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Abstract

The American Southwest has experienced a series of severe droughts interspersed with

strong wet episodes over the past decades, prompting questions about future climate pat-

terns and potential intensification of weather disruptions under warming conditions. Here we

show that interannual hydroclimatic variability in this region has displayed a significant level

of non-stationarity over the past millennium. Our tree ring-based analysis of past drought

indicates that the Little Ice Age (LIA) experienced high interannual hydroclimatic variability,

similar to projections for the 21st century. This is contrary to the Medieval Climate Anomaly

(MCA), which had reduced variability and therefore may be misleading as an analog for 21st

century warming, notwithstanding its warm (and arid) conditions. Given past non-stationarity,

and particularly erratic LIA, a ‘warm LIA’ climate scenario for the coming century that com-

bines high precipitation variability (similar to LIA conditions) with warm and dry conditions

(similar to MCA conditions) represents a plausible situation that is supported by recent climate

simulations. Our comparison of tree ring-based drought analysis and records from the tropical

Pacific Ocean suggests that changing variability in El Niño Southern Oscillation (ENSO)

explains much of the contrasting variances between the MCA and LIA conditions across the

American Southwest. Greater ENSO variability for the 21st century could be induced by a

decrease in meridional sea surface temperature gradient caused by increased greenhouse

gas concentration, as shown by several recent climate modeling experiments. Overall, these

results coupled with the paleo-record suggests that using the erratic LIA conditions as bench-

marks for past hydroclimatic variability can be useful for developing future water-resource

management and drought and flood hazard mitigation strategies in the Southwest.

Introduction

Over the past century, water management has relied on the principle of stationarity, which

assumes that historical hydroclimatic variations provide an envelope within which future con-

ditions are expected. However, some areas of the American Southwest will likely become peri-

odically more arid than the range of observations recorded over the last century [1,2], and thus

PLOS ONE | https://doi.org/10.1371/journal.pone.0186282 October 16, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Loisel J, MacDonald GM, Thomson MJ

(2017) Little Ice Age climatic erraticism as an

analogue for future enhanced hydroclimatic

variability across the American Southwest. PLoS

ONE 12(10): e0186282. https://doi.org/10.1371/

journal.pone.0186282

Editor: Xiaoyan Yang, Chinese Academy of

Sciences, CHINA

Received: June 18, 2017

Accepted: September 28, 2017

Published: October 16, 2017

Copyright: © 2017 Loisel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: PDSI values from the

North American Drought Atlas (version 2a) are

available online at http://www.ncdc.noaa.gov/paleo/

pdsi.html. The dataset can also be downloaded

here: https://iridl.ldeo.columbia.edu/SOURCES/.

LDEO/.TRL/.NADAv2a-2008/PDSI/datafiles.html.

Funding: This research was supported by the

Department of Interior Southwest Climate Science

Center core grant to UCLA (GMM). The funders

had no role in study design, data collection and

https://doi.org/10.1371/journal.pone.0186282
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186282&domain=pdf&date_stamp=2017-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186282&domain=pdf&date_stamp=2017-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186282&domain=pdf&date_stamp=2017-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186282&domain=pdf&date_stamp=2017-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186282&domain=pdf&date_stamp=2017-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186282&domain=pdf&date_stamp=2017-10-16
https://doi.org/10.1371/journal.pone.0186282
https://doi.org/10.1371/journal.pone.0186282
http://creativecommons.org/licenses/by/4.0/
http://www.ncdc.noaa.gov/paleo/pdsi.html
http://www.ncdc.noaa.gov/paleo/pdsi.html
https://iridl.ldeo.columbia.edu/SOURCES/.LDEO/.TRL/.NADAv2a-2008/PDSI/datafiles.html
https://iridl.ldeo.columbia.edu/SOURCES/.LDEO/.TRL/.NADAv2a-2008/PDSI/datafiles.html


the assumption of stationarity for forecasting future hydroclimatic variability is not justified

[3]. Several studies suggest that, along with warmer mean temperatures, climate variability is

likely to increase [4,5]. As climate variability increases, the frequency of extreme events is likely

to increase as well [4], with direct consequences in the Southwest. For example, an increase in

the frequency or magnitude of floods and droughts could lead to yield reductions, crop dam-

age, and crop failure [6]. Warmer and more variable conditions would also impact ecological

systems, with one of the most important aspects being fire regimes [7,8] and populations of

vulnerable species [9]. Enhanced variability in precipitation promotes fire in many wildland

systems [10–13]. Therefore, identifying strategies for water-resource management under

changing climate variability, and not just changes in the mean state, is necessary [14].

