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Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit

abrupt changes due to attractor transitions or bifurcations in the dynamical systems

producing them. A plethora of methods for detecting such change points in time series

statistics have been developed over the years, in addition to test criteria to evaluate

their significance. Issues to consider when developing change point analysis methods

include computational demands, difficulties arising from either limited amount of data

or a large number of covariates, and arriving at statistical tests with sufficient power to

detect as many changes as contained in potentially high-dimensional time series. Here, a

general method called Paired Adaptive Regressors for Cumulative Sum is developed for

detecting multiple change points in the mean of multivariate time series. The method’s

advantages over alternative approaches are demonstrated through a series of simulation

experiments. This is followed by a real data application to neural recordings from rat

medial prefrontal cortex during learning. Finally, the method’s flexibility to incorporate

useful features from state-of-the-art change point detection techniques is discussed,

along with potential drawbacks and suggestions to remedy them.

Keywords: change point, cumulative sum, adaptive regression splines, nonstationary, bootstrap test, block-

permutation, behavior, spike counts

1. INTRODUCTION

Stationary data are the exception rather than the rule in many areas of science (Paillard, 1998;
Elsner et al., 2004; Shah et al., 2007; Aston and Kirch, 2012; Stock and Watson, 2014; Fan et al.,
2015; Latimer et al., 2015; Gärtner et al., 2017). Time series statistics often change, sometimes
abruptly, due to transitions in the underlying system dynamics, adaptive processes or external
factors. In neuroscience, both behavioral time series (Smith et al., 2004; Durstewitz et al., 2010;
Powell and Redish, 2016) and their neural correlates (Roitman and Shadlen, 2002; Durstewitz
et al., 2010; Gärtner et al., 2017) exhibit strongly nonstationary features which relate to important
cognitive processes such as learning (Smith et al., 2004; Durstewitz et al., 2010; Powell and
Redish, 2016) and perceptual decision making (Roitman and Shadlen, 2002; Latimer et al., 2015;
Hanks and Summerfield, 2017). As such, identifying nonstationary features in behavioral and
neural time series becomes necessary, both for interpreting the data in relation to the potential
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influences generating those features, and for removing those
features from the data in order to perform statistical analyses
that assume stationary observations (Hamilton, 1994; Shumway
and Stoffer, 2010). Abrupt jumps in time series statistics form
one important class of nonstationary events. These are often
caused by bifurcations, which, in turn, may occur with gradual
changes in parameters of the underlying system (Strogatz, 2001).
Consequently, they are of wide interest to both statistical data
analysis and the study of dynamical systems, and are commonly
referred to as change points (CPs; Chen and Gupta, 2012).

Detecting CPs has a long and varied history in statistics,
and we will not attempt to exhaustively survey the different
approaches, including regression models (Quandt, 1958; Brown
et al., 1975), Bayesian techniques (Chernoff and Zacks, 1964)
and cumulative sum (CUSUM) statistics (Page, 1954; Basseville,
1988), to name but a few, within the limited scope of this
article. Instead, we refer the reader to the excellent reviews
on the topic (Bhattacharya, 1994; Chen and Gupta, 2012;
Aminikhanghahi and Cook, 2017) and focus on the offline
CUSUM class of methods (Hinkley, 1971a, as opposed to
sequential CUSUM methods, Page, 1954, that locate a CP
online, while the time series is evolving), specifically methods
that aim at detecting CPs in the mean of the time series.
CUSUM-based methods are powerful, easy to implement, and
are backed up by an extensive literature, theoretical results and
various extensions to multiple CPs and multivariate scenarios,
making them an ideal starting point. These methods assume
that the time series is piecewise stationary in the statistic under
consideration (e.g., piecewise constant mean) and rely on a
cumulative sum transformation of the time series. Commonly,
at-most-one-change (AMOC) is identified by maximum-type
statistics (Kirch, 2007) at the extremum of the curve resulting
from that transformation (Basseville, 1988; Antoch et al.,
1995).

