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Abstract
The majority of meditation involves focusing attention on internal events or sensations and becoming aware of emotions.
The insula cortex, through a functional connection with the prefrontal cortex and other brain regions, plays a key role in
integrating external sensory information with internal bodily state signals and emotional awareness. The purpose of this
exploratory study was to examine the resting-state functional connectivity of the insula with other brain regions in medi-
tation practitioners and control subjects. Thirty-five Brain Wave Vibration meditation practitioners and 33 controls without
meditation experience were included in this study. All subjects underwent 4.68-min resting-state functional scanning runs
using magnetic resonance imaging. The anterior and posterior insulae were chosen as seed regions for the functional
connectivity map. Meditation practitioners showed significantly greater insula-related functional connectivity in the thal-
amus, caudate, middle frontal gyrus, and superior temporal gyrus than did controls. Control subjects demonstrated greater
functional connectivity with the posterior insula in the parahippocampal gyrus. Our findings suggest that the practice of
Brain Wave Vibration meditation may be associated with functional differences in regions related to focused attention,
executive control, and emotional awareness and regulation.
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Introduction

Meditation can be conceptualized as a family of complex
emotional and attentional regulatory training practices (Lutz
et al. 2008). Most types of meditation include focusing atten-
tion on internal events or feelings and inhibiting interference
from irrelevant external events. Structural and functional neu-
roimaging studies of meditation have reported some insightful
findings in meditation practitioners, suggesting meditation-
associated changes in neural circuitry, such as the prefrontal
cortex (PFC), anterior cingulate cortex (ACC), striatum,
amygdala, and insula (Kang et al. 2013; Luders et al. 2011;
Lazar et al. 2005; Jang et al. 2011; Tang et al. 2015).

Previous studies using structural magnetic resonance imag-
ing (MRI) revealed greater cortical density or thickness in the
medial PFC or orbitofrontal cortex in meditators compared
with non-meditators (Luders et al. 2009; Lazar et al. 2005).
Holzel et al. (2008) observed that the gray matter concentra-
tion in the medial PFC was correlated with total hours of
meditation training in Vipassana meditators. The orbitofrontal
cortex and medial PFC are believed to play a role in emotional
regulation. A study, examining the long-term effects of
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meditation on brain structure, found that the thickness of the
PFC and insular cortex in Vipassana meditation practitioners
was significantly greater than that in controls, which suggests
that meditation may influence neural plasticity (Lazar et al.
2005). Greater functional connectivity than controls was also
reported within the default mode network in the medial PFC
(Jang et al. 2011) and dorsomedial PFC (Taylor et al. 2013).
These prefrontal regions receive connections from areas asso-
ciated with exteroceptive (i.e., perceiving the body’s own po-
sition, motion, and state) and interoceptive (i.e., perceiving
sensations arising within the body) stimuli. The PFCs also
have rich functional connections with the insular cortex,
which plays a key role in bodily and emotional awareness,
as well as integrating external sensory information with inter-
nal bodily state signals and emotion (Craig 2002, 2004;
Critchley et al. 2004; Mutschler et al. 2009; Carmichael and
Price 1996; Gu et al. 2013).

Brain Wave Vibration (BWV) is a mind-body training
designed to focus on bodily sensations, facilitate relaxa-
tion, and release negative emotions in the body through
natural rhythmic movements. BWV involves focusing at-
tention on one’s bodily sensations and emotion, as well as
heightening awareness of the movement of energy within
the body. It aims to relax the body and induce positive
mind, while the vibrations are believed to tone up the brain
arousal. The first step of BWV is to move the body con-
sciously. The second step involves following one’s own
natural rhythm and focusing on physical sensations and
vibrations, which may spread to all parts of the body.
Once the vibration becomes natural and familiar, practi-
tioners reflexively engage in the third step, which is char-
acterized by increased awareness of the movement of ener-
gy within the body and a release of negative emotions.
BWV has some similarity to yoga practice, as both the
practices include distinct forms of postures and breathing
exercise (Bowden et al. 2012). Previously, BWV training
was shown to significantly reduce stress reduction and im-
prove positive affect (Jung et al. 2010; Lee et al. 2015).
BWV practitioners also showed significantly increased de-
fault mode network connectivity in the PFC (Jang et al.
2011). Since BWV emphasizes movement and bodily sen-
sation, it is important to consider the connectivity of the
insula. However, no previous studies have explored the
functional connectivity between the insula and other brain
regions in BWV.

