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Abstract
In the resting state, heartbeats evoke cortical responses called heartbeat-evoked responses (HERs), which reflect
cortical cardiac interoceptive processing. While previous studies have reported that the heartbeat evokes cortical
responses at a regional level, whether the heartbeat induces synchronization between regions to form a network
structure remains unknown. Using resting-state MEG data from 85 human subjects of both genders, we first
showed that heartbeat increases the phase synchronization between cortical regions in the theta frequency but
not in other frequency bands. This increase in synchronization between cortical regions formed a network
structure called the heartbeat-induced network (HIN), which did not reflect artificial phase synchronization. In the
HIN, the left inferior temporal gyrus and parahippocampal gyrus played a central role as hubs. Furthermore, the
HIN was modularized, containing five subnetworks called modules. In particular, module 1 played a central role
in between-module interactions in the HIN. Furthermore, synchronization within module 1 had a positive
association with the mood of an individual. In this study, we show the existence of the HIN and its network
properties, advancing the current understanding of cortical heartbeat processing and its relationship with mood,
which was previously confined to region level.
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Introduction
One of the important purposes of the brain is to main-

tain homeostasis by continuously sensing the homeo-

static state (for example, visceral sensations and
immunologic signals), which is termed interoception, and
the brain regulates the bodily condition using this homeo-
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Significance Statement

Complex brain processing usually occurs at a network level, which requires an interaction between brain
regions. However, despite its importance in homeostasis and affective processing, a network level pro-
cessing of cardiac interoception has not been investigated. Here, we first provided an evidence that the
heartbeat induces phase synchronizations between cortical regions those comprise a heartbeat-induced
network (HIN) with control analyses excluding the possibility of an artificial synchronization. Furthermore, by
applying graph-theoretical analysis, we find hubs of the HIN and found out that it is a modularized network
with five modules. Finally, we also showed the relationship between the participants’ mood and the HIN.
These results provide the first evidence of network-level heartbeat processing and its relevance with
emotion.
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static information even in the resting state (Craig, 2009).
Recently, interoceptive processing, especially at the cor-
tical level, has been proposed to play various roles not
only in reflective homeostatic regulation but also in psy-
chological processes, including affective and cognitive
processing (Tsakiris and De Preester, 2018). Therefore,
understanding the precise mechanism of cortical intero-
ceptive processing is important for understanding “em-
bodied” emotion and cognition.

Because the brain processes interoceptive information,
there exist brain responses related to visceral signal pro-
cessing. For example, the heartbeat signal evokes cortical
activity defined as heartbeat-evoked responses (HERs;
Pollatos and Schandry, 2004). HERs are associated with
many psychological processes, including heartbeat
awareness (Pollatos and Schandry, 2004), emotion pro-
cessing (Couto et al., 2015; Maister et al., 2017; Kim et al.,
2019), visual awareness (Park et al., 2014), bodily self-
consciousness (Park et al., 2016), and autobiographical
self-related processing (Babo-Rebelo et al., 2016a,b).
Furthermore, disruption of resting-state HERs is known to
be related to emotion-related psychiatric diseases/disor-
ders, such as depression and borderline personality dis-
order (Terhaar et al., 2012; Müller et al., 2015).

While previous studies have shown that the heartbeat
evokes region-level or sensor-level cortical responses
and is related to a variety of psychological states and
functions, whether the heartbeat also induces interactions
between cortical regions remains unknown. However,
previous fMRI studies have shown that network-level fluc-
tuations vary with visceral signal-related measures such
as heart rate variability (HRV; Chang et al., 2013; Rebollo
et al., 2018), indicating that heartbeat-related interactions
may occur between cortical regions. Therefore, we hy-
pothesized that the heartbeat induces functional coupling
between cortical regions involved in heartbeat processing
and forms a network structure in the resting state. In this
study, using a resting-state MEG dataset, we investigated
the heartbeat-induced network (HIN), which was defined
as a network composed of significantly increased phase
synchronization between regions compared with baseline
values. We first showed the existence of the HIN and that
it does not reflect artificial synchronization between cor-
tical regions. Then, we investigated the properties of the
HIN using graph-theoretical measures. In particular, we
first investigated the hubs of the HIN, which play a central
role in the HIN. Next, we investigated the modularized

property of the HIN to determine whether the HIN is one
homogeneous network or can be segregated into several
subnetworks. Finally, cardiac interoceptive processing
has been suggested to be closely related to an affective
state of an individual (Terhaar et al., 2012; Müller et al.,
2015). Therefore, we hypothesized that synchronization
within the HIN, reflecting network-level cardiac interocep-
tive processing, is related to an affective state of an
individual. We tested this hypothesis by investigating the
relationship between synchronization within the HIN and
affective state scores of study participants.