Instrumental records have shown that hydroclimatic variability across the American South-

west is mostly structured around cool-season precipitation regimes, with a few winter storms

typically contributing a disproportionately large amount of the annual precipitation across this

region [15]. That is particularly the case in California, where decadal precipitation variance is

typically equivalent to 20–50% of mean annual averages, mostly because of changes in precipi-

tation received between November and March [16–17]. As a result, small surpluses or deficits

in the number of precipitation events translate into relatively large hydroclimatic swings from

wet to dry years. In addition to providing a considerable fraction of the annual total amount,

winter precipitation tends to remain in the ‘terrestrial’ hydrological cycle (i.e., part of stream

flow) much longer than the summer fraction [17], making the cool-season precipitation

regime particularly important for natural processes and human consumption. The large inter-

annual to decadal hydroclimatic variability in winter precipitation is highly influenced by sea

surface temperature (SST) anomalies in the tropical Pacific Ocean and associated changes in

large-scale atmospheric circulation patterns [16]. In general, cool SSTs in the eastern tropical

Pacific (La Niña conditions) tend to induce arid conditions in the Southwest, whereas warmer

SSTs (El Niño conditions) are associated with relatively wet conditions [18,19].

Temporal precipitation variability in the Southwest may increase significantly at the decadal

and multi-decadal scale over the 21st century. Several climate predictions for future impacts of

increasing radiative forcing suggest warming in the eastern Pacific and a more variable ENSO

system, with ~70% chance of stronger and/or more frequent El Niño conditions, and a ~50%

chance of increased frequency in La Niñas (Fig 1; [20,21]). Such potential changes in variability

are in agreement with instrumental records and paleoclimate reconstructions, which show

that the magnitude and trend of hydroclimatic variability has not been constant in the South-

west during the Common Era (C.E.). As such, recent studies looking back at the past 30 years

of data show a decadal modulation of El Niño Southern Oscillation (ENSO) stability, with the

past decade characterized by higher-frequency and lower-amplitude El Niños than the previ-

ous ones [22]. In addition, the unified ENSO proxy (UEP) time series, which combines infor-

mation from 10 globally distributed ENSO reconstructions, displays a rising trend toward

enhanced ENSO variance since 1650 CE (Fig 2; [23]).

On land, multimodel mean PDSI time-series projections for the coming century indicate

that drought risk could reach an all-time high during the late 21st century, with unprecedented

drought conditions that might exceed those of the MCA [2,24]. These modeled PDSI values

are also characterized by high variance [Fig 2], reinforcing the hypothesis that the coming cen-

tury will likely be faced with high hydroclimatic variability that could be linked to ENSO

dynamics. These results remain speculative however, as there are large differences in PDSI

projections between models [Fig 2].

The Medieval Climate Anomaly (MCA, ~950–1400 CE) is often used as an analog for 21st

century hydroclimate because it represents a warm (and arid) period. The MCA appears

related to general surface warming in the Northern Hemisphere, prolonged La Niña
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conditions [18, 25–28], and a persistent positive North Atlantic Oscillation mode [29]. It has

been referred to as a stable time interval with ‘quiet’ conditions in regards to low perturbation

by external radiative forcing [30]. In this study, we demonstrate that the Little Ice Age (LIA,

~1400–1850 CE) might be more representative of future hydroclimatic variability than the

conditions during the MCA megadroughts for the American Southwest, and thus provide a

useful scenario for development of future water-resource management and drought and flood

hazard mitigation strategies.