Extending the CUSUM method to multiple CPs usually
involves repetitive partitioning of the time series upon each
detection (binary segmentation methods; Scott and Knott,
1974; Bai, 1997; Olshen et al., 2004; Fryzlewicz, 2014; Cho
and Fryzlewicz, 2015). This segmentation procedure, however,
may hamper detection in later iterations as the reduction in
number of observations depletes statistical power exponentially
fast as more CPs are to be retrieved. In this article, we
develop the PARCS (Paired Adaptive Regressors for Cumulative
Sum) method which offers a straightforward extension that
leverages the full time series in order to detect multiple
CPs, thus providing a new solution to this issue. PARCS
rests on the fact that a CUSUM transformation of the
data relates to computing an integral transformation of the
piecewise constant mean time series model, resulting in a
piecewise linear mean function that bends at potential CPs and
could be approximated by adaptive regression spline methods
(Friedman and Silverman, 1989; Friedman, 1991; Stone et al.,
1997). Namely, rather than attempting to approximate the
discontinuous time series mean directly (Efron et al., 2004; Vert
and Bleakley, 2010), the PARCS model is an approximation to
the continuous CUSUM-transformed time series by a piecewise
linear function. The bending points of the PARCS model are

each defined by a pair of non-overlapping piecewise linear
regression splines that are first selected by a two-stage iterative
procedure.

The PARCS model is further refined by a nonparametric CP
significance test based on bootstraps (Dumbgen, 1991; Antoch
and Hušková, 2001; Hušková, 2004; Kirch, 2007; Matteson
and James, 2014). While analytically derived parametric tests
may usually be preferable over bootstrap-based tests due to
better convergence and coverage of the tails, in the current
CP setting closed form expressions for parametric tests are
hard to come by and are usually replaced by approximations
(Gombay and Horváth, 1996; Horváth, 1997). In this case, tests
based on bootstraps are preferable since they are known to
converge faster to the limit distribution of the test statistic (often
they are also not as conservative as parametric approximations
for datasets of a relatively small size; Csörgö and Horváth,
1997; Antoch and Hušková, 2001; Kirch, 2007). In order to
accommodate the possibility of temporally dependent noise in
the data (Picard, 1985; Antoch et al., 1997; Horváth, 1997),
model selection is carried out by a nonparametric block-
permutation bootstrap procedure (Davison and Hinkley, 1997;
Hušková and Slabỳ, 2001; Kirch, 2007) developed specifically
for PARCS, which relies on a test statistic that quantifies
the amount of bending at each candidate CP. Since model
estimation is based on linear regression, PARCS is also
effortlessly extended to spatially independent, multivariate time
series.

The article is structured as follows. Section 2.1 introduces
the CUSUM method for AMOC detection. We then develop
the PARCS method, presenting in Section 2.2 the procedure
for inferring a nested model that allows for significance testing
of multiple CPs, followed in Section 2.3 by an outline of
the nonparametric permutation test procedure for refining the
PARCS model further. Results in Section 3 illustrate that PARCS
improves on several issues inherent in classical methods for
change point analysis. In Section 3.1, we compare the PARCS
approach to the CUSUM method in detecting a single CP,
followed in Section 3.2 by a comparison with standard binary
segmentation in detecting multiple CPs. We also demonstrate
in Section 3.3 that PARCS is successful in detecting CPs in
spatially independent, multivariate time series. We then present
in Section 3.4 an example from the neurosciences, in which
neural and behavioral CPs are compared during operant rule-
switching learning (Durstewitz et al., 2010). Finally, we discuss in
Section 4 the PARCS approach in relation to other state-of-the-
art CP detection methods, along with drawbacks and potential
extensions.