A review emphasized the role of the insular cortex in the
experience of emotion derived from information about
bodily states (e.g., feeling down because of pain) (Uddin
et al. 2013). Emotional regulation refers to strategies that
can influence emotional awareness, which is controlling
which emotions arise and how these emotions are experi-
enced and expressed (Tang et al. 2015). Affective and emo-
tional components from other brain areas are relayed to the

insula, and its role involves coordination of these compo-
nents with other large-scale brain networks (Uddin et al.
2011). Increased interinsular white matter integrity was al-
so reported in Yoga practitioners (Villemure et al. 2014).
However, the insular cortex is not functionally homoge-
nous. The posterior insula serves as a primary interoceptive
cortex to receive and process direct interoceptive inputs
(e.g., the actual intensity of a stimulus) (Frot et al. 2007).
The anterior insula is preferentially involved in conscious
awareness of interoceptive signals (e.g., the perceived in-
tensity of a stimulus) and the integration of information
regarding emotional states (Uddin 2015; Craig et al.
2000). The anterior insula, in conjunction with the dorso-
lateral PFC, has been implicated in the salience network.
Activity in these regions increases in response to various
salient stimuli, such as sensory (e.g., pain and temperature)
or visceral stimuli (Seeley et al. 2007). These structures are
collectively referred to as the fronto-insular cortex (Menon
and Uddin 2010; Seeley et al. 2007; Sridharan et al. 2008).
However, few studies of the insula-related changes in brain
function associated with meditation have been conducted to
date.

One strategy for understanding the functional role of a
brain region is to focus on its functional connectivity.
Resting-state functional connectivity is a functional MRI ap-
proach used to evaluate functional interactions among brain
regions, which occur when a subject is not performing an
explicit task, by analyzing the temporal correlations of spon-
taneous low-frequency blood oxygen level-dependent
(BOLD) signal fluctuations (Fox and Raichle 2007;
Fransson 2005). Using this approach, the relationship between
anatomically distinct, but functionally connected, brain re-
gions can be efficiently explored (Fox et al. 2005; Fox and
Raichle 2007; Bentley et al. 2016). Therefore, considering that
most of meditation practices, including BWV, involve the fo-
cus of attention on somatic sensations and emotional aware-
ness, investigating the functional connectivity between insular
subregions (i.e., the anterior/posterior insula) and other brain
areas in experiencedmeditators could provide new insight into
the relation of meditation practice on neuronal network
function.

The purpose of the current exploratory study was to inves-
tigate the functional role of the insula from the perspective of
its functional communications with other brain regions in
BWV meditation practitioners to determine the association
between meditation and brain function involving emotional
and bodily awareness and monitoring. In this study, we per-
formed functional connectivity-based parcellation of the
insula using resting-state functional data to determine whether
BOLD fluctuations within the anterior and posterior insula
correlate with other regions of the brain. We hypothesized that
BWV practitioners would show heightened functional con-
nectivity between the insula and the PFC and brain regions
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associated with sensory processing and emotional awareness
and regulation.

Method

Participants

Thirty-five meditation practitioners (16 men and 19 women)
and 33 control subjects (22 men and 11 women) participated
in the current study. The meditation practitioners were recruit-
ed from participants of BWV, a type of moving meditation
developed in South Korea in the 1980s. BWV is designed to
help quiet the thinking mind and release negative emotions by
performing specific rhythmic physical movements and focus-
ing on bodily sensations (Bowden et al. 2012; Jung et al.
2010).

The meditation practitioners reported practicing BWVon a
daily basis (30–60 min per day) for more than 1 year (mean
39.9 months; range 13–101 months). The control subjects
reported no previous experience with meditation or similar
practices (e.g., yoga, Tai Chi, or Templestay). The non-
patient version of the Structured Clinical Interview for
DSM-IV was used to assess psychiatric disorders in all partic-
ipants. All subjects were right-handed. The exclusion criteria
included a known history of psychosis, bipolar disorder, major
depressive disorder, substance abuse or dependence, signifi-
cant head injury, or seizure disorder. The Beck Depression
Inventory (BDI) (range 0–17 for meditation practitioners; 0–
20 for control subjects) (Beck et al. 1961) and the Beck
Anxiety Inventory (BAI) (range 0–14 for meditation practi-
tioners; 0–15 for control subjects) (Beck and Steer 1990) were
administered to measure the severity of depression and anxi-
ety, respectively. Age and BDI and BAI scores were normally
distributed. There were no differences in age, sex, or BDI or
BAI scores between the meditation practitioners and control
subjects (Table 1). The present study was approved by the
Institutional Review Board of Seoul National University
Hospital, and written informed consent was obtained from
all subjects.