Materials and Methods
Dataset description

Resting-state MEG data from 89 subjects collected
from the Human Connectome Project (HCP) S1200 data
release were used in this study (Larson-Prior et al., 2013;
Van Essen et al., 2013, RRID: SCR_008749). All subjects
were young (22–35 years of age) and healthy. MEG re-
cordings were collected on a whole-head Magnes 3600
scanner (4D Neuroimaging) with 248 magnetometer chan-
nels at a sampling rate of 2034.51 Hz. Recordings were
performed in three sessions, and each session lasted 6
min. HERs were extracted from the preprocessed version
of the MEG dataset, which is publicly available at Con-
nectome DB (Hodge et al., 2016). The preprocessing
pipeline of HCP data included segmentation of the raw
data into epochs of 2 s and removal of bad segments and
bad channels. Importantly, an independent component
analysis (ICA; Hämäläinen et al., 1993) was applied to
remove cardiac field artifacts (CFAs) and electrooculog-
raphy (EOG)-related artifacts, and the data were finally
downsampled to 508.68 Hz. Notably, because these pre-
processed data did not include electrocardiogram (ECG)
recordings, which are essential for HER extraction, we
used an ECG recording included in the raw MEG data.
Among 89 subjects, four subjects were excluded (IDs
133019, 140117, 149741, and 17746); we failed to detect
the R-peak in the ECG recording of subject 149741, and
in subjects 133019, 140117, and 177741, an excessive
error occurred when performing Brainnetome atlas-based
(Fan et al., 2016) source time course extraction [the time
course extraction of �16 cortical regions (among 210
cortical regions) failed in this subject]. Finally, 85 subjects
were included in our analysis (47 males and 38 females).

MEG analysis
HER extraction procedure

HER extraction and preprocessing were performed us-
ing the FieldTrip toolbox (Oostenveld et al., 2011, RRID:
SCR_004849). First, preprocessed HCP MEG data, which
were initially segmented into 2-s epochs, were concate-
nated into one continuous time series such that each
segment was realigned to its original location in the raw
MEG recording (preprocessed data contained information
about the locations of each segment in the raw MEG
recording). Because bad segments were removed, the
concatenated continuous time series data had empty
spaces where the bad segments existed. These empty
spaces were replaced by NaN. Next, the R-peak was
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detected in the ECG recordings using the Pan-Tomkins
algorithm (Pan and Tompkins, 1985). Then, epoching of
HERs from 900 ms before the R-peak to 1800 ms after the
R-peak was performed on the concatenated continuous
MEG data. As mentioned above, the concatenated MEG
data contained the time window including NaN; thus, the
HER epoching procedure resulted in some NaN-
containing epochs. These NaN-containing HER epochs
were removed. Finally, the HER extraction procedure re-
sulted in 840.8 (�138.7) HER epochs on average. The
mean interbeat interval (IBI) of every subject was 981.8 ms
[�151.5, corresponding heart rate: 61.11 beats per min-
ute (BPM)], with a range of 675.4–1374.2 ms (heart rate
range: 43.67–88.84 BPM).

Source reconstruction of HERs
All sensor HER data were source-reconstructed using

the linearly constrained minimum variance (LCMV) beam-
former methods (Van Veen et al., 1997) provided in the
FieldTrip toolbox in a manner similar to that used in a
previous study (Heusser et al., 2016). A common spatial
filter was estimated for each source point using HER data
from all trials, an HCP-provided single-shell volume con-
duction head model and an HCP-provided 4-mm grid
source model for every subject (Larson-Prior et al., 2013).
Then, this common spatial filter was applied to sensor
HER data (sensor � time matrices) to calculate the time
courses of each source. Finally, we used Brainnetome atlas-
based parcellation (Fan et al., 2016, RRID: SCR_014091) to
perform a region of interest (ROI)-based connectivity analy-
sis. Among the total of 246 brain regions, because an HER
is known to mainly reflect cortical heartbeat processing
(Pollatos et al., 2005) and the deep source activity esti-
mation including the subcortex and cerebellum in MEG
data are less reliable than cortical source estimation
(Hämäläinen et al., 1993), we excluded 36 subcortical
cerebellar regions. We also excluded 15 cortical regions
among the remaining 210 cortical regions because the
source reconstruction procedure failed to extract time
courses in these regions in at least one subject (indicating
that these regions did not contain source vertices in some
participants). Therefore, the time courses of vertices
within each of the 195 cortical regions (Extended Data
Table 1-1) were averaged. This final step produced the
time courses of HERs for all 195 cortical regions, epochs
and subjects.