Materials and methods

Paleohydrological reconstructions and model simulations

Tree ring-derived Palmer Drought Severity Index (PDSI) time series have been widely used to

estimate the spatial extent, duration, timing, and intensity of droughts from the past millen-

nium across the American Southwest [31–37], but the amplitude and variance of hydrocli-

matic variability have received significantly less attention (but see [38]). We used PDSI values

from the North American Drought Atlas (NADA, version 2a) to detect changes in aridity vari-

ability and periodicity for the Southwest over the past millennium. The NADA consists of a

network of 286 gridded data points (2.5˚ x 2.5˚) covering North America that is based on

annually resolved tree ring chronologies [39,40]. Information related to reconstruction

Fig 1. Predicted number of El Niño and La Niña events during the 21st century compared to historical

simulations. Data are based on 27 CMIP5 models and using the RCP8.5 scenario. The overall sum of predicted

El Niño events is +10, while that of La Niñas is -19. Overall, 70% of the models indicate either no change or an

increase in the number of El Niño events for the coming century; this figure goes down to 52% for La Niñas (data

from 21).

https://doi.org/10.1371/journal.pone.0186282.g001
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methods can be found in [39]. Grid points that cover the western Southwest (32.5–37.5˚N,

115–122.5˚W, n = 9 grid cells) were selected on the basis of their climatology [Fig 3]. Annual

PDSI values for these study regions were obtained from 950 to 2006 CE.

The El Junco diatom index record from the Galápagos Islands (0˚54’S, 89˚29’W, 43) and

the fossil-coral oxygen isotopic records from Palmyra Island (6˚N, 162˚W, 44) constitute

ENSO-sensitive proxy records from the equatorial Pacific against which we compared our

results. Both records were resampled at an annual time step prior to statistical analysis. Infor-

mation related to the study sites, reconstruction methods, and chronologies can be found in

the original publications [41,42].

Winter precipitation data for the past millennium were obtained from the Community

Earth System Model’s Last Millennium Ensemble Project (CESM LME) [43]. CESM LME gen-

erated ten ensemble members with ‘full’ forcing, which consists of transient solar output, vol-

canic activity, land use, greenhouse gases, and orbital dynamics for the complete 850–2005

time series, as well as ozone-aerosol forcing for the 1850–2005 series used for bias correction.

The ensemble member approach is commonly used to approximate a measure of uncertainty

in modeled results. We analyzed months November through February to represent ENSO

influence on the regional precipitation regime. We used ensemble members 2 to 5, which con-

sist of coupled ocean-atmosphere climate models; outputs represent a range of probable

monthly precipitation values generated by CESM. Precipitation data were bias corrected using

NOAA’s CPC US unified daily precipitation data provided by NOAA/OAR/ESRL PSD [http://
www.esrl.noaa.gov.psd/]. Grid cells over the Pacific were excluded from the analysis.

Statistical analyses

Variability measures applied to NADA PDSI, El Junco diatoms, Palmyra isotopes, and mod-

eled precipitation from CESM were developed from the original, raw time series. Each time

Fig 2. Unified ENSO proxy (UEP) variability compared to projected PDSI variability across the American Southwest in the coming

century. The UEP (in black) combines ENSO and PDO/IPO Pacific climate variability and is based on 10 commonly used ENSO proxies

that were consolidated via Principal Component Analysis to capture the joint features of these reconstructions (data from 23). The

multimodel mean summer (JJA) PDSI variability over the American Southwest for 1850–2100 (in red) is based on 17 CMIP5 model

projections and using the RCP 8.5 emissions scenario (data from 24).

https://doi.org/10.1371/journal.pone.0186282.g002
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series was filtered (10-year high-pass) using AnalySeries 2.0.4.2 [44] to preserve variability in

the ENSO band at 2 to 8 years [45]. Variance was then computed as the 10-year running stan-

dard deviation of each filtered time series [38] and rescaled to z-scores.

