donor source, namely related (RD) versus
unrelated donor (URD). Mean CD3, CD4, and CD8 T cell
numbers normalized by 6 months after RD HCT and by 1 year
in the URD group (26). B cell recovery occurred by day 100
for RD recipients and by 1 year for URD recipients (26).
Despite these differences, infections did not differ between the
groups (26).

Timing and dose of serotherapy significantly impact IR (20, 29,
30). Admiraal et al. reported on IR in patients with malignant and
non-malignant disorders receiving ATG as part of conditioning
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(20). They found that successful CD4 IR was related to the area
under the curve (AUC) of ATG after donor stem cell infusion
(20). Patients who received UCB HCT had delayed IR with an
AUC ≥ 20 AU × day/mL while patients who received BM and
PB HCT had decreased IR only at an AUC ≥ 100 AU × day/mL
(20). Notably, an ATG AUC≥ 40 AU× day/mL prior to stem cell
infusion resulted in a lower incidence of graft failure and acute
and chronic GVHD (20). Marsh et al. similarly demonstrated
that alemtuzumab level at time of transplant impacts outcomes
(30). They found patients with a level <0.15 mg/mL had
threefold higher rates of acute GVHD than patients who had
levels >0.16 mg/mL at the time of transplant. Alemtuzumab
levels above 0.57 mg/mL were associated with delayed T cell
recovery and very high levels (4 mg/mL) were associated with
mixed chimerism (30). The approach to conditioning is often
dictated by primary disease/graft source and requires careful
consideration to balance IR with risks of GVHD and graft failure.

DISEASE-SPECIFIC OUTCOMES

Hemoglobinopathies
HCT for pediatric patients with thalassemia and sickle cell disease
is potentially curative and the impact of IR on transplant-
associated morbidity and outcome has been investigated by
several groups. Rajasekar et al. detailed IR patterns in patients
with β thalassemia major following MAC and matched related
donor (MRD) HCT with BM graft (31). They found that NK
cells, monocytes and dendritic cells recovered within 1 month
of transplant (31). CD8 T cells and B cells repopulated at 2
and 4 months, respectively, while CD4 T cell recovery did not
occur by 1 year post HCT (31). Consistent with this, naive CD4
T cell (CD45RA+) recovery was delayed more than a year and
correlated with age, with younger patients having faster recovery
(31). Interestingly, multivariate analysis showed that NK cell
count correlated with transplant success as patients with NK cells
below a median of 142/µL at 28 days post HCT had a significantly
higher rejection rate and lower event free survival (31).

In order to prevent graft failure/rejection, in vivo T
cell depletion is increasingly utilized in patients with
hemoglobinopathies (32). An evaluation of IR in children

with severe β thalassemia major following matched sibling donor
(MSD) HCT found that the addition of ATG led to delayed
CD8 T cell recovery at 6 months but no change in CD4 T cell
reconstitution, which occurred at 12 months (33). Use of ATG
containing conditioning regimens was associated with variable
rates of bacterial infection (17–70%) and cytomegalovirus (CMV)
reactivation (36–45%) (32, 33). These infectious complications
are similar to those in patients transplanted without in vivo T
cell depletion (32). However, rates of GVHD were lower after
ATG-based conditioning (32).

Our group has reported similar outcomes in patients with
hemoglobinopathies undergoing HCT with in vivo T cell
depletion utilizing alemtuzumab (34). Lymphocyte recovery of
CD4, CD8, and CD19 occurred by 1 year post transplant and was
impacted by duration and intensity of immunosuppression for
GVHD prophylaxis/treatment (34). Infection risk was highest in
the first 6 months post HCT with bacterial infections and CMV
reactivation in 28 and 43% of patients, respectively (34).

Aplastic Anemia
Patients with severe aplastic anemia undergo HCT as first line
therapy if a MSD is available or as salvage therapy if they fail
immune suppression therapy. A retrospective review of patients
who failed immune suppression therapy and received MUD
HCT after fludarabine, cyclophosphamide, and alemtuzumab
conditioning therapy demonstrated that the majority of children
achieved normal lymphocyte subsets by 12 months post HCT
(35). Infectious complications included adenoviremia (2.3%),
EBV viremia (22.7%), and CMV viremia (22.7%) (35). Our
group published a report of 17 patients undergoing HCT with
alemtuzumab, fludarabine and melphalan conditioning (36).
While NK cells recovered early, T cell (both CD4 and CD8)
and B cell recovery was markedly delayed with all populations
normalizing by 1 year after HCT (36). Consistent with these
kinetics, infection rates were higher in the first 6 months
post HCT (36).

A recent study of pediatric and adult patients (median age of
14 years) with aplastic anemia treated with haploidentical HCT
utilizing busulfan, cyclophosphamide and ATG reported rapid
neutrophil recovery at median of 12 days and monocyte recovery
by 30 days after transplantation (37). CD8 T cell recovery

TABLE 1 | Immune reconstitution with and without conditioning for SCID.