Calculation of the debiased wPLI estimator in the theta
frequency range between cortical regions

The debiased estimator for weighted phase lag index
(wPLI-D; Vinck et al., 2011) was used as a measure of
functional connectivity between cortical regions. The
weighted phase lag index (wPLI; Vinck et al., 2011) is a
measure of phase coherence and is robust to the spurious
connectivity induced by volume conduction, which is re-
flected in “zero-phase synchronization” between sources.
Furthermore, the wPLI is invariant to linear mixing of two
dependent sources (Vinck et al., 2011; Palva et al., 2018),
and in the presence of true interactions, this measure is
immune to false-positive detection (Palva et al., 2018).
Because a direct estimator of the wPLI is biased by

sample size (Vinck et al., 2011), we used the debiased
wPLI estimator (wPLI-D; Vinck et al., 2011), which ranges
from zero to one (maximum coherence). We hypothesized
that synchronization would occur in the theta band (4–7
Hz), which is the frequency band with the strongest in-
crease in phase synchronization within regions according
to a previous study (Park et al., 2018). First, complex
Morlet wavelet transformation was performed on every
trial (which was epoched from –900 to 1800 ms R-peak)
with a 20-ms time step starting from –300 to 600 ms
R-peak and a frequency ranging from 4–7 Hz with 1-Hz
steps. Four cycles were used in the wavelet transforma-
tion procedure. Then, the wPLI-D was calculated for every
pair of regions in each time and frequency step. wPLI-Ds
from 4 to 7 Hz were averaged to obtain the wPLI-D of the
theta frequency range. These procedures resulted in 195
(number of ROIs) by 195 by 31 (time windows from –300
to 600 ms at the R-peak with 20-ms steps) wPLI-D ma-
trices for each subject. Additionally, although our fre-
quency band of interest was the theta band, which has
been shown to be a major frequency band with respect to
HERs, we tested whether similar HINs exist in the � (8–13
Hz) and � (14–29 Hz) bands by using the same pipeline
used in the theta band HIN.

Identification of the HIN using network-based statistics
(NBSs)

We compared the wPLI-Ds between the baseline pe-
riod, which was defined as a time window 300–100 ms
before the R-peak onset, and a time window 200–600 ms
after the R-peak onset, which is the time window in which
the effects of HERs were reported in most previous HER
studies (Fukushima et al., 2011; Pollatos and Schandry,
2004), to determine whether the heartbeat induced a
network composed of significantly increased phase syn-
chronization between regions, and we called this time
window the “induced” period. The 200-ms period after the
R-peak onset corresponds to the approximate time that
the heartbeat signal enters the CNS following carotid
baroreceptor stimulation, which is the major input path of
the heartbeat to the CNS (Eckberg and Sleight, 1992).
However, note that because the heartbeat signal is con-
veyed to the CNS via various pathways except this path-
way including somatosensory pathway via spinal cord or
stimulation of cardiac afferent neuron at heart wall, the
timing of this CNS entrance of the heartbeat signal could
be varying (Park and Blanke, 2019). The baseline period
used in the present study is the same period used in a
previous study of HER-induced phase synchronization
within regions. This baseline period was postulated to
avoid cardiac artifacts around the ECG P-wave (Park
et al., 2018).

We then performed a group-level NBS (Zalesky et al.,
2010; RRID:SCR_002454) analysis, which is a statistical
method that controls multiple comparisons at the network
level. This analysis enabled us to identify a network com-
posed of significantly increased wPLI-Ds between cortical
regions in the induced period compared to the baseline
period at the group level. First, baseline and induced
wPLI-D matrices were computed by averaging wPLI-Ds
from each time window for every subject, which resulted
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in one baseline wPLI-D matrix and one induced wPLI-D
matrix for each subject. Second, multiple paired t tests
comparing wPLI-Ds from the induced period and the
baseline wPLI-D were performed for every pair of cortical
regions, which resulted in one matrix of t values from
these paired t tests. Then, a threshold t value of 2.51 was
applied to the matrix of t values, and a t value � 2.51 was
therefore set to 0. The network statistic was computed by
adding the t values of all the connected components in
the thresholded matrix (a connected component refers to
any two nodes within a component are connected by a
path of edges). Next, a null distribution of the network
statistic was created from 5000 permutations by ran-
domly permuting an element of the induced wPLI-D ma-
trices and the baseline wPLI-D matrices within each
subject. Finally, network-level familywise-error (FWE)-
corrected p values of the network were obtained using the
original network statistic and null distribution. Next, we
constructed a heartbeat-induced synchronization (HIS)
matrix whose elements corresponded to the increase in
the wPLI-D in the induced period compared to that in the
baseline period, and each element was significant in the
NBS results. Therefore, the HIS matrix was composed of
elements with significantly increased wPLI-Ds in the
group-level NBS analysis and represents the structure of
the HIN.

Examination of increased theta phase synchronization
between ECG signals and brain regions

We postulated that the HIN that we identified may
represent an artificial increase in phase synchronization
caused by a CFAs. We expected that if an electromag-
netic field induced by cardiac contractile activity directly
influenced both regions A and B and this effect artificially
increased phase synchronization between these two re-
gions, then phase synchronization would increase be-
tween regions A and B, and the phase synchronization
between the ECG signal and both regions A and B should
increase after a heartbeat because the same electromag-
netic field induced by cardiac contraction influenced all
three signals, including the ECG signal and the signals
from regions A and B. We assessed whether theta-phase
synchronization between ECG signals and brain regions
increased during an induced period (200–600 ms after
the R-peak) compared to that in the baseline period to
test this hypothesis. We calculated the wPLI-Ds between
ECG signals and 195 cortical regions in the theta band for
every subject, which resulted in two 195 by one vector of
ECG-brain region wPLI-Ds from the baseline and induced
periods for every subject. Then, we performed 195 group-
level paired t tests between the wPLI-Ds from the induced
and baseline periods for all 195 cortical regions to deter-
mine which wPLI-Ds between each ECG-brain region pair
were significantly increased in the induced period com-
pared to that at baseline.