Student’s t-tests were used to determine whether or not the MCA (950–1400 CE), LIA

(1400–1850 CE), and RW (1850–2006) datasets were significantly different from each other in

terms of their variance. Lastly, a bias-corrected wavelet analysis was used to identify dominant

Fig 3. Study region. North American Drought Atlas (NADA) gridded dataset (http://www.ncdc.noaa.gov/

paleo/pdsi.html; https://iridl.ldeo.columbia.edu/SOURCES/.LDEO/.TRL/.NADAv2a-2008/PDSI/datafiles.html)

used in this study. The bold black line delineates the western portion of the American Southwest.

https://doi.org/10.1371/journal.pone.0186282.g003
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periodicities in the unfiltered mean PDSI time series between the MCA, LIA, and RW [46].

Tolerance level for significance of dominant frequencies against red-noise background spec-

trum was set at 0.95 [47].

Results

Paleohydrological reconstructions

Analyses performed on the NADA PDSI time series show a number of important and statisti-

cally significant differences in hydroclimatic variability between the MCA, LIA, and RW

(Table 1, Fig 4). Variance in PDSI amplitude is significantly lower during the MCA than dur-

ing the LIA and the RW (Tukey’s LSD: p< 0.001). Likewise, mean running variance is overall

lower (p< 0.001) during the MCA than during the LIA and the RW (Fig 4C). The evolution

of change in drought amplitude from the MCA to the LIA continues during the RW, with LIA

variance being indistinguishable from that recorded during the RW (p = 0.22). In addition, the

evolution of change in drought amplitude clearly shows greatest variance during the LIA, with

Table 1. Moments of the distribution of filtered paleoecological records and climate simulations.

dataset time period mean of

running variance

standard dev. of

running variance

Western Southwest PDSI MCA 1.66*** 0.49

(CA-NV) LIA 1.91*** 0.47

RW 1.86***1 0.46

El Junco MCA 0.08*** 0.03

LIA 0.12*** 0.05

RW 0.18**2 0.05

Palmyra MCA 0.09** 0.02

LIA 0.10** 0.03

RW 0.12** 0.02

Winter P (NDJF), CESM MCA 0.04 1.17

em002 LIA -0.04 0.89

RW -0.10 0.73

Winter P (NDJF), CESM MCA 0.13*** 1.67

em003 LIA -0.12*** 0.91

RW -0.02 1.01

Winter P (NDJF), CESM MCA -0.02 0.99

em004 LIA 0.01 1.02

RW 0.02 0.95

Winter P (NDJF), CESM MCA 0.13** 0.99

em005 LIA -0.05** 1.02

RW -0.24** 0.91

Winter P (NDJF), CESM MCA -0.13 0.99

averaged em002 to em005 LIA -0.17 1.02

RW 0.89***3 0.91

*Statistical significance at p < 0.1.

**Statistical significance at p < 0.05.

***Statistical significance at p < 0.01.
1The RW is statistically different from the MCA (p < 0.01), but indistinguishable from the LIA (p = 0.22).
2The RW time series from El Junco was not used in the statistical analysis as it only contains 5 data points.
3The RW is statistically different from the MCA and the LIA (p < 0.05).

https://doi.org/10.1371/journal.pone.0186282.t001
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roughly half (53%) of years for which PDSI’s mean running variance stays within the highest

10th percentile (Fig 4B).

A wavelet analysis reveals changes in relative domains of variability over time, with a higher

concentration of power in the interannual and decadal bands during the LIA that is much sub-

dued during the MCA (Fig 4D). This shift in quasi-periodic variance confirms the presence of

a change in the dominant frequencies of variability between the MCA and LIA boundary. An

increase in power of the higher frequency ENSO band of 3 to 8 years was detected, especially

after 1550 CE. These shifts in PDSI periodicity combined with a general increase in variance

are concomitant with the transition from the MCA to the LIA.