Procedure

Data Acquisition and Preprocessing

Before functional MRI (fMRI) scanning, participants
were directed to maintain fixation on a foveal crosshair.
Subsequently, participants were explicitly instructed to relax,
move as little as possible, and refrain from meditating or
thinking of something specific during the fMRI scan.
Resting-state functional MRI (rs-fMRI) data processing was
carried out using the FMRIB Software Library (FSL) (www.
fmrib.ox.ac.uk) and Analysis of Functional Neuroimages
(AFNI) (afni.nimh.nih.gov/afni). After discarding the first
four images, preprocessing was performed including slice-
timing correction, 3D rigid-body translation for head motion
correction, and temporal normalization to yield a whole-brain
mode value of 1000. Processed rs-fMRI data were temporally
band-pass filtered (0.009–0.080 Hz) and spatially smoothed
(8-mm full width at half height). Several sources of spurious
variance along with their temporal derivatives were then re-
moved from the data through linear regression: six parameters
obtained by rigid body correction of head motion, the signal
from a ventricular region of interest (ROI), the signal from a
region centered in the white matter, and the signal from
the brain mask. No participants had head motion of more than
2.0 mm translation in any of the three directions or more than
2.0 maximum rotations around any of the axes during the
experiment. In addition, we did not observe any significant
difference in motion parameters (average of absolute values
across time points) between the meditation and control groups
(unpaired two-sample t test, P < 0.05 for uncorrected multiple
comparison).

Parcellation of the Insula and Functional Connectivity Maps

In this study, we segmented the insular area into two subre-
gions and computed their functional connectivity maps for
each hemisphere using the functional connectivity-based
parcellation method (Kim et al. 2010). Briefly, the insular
cortex was manually defined on the high-resolution T1-

Table 1 Demographic and
clinical characteristics of the
meditation practitioners and
control subjects

Meditation
practitioners

Control
subjects

Analysis

(N = 35) (N = 33) T or χ2 score P value

Age (year) 25.0 ± 3.5 23.7 ± 3.6 − 1.529 0.131

Sex (M/F) 16/19 22/11 0.082 0.094

Duration of meditation
practice (month)

39.9

BDI score 2.7 ± 6.3 3.0 ± 4.8 0.231 0.818

BAI score 4.4 ± 7.9 3.6 ± 4.2 − 0.545 0.588

Data are given as mean ± standard deviation

BDI Beck Depression Inventory, BAI Beck Anxiety Inventory
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weighted MR image of each hemisphere of each subject
(Fig. 1). The manually defined left/right insula mask was spa-
tially normalized into rs-fMRI data. For each rs-fMRI voxel x
in the left/right insular area, the functional connectivity map
rx(V), where V is the whole-brain set of gray matter voxels,
was computed using Pearson’s correlation. The normalized
correlation map Zx(V) was then computed using Fisher’s z
transform. The maps were stored in the rows of Z (functional
connectivity profile matrix) with dimensions of Nx × Nv,
where Nx is the number of voxels in the left/right insular area
and Nv is the number of voxels in the gray matter area. To
characterize the degree of similarity between the functional
connectivity maps of voxels in the left/right insular area, a
functional similarity (S) matrix was computed by cross-
correlating the Z matrix. Each element (i, j) in the S matrix
characterizes the degree of similarity between the normalized
correlation map Zi(v) of the left/right insula voxel and the
normalized correlation map Zj(v) of the left/right insula voxel.
The K-means cluster algorithm (K = 2) was then applied to
segment the left/right insula area into two functional subre-
gions based on the similarity of their functional connectivity
(Supplementary Fig. 1). The functional connectivity map for
each subregion was computed by averaging across the subset
of rows of Z corresponding to that cluster. For creating prob-
ability maps for the left/right insular subregions and group
analysis of functional connectivity related to each subregion
of the left/right insula, functionally parcellated insular subre-
gions and their corresponding functional connectivity map
for each individual space were spatially transformed into
the Montreal Neurological Institute (MNI) space. Within-
and between-group analyses were conducted in MNI space
(2 × 2 × 2 mm).