The forward and inverse-modeled trial-shuffled surro-
gate method for evoked component estimation of the
HIN

We next tested whether phase synchronization in the
HIN reflected artificial synchronization due to evoked re-
sponses within distributed regions, which are phase-

locked to the heartbeat (Hirvonen et al., 2018), using the
forward and inverse-modeled trial-shuffled surrogate
method, which was used to identify an evoked compo-
nent of phase synchronization in a previous study (Hir-
vonen et al., 2018). This method selectively and more
effectively identifies true-induced interareal interactions
compared to the conventional trial shuffling method
(Lachaux et al., 1999). Briefly, using the source-modeled
single-trial data, the time course of each source vertex
within a particular region was simulated with the region
time courses of a random trial (trial shuffle) and using the
forward model, sensor-level surrogate data were gener-
ated. Finally, the sensor-level surrogate data were source-
reconstructed, and the wPLI-Ds between cortical regions
were calculated with procedures identical to those used
for the real data. As noted in a previous study (Hirvonen
et al., 2018), by using this procedure, surrogate data
contain both evoked, stimulus-phase-locked components
and signal spread caused by MEG data acquisition and
inverse modeling, while non-stimulus locked (induced)
phase synchronization between regions is eliminated.
Therefore, by comparing the HIN of the surrogate data
with the HIN of the real data, we can identify whether
phase synchronization within the HIN was caused by
evoked responses. We established 20 sets of surrogate
data and compared phase synchronization within the HIN
between the surrogate data and the real data.

Network properties of the HIN
After confirming that the HIN does not reflect artificial

synchronization induced by either CFAs or evoked re-
sponses, we identified the following characteristics of the
HIN. First, we identified the hubs of the HIN, which play an
important role in connecting regions within the HIN. Then,
we identified whether the HIN is one homogeneous net-
work or can be divided into subnetworks called modules,
indicating that the HIN is modularized. Additionally, we
also investigated how synchronization within the HIN
changes over time by summing the wPLI-D of every HIN
edge at every time point from –300 to 600 ms.

Identification of the hubs of the HIN
One of the important features of a network is the hub of

the network, which is defined as a node that plays an
important role within a network, such as connecting
nodes (Fornito et al., 2016). To identify the hubs of the
HIN, we calculated the strength and betweenness cen-
trality of each region. The strength of a node is defined as
a sum of the weights of all edges connected to that node,
and betweenness centrality is defined as the fraction of all
the shortest paths in a network that pass through a given
node (Brandes, 2001). The graph-theoretical measures
used to define hubs were calculated using the functions of
the brain connectivity toolbox (BCT; Rubinov and Sporns,
2010; RRID: SCR_004841).

Identification of the modularized structure of the HIN
Because we expected that the HIN would have a mod-

ular structure, we applied a community detection algo-
rithm to the HIS matrix to determine how the HIN is
partitioned into different subnetworks. However, to iden-
tify whether the HIN is modularized, one should examine
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the extent of modularity compared to random networks.
Therefore, we compared the “modularity index” of the HIN
with 100 random networks (Bassett et al., 2011). Optimal
partitioning of cortical regions was performed using the
Louvain greedy algorithm (Blondel et al., 2008) to maxi-
mize the modularity index Q formulated using the follow-
ing equation:

Q �
1

2� �
ij

[Aij � �Pij]�(gi, gj).

In this equation, Aij represents the strength of the edge
between node i and node j, Pij represents the expected
weight between node i and node j, � is the sum of the
strengths of all edges in the network, and ��gigj� is 1 if
node i and j belong to the same community and 0 other-
wise (gi is a label of the community to which node i
belongs). The resolution parameter � was set to 1, which
is a default value. However, because the partition that
maximizes Q can vary across each algorithm run, we used
the consensus partition method to identify the most rep-
resentative partition S (Lancichinetti and Fortunato, 2012)
using the functions of the BCT (Rubinov and Sporns,
2010). The consensus partition procedure, which is iden-
tical to a previously reported procedure (Fornito et al.,
2016), is briefly explained below. First, a community de-
tection algorithm (Louvain greedy algorithm) was run
10,000 times to create 10,000 partitions. Second, the
agreement matrix D was constructed. Each element of D
corresponded to the proportion of the number of times
that nodes i and j were in the same module to the number
of total iterations. Third, a threshold 	 � 0.2 was applied
to D. The value of 	 was set to �0.4 as recommended in
a previous study (Lancichinetti and Fortunato, 2012).
Fourth, community detection was performed 10,000 times
using D, which created another agreement matrix, D’.
Fifth, steps 2 through 4 were repeated until the consensus
matrix exhibited a block-diagonal structure in which all
edge weights equaled one for node pairs in the same
community and zero otherwise. We initially constructed
the agreement matrix with 10,000 iterations of the HIS
matrix. Then, 10,000 partitions were provided as the func-
tional input for steps 2 through 4, and these processes
were repeated until convergence was achieved. By this
consensus partitioning procedure, we achieve optimal
partitioning and obtain the modularity index Q of this
optimal partition. To test whether the HIN is modularized,
we constructed 100 random networks with preservation
of the weight distribution and then applied the same
consensus partition procedure on these random net-
works. As a result, we obtained 100 Q values of each
random network, which constituted a surrogate distribu-
tion of the Q. Then, we tested the location of the Q value
of the HIN in this surrogate distribution.