Evidence of similar changes in variance and variability are clear from ENSO-sensitive

proxy records from the equatorial Pacific (Fig 5, Table 1). The fossil-coral oxygen isotopic

Fig 4. Palmer Drought Severity Index (PDSI) variability in the American Southwest over the past

millennia. The annual time series (a) displays greater variability during the LIA than the MCA, as indicated by the

number of years during which variability is above the 90th percentile (b). The time series was filtered using a

10-year high-pass to compute a time series of PDSI variance (c) on the basis of 10-year and 50-year running

standard deviations (SD). A wavelet analysis shows the evolution of the power spectrum of tree-ring derived

PDSI over the past millennia (d). The black contours are the 10% significance regions, using a red-noise

background spectrum [46].

https://doi.org/10.1371/journal.pone.0186282.g004
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records (δ18O) from Palmyra Island present similar, and climatologically consistent, changes

to the Southwest PDSI variance over time, including decreased mean state of ENSO in the

MCA (a cooler eastern equatorial Pacific) and more intense ENSO in the LIA, particularly

Fig 5. Factors affecting and reflecting hydrologic variability in the American Southwest over the past millennia.

Global solar irradiance reconstruction [48–50] and ice-core based sulfate (SO4) influx in the Northern Hemisphere [51]

from volcanic activity (a); mean annual temperature (MAT) reconstructions for the Northern Hemisphere [52], North

America [29], and the American Southwest* expressed as anomalies based on 1961–1990 temperature averages (b);

changes in ENSO-related variability based on El Junco diatom record [41], oxygen isotopes records from Palmyra [42],

and the unified ENSO proxy [UEP; 23] (c); changes in PDSI variability for the American Southwest (d), and changes in

winter precipitation variability as simulated by CESM model ensembles 2 to 5 [43]. *Data for the American Southwest

temperature reconstruction is from PRISM temperature data from CMIP5 [43].

https://doi.org/10.1371/journal.pone.0186282.g005
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during the mid-seventeenth century. Variance in δ18O amplitude was lower during the MCA

than during the LIA and the RW (Table 1). Likewise, mean running variance was lower overall

(p< 0.001) during the MCA than during the LIA and the RW. As the Palmyra fossil-coral rec-

ords are not continuous, these statistics should be used with caution. That said, the continuous

diatom record from El Junco in the Galápagos Islands similarly shows enhanced ENSO vari-

ability during the LIA when compared to the past millennium (not shown). Noteworthy is the

significantly lower variance (p = 0.02) in the diatom index during the MCA when compared to

that of the LIA. Likewise, mean running variance was overall lower during the MCA than dur-

ing the LIA. As there are only five data points characterizing the RW, results were considered

inconclusive (Table 1).

Model simulations

Mean modeled winter precipitation from CESM LME ensemble members 2 to 5 show unsys-

tematic differences in Southwest winter precipitation variability between each other and with

our NADA PDSI time series (Table 1, S1 Fig). For instance, mean variance of MCA winter pre-

cipitation amounts was more variable than those of the LIA for ensemble members 3 and 5

(p< 0.05). Likewise, mean variance in winter precipitation during the RW was lower than

those simulated for the LIA and MCA in ensemble member 5 (p< 0.05). None of the statistical

analysis pertaining to interannual variability in ensemble members 2 and 4 returned signifi-

cant relationships. Averaging across all 4 model ensembles, we find more variable conditions

during the RW than the MCA and LIA (p< 0.001), but no difference between the MCA and

the LIA (p = 0.46).

Data interpretation

The evidence presented here shows that the changes observed in PDSI running variance for

the Southwest are coeval with changes in ENSO variance observed in other tropical Pacific

Ocean records (Fig 5). The linkages between these changes in Southwest hydroclimatic vari-

ance and changes in the Pacific are consistent with modeled and observed historical telecon-

nections between the Pacific and North America [19,25] and, taken together, support a

pervasive relationship between the evolution and variability of the ENSO system and the evo-

lution of drought amplitude and variability in the Southwest [38]. These changes in tropical

Pacific Ocean SSTs over the past millennium have often been associated with internal variabil-

ity of the ocean-atmosphere system [19,27,53,54] that may not be accurately represented in

current climate models. The latter would explain the lack of coherence in terms of variability

between CESM-derived winter precipitation ensemble members and NADA-derived hydrocli-

matic conditions across the American Southwest. Model error in representing the impact of

SST anomalies on land is also possible. Noteworthy is that model variability is reflecting volca-

nic forcing rather than changes in ENSO variability.