Measures

A 1.5-T Avanto scanner (Siemens, Erlangen, Germany) was
used to obtain BOLD signals using an echo-planar imaging
sequence for 4.68 min (120 volumes) with the following
parameters: TR/TE = 2340/52 ms, FOV = 220 × 220 mm, flip
angle = 90°, voxel size = 3.44 × 3.44 × 5.00 mm, and no
interslice gap. T1-weighted images were obtained using a

three-dimensional magnetization-prepared rapid acquisition
gradient-echo (MPRAGE) sequence (TR/TE = 1160/
4.76 ms, FOV = 170 × 230 mm, flip angle = 15°, and voxel
size = 0.45 × 0.45 × 0.90 mm).

Data Analyses

An unpaired two-sample t test and the chi-square test were
used to compare differences in demographic and clinical mea-
sures between the two groups. Within-group imaging analyses
were conducted using a one-sample t test and a false-
discovery-rate (FDR) correction threshold of q < 0.001. To
detect significant differences in the degree of functional con-
nectivity between groups, a permutation test was performed
using in-house software written using MATLAB v. 7.6
(Mathworks, Natick, MA). In this test, all participants were
randomly assigned to one of two groups, and the distribution
of group differences was estimated based on 5000 randomized
iterations for each voxel. The voxels, reaching 0.1%
(P < 0.001, two-tailed) of the estimated distribution of group
differences, were deemed statistically significant. To remove
the spike-like noisy patterns, not correction for clustering,
clusters less than 64 mm3 (approximately 1 voxel in the
original space) were excluded.

The relationships between Pearson’s correlation coeffi-
cients were calculated to investigate the relationships between
the duration of meditation practice and BDI/BAI scores and
the resting-state functional connectivity strength with the in-
sular cortex. All statistical analyses were two-tailed, with a
significance level of probability set at 0.05 (uncorrected for
multiple comparison).

Results

Our results showed that the insular cortex is segmented into
anterior and posterior subregions when using the functional
connectivity-based parcellation method (Supplementary Fig. 2).
The whole-brain functional connectivity maps for the anterior
insula in the control group (Fig. 2a/e) and in the meditation
practitioners (Fig. 2b/f) showed significant positive functional
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Fig. 1 Left and right insular
cortex manually defined on
T1-weighted MRI in a axial,
b coronal, and c sagittal view



connections with the bilateral inferior/middle frontal
gyrus, inferior parietal lobule, superior temporal gyrus,
ACC, pre-supplementary motor areas, thalamus, and caudate.
Significant negative functional connections with the bilateral
superior frontal gyrus, parahippocampal gyrus, and posterior
cingulate were also observed. Thewhole-brain functional con-
nectivity maps for the posterior insula in the control group
(Fig. 2c/g) and in the meditation practitioners (Fig. 2d/h)
showed significant positive functional connections with the
bilateral pre-/post-central gyrus, superior temporal gyrus,

ACC, post-supplementary motor areas, and thalamus, but sig-
nificant negative functional connections with the bilateral
superior/middle frontal gyrus, middle/inferior temporal gyrus,
inferior parietal lobule, angular gyrus, posterior cingulate, and
caudate.

Statistical comparison between the whole-brain functional
connectivity group maps showed significant increasing and
decreasing functional connectivity between the meditation
practitioners and control subjects (Fig. 3). The meditation
practitioners showed greater functional connectivity between
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Fig. 2 The statistical functional connectivity maps in control group (left
panel) and meditator group (right panel) at P < 0.001 for multiple
comparison (FDR). The statistical functional connectivity maps of the
left anterior insular subregion in control group (a) and meditator group
(b) and of the right anterior insular subregions in control group (e) and
meditator group (f). The statistical functional connectivity maps of the left

posterior insular subregion in control group (c) and meditator group (d)
and of the right posterior insular subregions in control group (g) and
meditator group (h). The color bar represents the degree of functional
connectivity: blue—negative functional connectivity and red—positive
functional connectivity



the dorsolateral PFC (middle frontal gyrus) and thalamus and
the anterior insula. In addition, the meditation practitioners
also demonstrated greater functional connectivity with the
posterior insular cortex in the caudate and the superior
temporal gyrus. The meditation practitioners also demonstrat-
ed lesser functional connectivity between the posterior insular
cortex and the parahippocampal gyrus (Table 2). No signifi-
cant correlations were found between the functional connec-
tivity with the anterior/posterior insula in the middle frontal
gyrus, caudate, thalamus, superior temporal cortex, and
parahippocampal gyrus and duration of meditation practice
or BDI/BAI scores.