Properties of each module of the HIN
After partitioning the HIN, we identified the properties of

each module of the HIN. Specifically, we extracted the
time course of within-module synchronization for each
module, which was defined as the sum of the edge
weights within each module at every time point, and then

determined which node was the “connector hub” of the
modules. These connector hubs connect modules and
enable effective interactions between modules and are
defined by graph-theoretical measurements called the
within-module degree z score (Guimera and Amaral, 2005)
and the participation coefficient (Guimera and Amaral,
2005). The within-module degree z score quantifies the
normalized within-module strength, while the participation
coefficient quantifies a node’s participation in each mod-
ule. Using within-module degree z scores and participa-
tion coefficients, we defined the role of every node
according to the z-P classification (Guimera and Amaral,
2005). In particular, the connector hub is a node with
many connections within the module to which the node
belongs and also forms many connections with nodes of
other modules; thus, the connector hub efficiently con-
nects nodes within one module to nodes of other modules
(Fornito et al., 2016). In our study, the connector hub was
defined as a node with a within-module degree z score
�2.5 and a participation coefficient (P) � 0.3 (Guimera
and Amaral, 2005; Fornito et al., 2016).

Identification of between-module interactions using
graph-theoretical analysis

We next investigated synchronization patterns between
modules. Between-module synchronization of 5C2 pairs of
modules was computed by the sum of the edge weights
between each module, which resulted in a 5 � 5 between-
module synchronization matrix. By applying graph-theo-
retical analysis to this between-module synchronization
matrix, we identified which module plays a central role
within the HIN using module-level nodal strength and
betweenness centrality.

The relationship between emotional status and the HIN
To identify relationships between the HIN and partici-

pants’ emotional states, we used the emotional statuses
included in the HCP data. The HCP data included a
measure for six negative emotional affective states, in-
cluding anger-affect, anger-hostility, anger-aggression,
fear-affect, fear-somatic, and sadness, and positive affect
surveys were retrieved from the NIH Toolbox (Gershon
et al., 2010). To reduce dimensions, we performed a
principal component analysis of seven survey scores and
extracted the first principal component (PC) reflecting the
moods of the participants. Then, we fit a stepwise linear
regression model in which the first PC was a dependent
variable to the within-module and between-module syn-
chronizations of the five HIN modules.

Results
Theta-phase synchronization between cortical
regions increased after the heartbeat, confirming the
existence of the HIN

The NBS analysis showed a network displaying a sig-
nificant increase in phase synchronization in the induced
period compared to that in the baseline period (network-
level FWE-corrected p � 0.001), revealing the existence
of the HIN. The density of the network was 9.2%, indicat-
ing that among the total of 195C2 pairs of regions, 9.2% of
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the region pairs showed significantly increased phase
synchronization after the heartbeat. Additionally, no HIN
formed in the �-frequency or �-frequency bands.

No significant change in phase synchronization
occurred between ECG signals and cortical regions

The paired t tests (wPLI-Ds for ECG signals and cortical
regions) comparing responses between the induced pe-
riod (200–600 ms after the R-peak) and the baseline
period did not reveal a significant increase or decrease in
wPLI-Ds between ECG signals and cortical regions in the
theta band (the minimum p value among the 195 cortical
regions was p � 0.104 [false discovery rate (FDR)-
corrected] with t(86) � 2.97 in the “right postcentral gyrus
A2”; Fig. 1A). If the electromagnetic field generated by
cardiac contractile activity induced artificially increased
phase synchronization between regions in the HIN com-
pared with the baseline period, then the ECG signal orig-
inating from the same electromagnetic field should show
increased phase synchronization with cortical regions
within the HIN. However, phase synchronization between
cortical regions and ECG signals did not change in the
induced period compared to baseline, while phase syn-
chronization between the regions in the HIN increased in
the induced period, indicating that the increased theta-
phase synchronization between cortical regions in the HIN
was not caused by CFAs (Fig. 1A). Furthermore, the HIN
was not likely caused by a pulse artifact (PA), which
occurs when sensors are influenced (moved) by vascular
pulsation. In our study, we used MEG data, and MEG
sensors do not directly contact the subject; thus, a vessel
cannot induce pulsatile movement of the sensors to
cause a PA. To our knowledge, no previous studies have
reported a PA in MEG recordings. Furthermore, according
to a previous HER study using electrocorticography