Discussion

Climate forcing factors during the past millennium

Radiative forcing due to changes in solar irradiance and volcanic activity were arguably impor-

tant drivers in the MCA and LIA [Fig 5]. For example, the minima in solar irradiance com-

bined to the increase in explosive volcanism after the 12th century have been proposed as

mechanisms capable of explaining the cooler LIA conditions [55–57]. Likewise, the period of

relative stability in terms of solar irradiance combined with minimal volcanic activity could

have induced the MCA [30]. These changes in external forcing could partly explain the change

The ’warm LIA’ Southwest climate scenario
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in variance and periodicity found in our analysis of PDSI between the MCA and LIA [Fig 4].

As future changes in total solar irradiance and volcanic activity remain unknown, they are not

included in radiative forcing calculations used for future climate simulations [58]. These forc-

ing factors constitute additional elements that could drive variability in the future, particularly

volcanic aerosols following large eruptions [59,60]. In addition, internal variability in the

global ocean-atmosphere system as well as stochastic atmospheric variability could lead to

additional uncertainty regarding future climate variability [54,61,62]. Our study stresses the

importance of those internal connections between tropical Pacific Ocean SSTs, the ENSO sys-

tem, and the American Southwest hydroclimatic conditions and supports the contention that:

(1) internal variability of the ocean-atmosphere system may not be accurately represented in

current global climate models, and (2) enhanced variability as a result of these stochastic events

should be further considered.

The impact of ENSO on precipitation variability across the Southwest

Our understanding of ENSO and its connection to background climatic conditions comes

largely from the paleoclimate record and model simulations. We know that ENSO was system-

atically weaker during the early and middle Holocene, probably as a consequence of boreal

summer perihelion and associated change in length and timing of seasons [63]. Orbital forcing

combined with a waning Laurentide ice sheet thus suppressed ENSO until around 5000 ka (1

ka = 1000 calibrated years before present), after which its behavior emerged from records of

the Pacific region [42]. The drivers of change in the ENSO regime over the past millennium

differ from those in the mid-Holocene. The former is the result of internal variability and radi-

ative forcing (solar output and volcanic activity) rather than long-term changes in Earth’s

orbital geometry. While there is evidence of a persistent relationship between periods of aridity

during the mid-Holocene and the MCA, as both are associated with increases in radiation and

cooler SST in the eastern Pacific [64], climate simulations suggest that current forcing by

increased GHG may produce an opposite oceanic response in the future [65]. Indeed, an

increase in GHG could lead to surface warming over the eastern Pacific followed by an expan-

sion of the warm pool. This would result in decreases in both the meridional and the east-west

SST gradients. Those conditions could lead to an increase in ENSO amplitude and/or fre-

quency [21,22,65–67]. While we cannot assert with confidence whether this ongoing shift is

part of natural ENSO variability or a manifestation of GHG-induced climate change [68], this

increase in variance coincides with rising temperatures in the Western Pacific Warm Pool

[23,69–71]. As further warming is anticipated in this region of the Pacific and elsewhere,

enhanced hydroclimatic variability might be expected across southwestern North America in

the coming century. In addition to potential changes in the mean state of the eastern Pacific

Ocean, it is therefore important to consider how interannual and decadal-scale variability in

the ENSO system, and thus variability in Southwest hydroclimatology, might evolve over the

21st century [68]. We know that ENSO behavior exhibits decadal- to centennial-scale modula-

tion larger than those observed in the instrumental record [72], and that future conditions

could, therefore, push the ENSO system beyond the range of return intervals and levels [3].