Discussion

In the present study, we found that meditation practitioners
appear to have significantly greater functional connectivity
with the anterior insula in the thalamus and PFC, as well as
with the posterior insula in the caudate and superior temporal
gyrus. We also observed lesser functional connectivity in the
meditation practitioners between the posterior insula and the
parahippocampal gyrus. A posterior-to-anterior gradient in the
insular cortex has been proposed, in which features of
interoception are processed in the posterior insula, whereas
integration with emotional and cognitive information occurs
in the anterior insula. Thus, the insula is believed to form an
interoceptive image of one’s physical state and, as a result, to
play a crucial role in subjective awareness of emotions
(Craig 2002; Gu et al. 2013).

Meditation has been thought to be complex emotional
regulation training techniques developed for emotional bal-
ance and cultivation of well-being (Lutz et al. 2008).
Bowden et al. (2014) reported improvements in mood and
sense of well-being after BWV practice. Our finding of
increased functional connectivity between the anterior
insula and thalamus and the PFC are in line with previous
studies (Manuello et al. 2016; Tang et al. 2015; Laneri et al.
2016). A recent study using diffusion tensor imaging found
that meditation practitioners demonstrated higher fraction-
al anisotropy values in the white matter connected to the
insula and thalamus, which may be interpreted as enhanced
white matter integrity or increased structural connectivity
(Laneri et al. 2016). One of the functions of the thalamus is
to relay sensory information to the cerebral cortex includ-
ing the insula. Gu et al. (2013) also provided evidence
showing that the anterior insula appears to play a role in
emotional awareness. The anterior insula integrates
bottom-up interoceptive sensory signals with top-down
predictions to generate a current emotional awareness state
(Gu et al. 2013). Therefore, the greater functional connec-
tion between the anterior insula and thalamus could be re-
lated to more efficient focused emotional attention through
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Fig. 3 The statistical difference maps between meditation practitioners
and control subjects at P < 0.001 for multiple comparisons using
permutation test. a Right thalamus, b left caudate, c right
parahippocampal gyrus, d left middle frontal gyrus, e left superior
temporal gyrus, and f right parahippocampal gyrus. The statistical
functional connectivity maps in control group (left panel), in meditation
group (middle panel), and between-group difference (right panel). In
within group analysis (left and middle panel), the red voxels represent
the positive functional connectivity and the blue voxels represent the
negative functional connectivity at P < 0.001 (FDR). In between-group
analysis (right panel), red voxels represent the greater functional
connectivity and blue voxels represent the lesser functional
connectivity in meditation practitioners compared with that in control
subjects at P < 0.001 (permutation test)



meditation practice. This may occur through the changed
patterns of temporal interaction in thalamic cells after med-
itation (Saggar et al. 2015).

The PFC is functionally and anatomically connected to the
insula (Sridharan et al. 2008; Craig 2009). The fronto-insular
cortex has been shown to initiate switching signals that acti-
vate the central executive network and deactivate the default
mode network during cognitively demanding tasks (Sridharan
et al. 2008). Meditation practice has been associated with in-
creased activation in areas involved in sustaining and moni-
toring the focus of attention, including the dorsolateral PFC,
and with increased between-network functional connectivity
between the dorsolateral PFC and the insula (Mooneyham
et al. 2016). Increased functional connectivity of the PFC
may contribute to enhanced intermodular communication be-
tween the executive control network and the salience network
(Mooneyham et al. 2016; Tomasino and Fabbro 2016). Allen
et al. (2012) demonstrated that mindfulness intervention im-
proved executive control accompanied by increased BOLD
changes in the dorsolateral PFC.