(ECoG; Kern et al., 2013), if PA-induced artificial syn-
chrony occurs between ECoG electrodes, then the ECG
and ECoG electrodes likely display high phase synchro-
nization (Kern et al., 2013), which was not observed in our
results. By summarizing these results, the HIN that we
identified in the theta frequency band was not caused by
an artificial increase in phase synchronization induced by
CFAs or a PA. While the theta-phase synchronization
between ECG signals and cortical regions was not in-
creased compared to baseline, a CFA-induced increase in
phase synchronization compared with baseline may exist
in lower frequency bands, such as the � band (0.5–4 Hz),
because cardiac contractile activity typically occurs at a
rate of 60–100 BPM, which corresponds to a frequency of
1–1.67 Hz belonging to the � band. Similarly, in our data,
the subjects displayed a maximum heart rate of 88.84
BPM (� 1.48 Hz); therefore, the CFAs or PA induced by
pulsation may have increased artificial synchronization in
the � band.

The HIN is not composed of artificially increased
synchronization induced by evoked responses

We compared the synchronization within the HIN in 20
surrogate datasets and in the real data. The results
showed that the HIS within the HIN in the real data were
significantly stronger than that in all 20 surrogate datasets
(Monte Carlo p � 0.05; Fig. 1B,C; Extended Data Fig. 1-1),
indicating that the synchronization within the HIN could
not be explained by artificial synchronization caused by
evoked responses in distributed regions. Notably, if the
HIN is composed of evoked responses in distributed re-
gions, the existence of only a small proportion of edges
among all possible edges (9.2%) within HIN regions is
unlikely.

Figure 1. Results of the control analysis. A, The time course of synchronization between the ECG signal and HIN regions. We plotted
the wPLI-D in the theta band between the ECG signal and HIN regions for all HIN regions (thin colored lines). In addition, the averaged
synchronization time course was also plotted (thick black line). These time courses show similar levels of synchronization between
the baseline and induced periods. B, Comparison of the synchronization within the HIN between real and surrogate data in the
induced period. We generated 20 surrogate datasets without an induced component of synchronization and compared synchroni-
zation within the HIN between real (yellow bar with the label R) and surrogate data (blue bar). This figure shows that the
synchronization within the real data are stronger than the synchronization in all 20 surrogate datasets in the induced period, indicating
that the synchronization within the HIN cannot be explained by artificial synchronization caused by evoked responses (Extended Data
Fig. 1-1). C, The time courses of synchronization within the HIN for real and surrogate data. This panel shows that the synchronization
within the real data are stronger than the mean synchronization in the surrogate datasets in the induced period (Extended Data Fig.
1-1). Note that in A, B, baseline subtraction was performed (–300 to –100 ms at the R-peak).
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Network properties of the HIN
Within the HIN, left inferior temporal regions including

the temporal pole and parahippocampal gyrus had high
strength and betweenness centrality (Fig. 2A; Table 1).
Figure 2A shows that the connections between HIN re-
gions are centered at the polar part of an inferior temporal
region including the inferior temporal gyrus and parahip-
pocampal gyrus. Specifically, “left inferior temporal gyrus
A20il” had the highest betweenness centrality and
strength among the regions (Table 1), suggesting its im-
portance as a hub of the HIN. In addition to these regions,
orbitofrontal regions also had a high degree and between-
ness centrality. Notably, the HIN was left-dominant such
that the HIS between regions was substantially stronger
within left hemispheric regions than that within right hemi-

spheric regions (t(84) � 5.22, p � 0.001 in a paired t test
comparing induced synchronization between the right
and left hemispheres; Fig. 2A). Finally, the time course of
the synchronization within the HIN showed that the de-
gree of synchronization increases from baseline and was
maximal at �300 ms after the R-peak (Fig. 1C).

The HIN is a modularized network with five
subnetworks, and module 1 plays a central role
within the HIN

Based on the consensus partitioning results, the HIN
was partitioned into five modules (Fig. 2A,B). Using the
consensus partitioning result for the real data and the
consensus partitioning of the random network, we tested
whether the HIN is modularized. We found that the HIN

Figure 2. Structures of the HIN. A, Synchronization patterns within the HIN. The figure shows that the synchronization within the HIN
is concentrated in the left inferior temporal region (white dashed circles), particularly in the polar part and the parahippocampal gyrus,
which are hubs of the HIN. Furthermore, these regions were contained in module 1. B, Spatial pattern of each module of the HIN. In
this spatial map of each module, module 1 contained most of the polar part of the left inferior temporal regions and the
parahippocampal gyrus. The posteromedial part of the bilateral hemispheres was also contained in this module. Module 2 contained
the ventromedial and orbitofrontal cortices, which are also hubs of the HIN.