Genotype Immune phenotype Conditioning CD8 T Cell CD4 T Cell B Cell References

IL2RG/JAK3 T- B + NK- No + + – (38–42, 44, 45)

Yes + + +

ADA T- B- NK- No + + +

Yes + + +

RAG1/2/Artemis T- B- NK + No – – –

Yes + + +

IL7R T- B + NK + No + + +*

Yes + + +

+Indicates reconstitution is likely after HCT. −Indicates unlikely to reconstitute after HCT. *Indicates recipient reconstitution aided by donor cells.
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occurred at 60 days while CD4 T cell repopulation was delayed
to 1 year post HCT, resulting in an inverted CD4:CD8 ratio
during that time period (37). Interestingly, patients with a lower
CD4:CD8 ratio on day 30 post HCT had higher overall survival
(37). Younger recipient age, female gender, high mononuclear
cell count in the graft, and absence of CMV reactivation were all
independently associated with improved IR after transplant (37).

Primary Immunodeficiency
Severe combined immunodeficiencies (SCID) are a
heterogeneous group of genetic disorders characterized by
a lack of T cell progenitors available to develop within the
thymus resulting in failure of T cell maturation as well as
impaired cellular and humoral immunity (38). IR following HCT
for SCID is variable based on intrinsic factors related to the
underlying genetic defect (i.e., timing of developmental arrest)
and modifiable factors, such as conditioning therapy (Table 1)
(38–41). HCT without conditioning from an HLA-matched
donor (related or unrelated) or T cell-depleted haploidentical
donor allows successful thymopoiesis and T cell IR in SCID
patients with IL2 receptor gamma chain (IL2RG), Janus-
associated kinase 3 (JAK3), and adenosine deaminase (ADA)
mutations (38). However, patients with IL2RG- and JAK3-
mutant SCID transplanted without conditioning have lower
(often absent) donor stem cell engraftment and, consequently, do
not have donor B cell repopulation (42). In the absence of donor B
cell engraftment, patients often require lifelong immunoglobulin
replacement. In contrast, patients with interleukin-7 receptor
(IL7R)-deficient SCID have intact function of B cells, which can
produce immunoglobulin with help from donor T cells (38).
Notably, without donor stem cell engraftment, patients are at
risk of early T cell exhaustion due to limited donor-derived
thymopoiesis (38). In ADA-deficient SCID, the majority of
patients who receive non-conditioned MRD HCT graft engraft
donor stem cells and have sustained cellular and humoral IR
(43). SCID patients with mutation of RAG1, RAG2 or DCLRE1C
(ARTEMIS) have arrest of thymopoiesis at later developmental
stages and require conditioning to achieve recovery of donor
immunity (38).

A recent prospective study demonstrated that patients
with SCID who received conditioning (RIC or MAC)
prior to HCT had significantly higher levels of T, B, and
myeloid cell donor chimerism at day 100, which persisted
at 1 year post HCT (44). Furthermore, use of conditioning
correlated with higher CD4 cell counts and greater likelihood
of independence from immunoglobulin therapy at 1 year
post HCT (44). There was no difference in overall survival
based on receiving conditioning (44). While IR is improved
with pre-transplant conditioning, there are significant
potential toxicities and optimal conditioning therapy is still
not known (38, 44).

In addition to conditioning, many other variables impact IR
after HCT in SCID patients. HCT with an URD is associated
with better T cell reconstitution whereas HCT with a mismatched
related donor has poorer B cell reconstitution (45). IR also varies
based on SCID genotype. RAG1/2 and DCLRE1C mutations
have poorer T cell reconstitution after transplant (45). In

regard to B cell reconstitution, in non-MSD recipients, ADA,
IL7R, CD45, and CD3 genotypes have a higher probability of
stopping immunoglobulin replacement therapy compared to
IL2RG, JAK3, RAG1/2, and DCLRE1C genotypes (45).

Regardless of genotype or conditioning, a CD4 T cell count
≥500 cells/cumm at 6 and 12 months post HCT correlates with
significantly better long-term overall survival (45). Furthermore,
in SCID patients receiving T cell replete grafts, low numbers of
total T cells, CD8 T cells, naive CD4 T cells, and polyclonal Vβ

diversity at day 100 were all linked to higher risk of death or need
for a second transplant at 2 years (44).

DISCUSSION

Reconstitution of the donor-derived immune system is essential
for achieving optimal outcomes for pediatric transplant
recipients. The timing and extent of recovery of immune cell
numbers and function directly impact infectious complications,
development and treatment of GVHD, and long-term survival.
Innate immunity establishes rapidly after transplant and,
generally, is only modestly impacted by transplant-associated
variables. In contrast, adaptive immunity recovers with
highly variable kinetics that are strongly influenced by
numerous factors. Indeed, the timing and characteristics of
IR can be adjusted by modifiable factors, including stem cell
source and dose, conditioning regimen, and use/timing of
serotherapy. The establishment of donor immunity uniquely
impacts the post-transplant course based on initial diagnosis
and disease presentation. As such, it’s critical to not only
assess general patterns of IR but to evaluate these within
disease-specific contexts.

Newer transplant approaches utilizing alternative donor
sources, novel preparative regimens, and innovative graft
manipulation strategies will invariably impact recovery of
immune function. Additionally, identifying therapies that
enhance IR remains an important focus of investigation.
Innovative approaches include use of cytokines (IL-7 and IL-22),
keratinocyte-growth factor, sex steroid ablation, and adoptive cell
therapies (3, 46–51). Cellular therapies, such as viral-specific T
cells, provide opportunities to support immune function while
awaiting establishment of full IR. Careful evaluation of immune
recovery will be essential in determining the impact of these
therapeutic advances on transplant outcomes.
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