A ‘warm LIA’ as a future climate scenario

In the coming century, increasing atmospheric GHG concentration and associated warming

could have important hydrological and water resource consequences in the Southwest result-

ing from mean state changes due to higher evaporation and decreased precipitation [73–75].

This is in addition to the probable role of GHG-induced amplification of the atmospheric

waves in the mid- and high-latitudes, which are thought to lead to increased extreme events

The ’warm LIA’ Southwest climate scenario
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across the Southwest and beyond [76,77]. However, changing climatic variability is also a con-

cern. In addition to influencing management of regional water supplies and agricultural prac-

tices as well as modulating droughts and floods [4,5,78–79], interannual hydroclimatic

variability directly affects wildland plant growth, fuel conditions, and fire regime. As such,

increasing variability in moisture conditions have been linked to enhanced fires, as wet/dry

oscillations promote rapid biomass growth and natural fire suppression (fuel accumulation),

followed by subsequent burning [8,10–13]. Increasing drought frequency and warming tem-

peratures (fuel moisture) have also been positively associated with increased wildfire activity,

particularly in Western North America [39,80–84]. In the Southwest, it has previously been

shown that largest fire years tend to be experienced after a wet-dry sequence [7], and in associ-

ation with an El Niño-La Niña sequence. A pattern of enhanced fire activity during times of

increased variability in ENSO and Southwest hydroclimatic conditions could imply a trajec-

tory towards a more fire-prone Southwest during the 21st century [7,13]. Projected warming

and drying in spring and summer combined with earlier snowmelt and more winter rain

would likely exacerbate this trend by facilitating fire ignition and diminishing fuel moisture

during the dry season [85].

In light of our findings and its implications, we propose a ‘warm LIA’ scenario for the

Southwest, which compounds the effects of warmer temperatures with higher hydroclimate

variability. Under this previously non-analogue scenario, enhanced drought-prone conditions

would be interspersed with flood-prone ones against a background of overall water resource

diminishment. Warmer temperatures would alter the rain/snow ratio during the cold season,

further increasing the chance for more extreme winter floods and summer droughts [15]. In

agreement with this speculation are climate projections suggesting increased flood magnitude

in the future across the Southwest, despite reduced mean precipitation amounts [4].

Conclusion

Forecasting hydroclimatic conditions in the American Southwest requires thorough consider-

ation of regional climate non-stationarity in the higher moments and not just mean state. This

region is inherently prone to highly variable precipitation, including episodic droughts as well

as rapid snowmelt and severe rainstorms that often lead to flooding. Our results show that

hydroclimatic variability in the Southwest has not remained constant over the last millennia,

with a shift from low to high variance at the MCA-LIA transition that was accompanied by a

change in quasi-periodic variance, from a higher concentration of power in the multi-decadal

periodicities during the MCA vs. interannual and decadal periodicities during the LIA. Shifts

in variance are corroborated by ENSO-sensitive proxy records from the tropical Pacific, sug-

gesting an interactive relationship between the ENSO system and the evolution of drought

amplitude in the Southwest. In line with a potential increase in decadal variability in the ENSO

system over the 21st century [86], we argue that LIA variability provides crucial targets in the

paleoclimate record against which to scale the importance of future hydroclimatic variability

in the American Southwest. This finding does not preclude the importance of Medieval-era

droughts as benchmarks to assess the severity of future drought risks [24,25,37]. Rather, we

propose the possible development of a ‘warm LIA’ climate scenario for the coming century

that combines high precipitation variability (similar to LIA conditions) with warm and dry

conditions. These observations further challenge assumptions of climate stationarity and offer

new awareness of climate risks for ensuring sustainable water and land management in the

Southwest. These observations can also be useful in efforts to understand and reduce model

uncertainties related to ENSO behavior and impacts in attempts to model future Southwest

climate.
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Supporting information

S1 Fig. Winter precipitation variance in the American Southwest for the past millennium,

as simulated by CESM LME. We used ensemble members 2 to 5, which consist of coupled

ocean-atmosphere climate models; outputs represent a range of probable monthly precipita-

tion values generated by CESM [43].
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