Table 1. High-strength nodes of the HIN

Region name BC Strength Module
Left inferior temporal gyrus A20il, intermediate lateral area 20 8661 30.1 1
Left parahippocampal gyrus A35/36r, rostral area 35/36 4775 25.9 1
Left inferior temporal gyrus A20iv, intermediate ventral area 20 2781 25.4 4
Left inferior temporal gyrus A20r, rostral area 20 4069 24.8 1
Left fusiform gyrus A20rv, rostroventral area 20 1556 24.3 4

Five regions having high strength are reported here with their betweenness centrality and modules they belong to. Full list of regions and their network char-
acteristics are provided in the Extended Data Table 1-1. BC, betweenness centrality.
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had a significantly greater modularity index than the ran-
dom network (Monte Carlo p � 0.01), indicating that the
HIN is modularized rather than one homogeneous net-
work. Importantly, among the five modules, the synchro-
nization within module 1 was the strongest (Figs. 2A, 3A).
This module contained most of the polar part of the left
inferior temporal gyrus and parahippocampal gyrus (Fig.
2B). Specifically, left inferior temporal gyrus A20il, which
had the highest betweenness centrality and strength, was
also contained in this module. Furthermore, graph-
theoretical analysis of the between-module synchroniza-
tion matrix showed that module 1 was the center of an
interaction between the HIN modules with the highest
strength (1.29) and betweenness centrality (2) among the
modules (Fig. 3B). The posteromedial regions including
the middle cingulate cortex, supplementary motor area,
posterior cingulate and precuneal regions were also con-
tained in this module (Fig. 2B). Module 2 had the second
strongest within-module synchronization and contained
the bilateral ventromedial/orbital frontal regions (Figs. 2A,
3A). Finally, seven hubs connected each module, most of
which were located in the temporal polar regions and
orbitofrontal regions.

The relationship between affective status and
synchronization within the HIN

The first PC explained 47% of the variance of the
emotion survey data and had positive loading on the
positive affect score and negative loading on the other
negative affect scores. Therefore, we surmised that this
PC reflected the moods of the participants. Stepwise
linear regression analysis resulted in a model that only
contained the within-module synchronization of module 1
in the HIN, which explains �10% of the variance of the
mood data (model F(1,83) � 8.95, p � 0.004, R2 � 0.10, �
of the within-module synchronization of module 1 � 0.57,

t � 3.00, p � 0.004; Fig. 4), indicating that an individual
with higher synchronization within module 1 has a more
positive mood or is less likely to experience a negative
mood. Notably, the relationship between these two vari-
ables was also significant when we applied a robust
regression or non-parametric correlation to reduce the
effect of outlier points (all p � 0.05).

Discussion
In the resting state, our brain receives cardiac afferent

signals, and previous studies have shown regional mod-
ulation of HERs. As shown in the present study, we found
that the heartbeat induces theta-phase synchronization of
cortical regions, thus generating a network that we called

Figure 3. Within-module and between-module synchronization in the HIN. A, Within-module synchronization in the HIN. Within-
module synchronization was strongest in module 1, followed by that in module 2. B, Between-module synchronization pattern of the
HIN. The between-module synchronization pattern graph shows that module 1 is the center of interaction between modules such that
it has strong connections with other modules, which were quantified by the strength of this node.

Figure 4. The relationship between mood and the within-module
synchronization of module 1. Stepwise linear regression showed
that the within-module synchronization of module 1 has a posi-
tive association with the moods of the participants.
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the HIN, which did not reflect artificially-induced synchro-
nization. This HIN was not present within other frequency
bands, including � and � bands. The synchronization
within the HIN was maximal at �300 ms after the R-peak,
and the left inferior temporal gyrus and parahippocampal
gyrus played a central role as hubs. Furthermore, the HIN
was a modularized network with five modules. Module 1
included major hubs of the HIN and played a central role
in interactions between modules of the HIN. Finally, we
found that the stronger synchronization within module 1
of the HIN explained 10% of the variance in mood and
had a positive association with mood.

In this study, we first showed that the heartbeat in-
creases “true” induced synchronization between cortical
regions by controlling several factors that can cause arti-
ficial synchronization. By using the wPLI-D as a synchro-
nization metric, we controlled the effect of zero-phase
synchronization caused by volume conduction (Cohen,
2014). Furthermore, we controlled for the possibility of
artificially increased synchronization induced by CFAs
from cardiac contractile activity or a PA by analyzing the
increase in ECG-cortical region phase synchronization.
However, because an artifact-induced increase in phase
synchronization compared with synchronization at base-
line may exist in a lower frequency band, such as the �
band, we suggest that for MEG studies, an investigation
of the HIN in the frequency ranges covering the theta and
higher frequency bands would be more reliable because
these bands are unlikely to be influenced by CFAs or a PA,
while an investigation of the HIN in the � band and lower
frequency bands would be less reliable because artifacts
and the HIN would be difficult to discriminate in these
frequency bands. Lastly, we controlled for large-scale
synchronization within the HIN that may occur artificially
due to evoked responses in cortical regions. We com-
pared the HIN of real data with that of surrogate data
whose non-heartbeat-locked phase relationships were
eliminated while evoked components were preserved
(Hirvonen et al., 2018) and found that the phase synchro-
nization within the HIN could not be explained by artificial
synchronization caused by evoked responses. These re-
sults from the control analyses consistently suggest the
existence of the HIN, which is likely composed of truly
increased neural-phase synchronization induced by the
heartbeat.