It has been proposed that the caudate is associated with
transmission of anxiety and drive, as a component of the re-
ward system, as well as executive function such as a goal-
directed action (Guehl et al. 2008; Grahn et al. 2008). There
is also evidence to suggest that the caudate is involved in
attentional processes, in particular response inhibition (Aron
and Poldrack 2005). A structuralMRI study demonstrated that
the gray matter density of the caudate nucleus was increased
after meditation training in patients with Parkinson’s disease
(Pickut et al. 2013). Monti et al. (2012) reported increased
cerebral blood flow in the caudate and insula among other
regions after an 8-week mindfulness-based program.
Additionally, the degree of increased cerebral blood flow in

the left caudate was significantly correlated with decreased
self-reported levels of anxiety. In another recent study, neural
activation in the caudate and anterior insula was attenuated in
meditation practitioners during reward anticipation (Kirk et al.
2015), proposing that meditation practitioners are less suscep-
tible to monetary incentives and related subjective psycholog-
ical distress (Kirk et al. 2015; Kirk et al. 2011). Moreover,
Buddhist meditation practitioners showed elevated activity
in the somatosensory cortex and superior temporal cortex,
which suggests that meditation practitioners activate brain net-
works enabling them to uncouple a negative emotional re-
sponse to an unfair offer (Kirk et al. 2011).Meditation practice
might enable the subject to better modulate anxiety and
decision-making through awareness of negative thoughts
and emotions and in turn accepting them, but not attaching
or reacting to them (also called Bdecentering^), which may
enhance a subjective sense of well-being (Jung et al. 2016;
Creswell et al. 2007). However, further studies are warranted
to understand the implications of decreased negative arousal
on decision-making and well-being.

In this study, we observed lesser functional connectivity
between the posterior insula and the parahippocampal gyrus
in meditation practitioners. The parahippocampal gyrus, in
conjunction with the medial PFC and insula, comprises the
paralimbic system. The paralimbic system is important for
communication between the limbic system and neocortex
and is associated with emotional regulation, self-projection,
and different aspects of memory encoding and retrieval in
declarative long-term memory (Schacter et al. 1999; Viard
et al. 2011). Activation of the parahippocampal gyrus was
observed during episodic memory retrieval and rest (Stark
and Squire 2001). The parahippocampal gyrus also has a
strong connection with the amygdala, which is associated with

Table 2 Brain regions showing
difference of functional
connectivity with the anterior/
posterior insular cortex between
meditation practitioners and
control subjects (permutation test,
P < 0.001)

Brain region, Brodmann area MNI coordinates Volume (mm3) Max intensity P value

x y z

MED>CTL (left anterior insula)

R thalamus 14 − 30 12 352 0.108 4.0 × 10−7

MED >CTL (left posterior insula)

L caudate − 12 12 10 1088 0.124 4.5 × 10−5

MED <CTL (left posterior insula)

R parahippocampal gyrus, 28 26 8 − 24 352 − 0.138 4.0 × 10−7

MED >CTL (right anterior insula)

L middle frontal gyrus, 9/8 − 32 38 42 416 0.122 6.0 × 10−7

MED >CTL (right posterior insula)

L superior temporal gyrus, 40/22 − 62 − 46 20 464 0.140 2.0 × 10−5

MED <CTL (right posterior insula)

R parahippocampal gyrus, 28 26 8 − 22 304 −0.146 1.0 × 10−6

FDR false-discovery-rate, R right, L left
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anxiety and negative emotions (Stein et al. 2007). In another
study, this connection was increased significantly during emo-
tional versus neutral film viewing (Kilpatrick and Cahill
2003). Therefore, weaker functional connectivity between
the parahippocampal gyrus and the posterior insula may be
related to the release of negative emotion, one of the training
procedures of BWV. In a structural MRI study, altered gray
matter volume in the parahippocampal gyrus was observed in
loving-kindness meditators (Leung et al. 2013).

Limitations

There are several limitations to the present study. First, because
of the cross-sectional nature of this study, we could not explore
the longitudinal causal direction of influence. This introduces
the important confound that people who decide to practice med-
itation may differ from others at baseline with respect to psy-
chological and cultural backgrounds, or even brain activation
and structural traits. The cross-sectional design, with the rela-
tively small sample size in each group, may also explain the
absence of significant correlations between functional connec-
tivity and duration of BWV practice. Second, whether this
study, which included meditation practitioners who have prac-
ticed BWV, can be generalized to other kinds of meditation
practice, especially mindfulness meditation or focused attention
meditation, is questionable. Different kinds of meditation
would be expected to have different patterns of functional con-
nectivity that vary according to their approach. Future studies
are needed to compare differences among the diverse tech-
niques of meditation. Another limitation is the problem of re-
verse inference (Poldrack 2011). Thus, it could be interpreted
cautiously to attribute the difference in functional connectivity
of certain brain regions to specific cognitive function.
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