Several studies have investigated brain regions or net-
works related to cardiac activity. Chang and colleagues
investigated a resting-state brain network that fluctuated
with HRV using the dorsal anterior cingulate cortex and
amygdala as seed regions (Chang et al., 2013). In the
recent reviews of Azzalini et al. (2019), authors mentioned
that because HRV was reported to be largely driven by the
brain, the HRV-associated resting-state brain networks
are likely to be associated with descending influences
from the brain to heart (Azzalini et al., 2019). Another
recent fMRI study showed regions associated with a low-
frequency peripheral pulse fluctuation called an auto-
nomic network (Shokri-Kojori et al., 2018). Based on these
studies showing cortical regions or networks related to
cardiac activity-related measures, we showed ascending

cardiac afferent signal-induced phase synchronization
between cortical regions in this study. Furthermore, we
quantified the interaction pattern between these regions
in the network using graph-theoretical measures, which
have not been investigated in previous studies.

In the analysis of the properties of the HIN, synchroni-
zation within the HIN was maximal at �300 ms after the
R-peak, which is the time after the heartbeat enters the
CNS (Eckberg and Sleight, 1992). Most of the hubs of the
HIN with high strength and betweenness centrality were
concentrated around the left inferior temporal gyrus and
the parahippocampal gyrus. In particular, the parahip-
pocampal gyrus has been reported to be related to the
cardiac cycle duration (Kim et al., 2019) and to be part of
an autonomic network (Shokri-Kojori et al., 2018). Addi-
tionally, the bilateral orbitofrontal region also had high
strength and betweenness centrality, which is a viscero-
motor region that sends motor signals to the viscera
(Kleckner et al., 2017). Notably, unlike previous theories
emphasizing the role of the insula in processing intero-
ceptive signals, in our study, the insula did not serve as a
hub (Craig, 2009). However, some recent studies of HERs
showed that the insula is not always the most important
structure for heartbeat processing, but its importance
varies according to the task or situation that one is en-
gaged in (Babo-Rebelo et al., 2016a,b; Tsakiris and De
Preester, 2018).

Next, we found that the HIN was a modularized network
with greater modularity than random networks. The HIN
was divided into five modules, and module 1 was the
center of interactions between these five modules with
high module-level betweenness centrality and strength,
indicating that module 1 is responsible for a large portion
of the interactions between modules of the HIN. Module 1
contained left inferior temporal regions including the para-
hippocampal gyrus and posteromedial regions. Interest-
ingly, an autonomic network identified in a previous fMRI
study was composed of regions showing stronger inter-
actions with low-frequency peripheral pulse amplitude
fluctuations (occurring at �0.01–0.09 Hz) than with other
brain regions (Shokri-Kojori et al., 2018), and the network
had some topological overlap with module 1 such that it
also contained a large portion of posteromedial regions
and the parahippocampal gyrus. Notably, this previous
study also used an HCP dataset (fMRI and behavior data,
18 participants in the previous study were also included in
our study) as in our study. Furthermore, while module 1
showed a significant relationship with the mood score, the
autonomic network also showed a significant relationship
with the emotion PC extracted from the HCP behavioral
data of emotion (which is slightly different from our study
because the authors not only extracted an emotion PC
from the score related to mood but also included other
measures such as an emotion recognition score; Shokri-
Kojori et al., 2018). The topological overlap between mod-
ule 1 and the autonomic network, which is also a cardiac
activity-related network, and their similar relationships
with emotion may suggest that they are the same or a
similar kind of network induced by the heartbeat although
they were measured by different modalities and methods,
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with the autonomic network emphasizing a peripheral
pulse-cortical region relationship and module 1 of the HIN
focusing on heartbeat-induced interactions between cor-
tical regions. However, the regions included in each net-
work were not entirely the same; therefore, we cannot
determine whether the automatic network and module 1
are the same in this study. However, we can conclude that
a strong relationship exists between the regions included
in both networks and heartbeat processing and also be-
tween heartbeat-related processing within these regions
and the emotional state of an individual.

A limitation of our study is that although interoceptive
processing typically includes subcortical regions, such as
the amygdala (Kleckner et al., 2017), we used only cortical
regions to construct the HIN. The HIN including subcor-
tical regions may show different properties than those
reported in this study. Therefore, future studies on HINs
including subcortical regions using deep source imaging
MEG techniques are needed.

In conclusion, we first showed the existence of HIN
interactions with hubs in inferior temporal regions. The
HIN was modularized and contained five modules, with
module 1 as the center of module interactions. The syn-
chronization within module 1 of the HIN had a positive
association with the mood scores of the participants.
Considering recent theories on abnormal interoceptive
processing in mood disorder patients (Paulus and Stein,
2010), investigating the HIN within such patients may also
improve our understanding of the corresponding patho-
physiology.
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