2. METHODS

This section outlines the CUSUM method and the PARCS
extension to multiple CPs, in addition to a nonparametric
permutation technique to test for the statistical significance of
CPs as identified by PARCS. For generality, the formulation
assumes temporally dependent observations in the time series,
independent observations being a special case.
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2.1. CUSUM: Cumulative Sum of
Differences to the Mean
A class of methods for identifying a single CP in the mean
relies on computing a CUSUM transformation of the time series
x = {xt}1 :T . A useful formulation that allows for dependent
observations in the time series is given by the moving average
(MA) step model (Antoch et al., 1997; Horváth, 1997; Kirch,
2007),

xt = b+w ·1t−c+
∑

τ≥0

κτ ǫt−τ ; κ0 = 1, ǫt ∼ N (0, σ 2), (1)

where a jump in the time series mean from baseline b to b + w
occurs after time step c, the change point. The step parameter
or weight w is positive (negative) when the time series mean
increases (decreases) following c. The largest integer τ such that
noise coefficient κτ 6= 0 defines a finite order q of theMA process,
which is 0 for temporally independent observations. We will
assume that theMAprocess is stationary, which will always be the
case if it is finite, with ǫt independent and identically distributed
(i.i.d.) random variables (for an infinite process, points xt for
t ≤ 0 may be considered unobserved, and coefficients κτ have to
fulfill certain conditions to make the process stationary, as given,
for instance, in Shumway and Stoffer, 2010). The Gaussian noise
assumption in theMA process can be relaxed, as long as the noise
process has zero mean and finite, constant variance (see Lombard
and Hart, 1994; Antoch et al., 1997; Horváth, 1997; Kirch, 2007,
for theoretical results on the more general form of dependent
noise). The discrete Heaviside step function, 1t−c, is defined by,

1i =

{

1 if i > 0,

0 otherwise.

Identifying the presence of a CP requires testing the null
hypothesis, H0 :w = 0, against the alternative, H1 :w 6= 0
(Lombard and Hart, 1994; Antoch et al., 1995). This begins by
inferring the time of the step according to a CP locator statistic.
A typical offline CP locator statistic is the maximum point of
the weighted absolute cumulative sum of differences to the mean
(Horváth, 1997; Antoch and Hušková, 2001),

ĉ = argmax
0<t<T

(

T

t(T − t)

)γ
∣

∣

∣

∣

∣

t
∑

τ=1

(

xτ − 〈x〉
)

∣

∣

∣

∣

∣

, (2)

where 〈x〉 is the arithmetic mean of the time series (see
Figure 1A). The first term on the right-hand side corrects for bias
toward the center, where more centrally-located points are down-
weighed by an amount controlled by parameter γ ∈ [0, 0.5].
Other CUSUM-based locator statistics exist with different
bias-correcting terms and cumulative sum transformations
(Bhattacharya, 1994; Antoch et al., 1997; Kirch, 2007; Jirak,
2012). As outlined in the Discussion, PARCS may be modified
to include such bias-correcting terms as well. However, as we
will demonstrate, PARCS can significantly reduce center bias
even without recourse to such a term. To show this, we will
mostly deal with the generic case, γ = 0, when comparing

FIGURE 1 | Paired Adaptive Regressors for Cumulative Sum; (A,B) time series

x with (A) one or (B) two step changes and their corresponding CUSUM

transformation y; (C) fitting y by a piecewise linear model ŷ using two pairs of

regressors h±1 and h±2 ; (D) the PARCS model fit ŷ to the CUSUM

transformation y of a time series x, returning estimates of multiple CPs, ĉ1 and

ĉ2.

PARCS to the CUSUM transformation as defined in Equation 2.
This has the added advantage of avoiding having to select an
optimal power or an optimal weight factor, a choice that usually
depends on prior assumptions on the CP’s potential location
(Bhattacharya, 1994). As such, and unless stated otherwise, the
term CUSUM transformationwill refer, thereof, to the cumulative
sum of differences to the mean,

yt ,

t
∑

τ=1

(

xτ − 〈x〉
)

, (3)

where the maximum value,

S = max
0<t<T

∣

∣

∣

∣

∣

t
∑

τ=1

(

xτ − 〈x〉
)

∣

∣

∣

∣

∣

= max
0<t<T

|yt|, (4)

defines a test statistic by which it is decided whether to reject the
null hypothesis.

Given potentially dependent observations, q > 0, as defined
by the model in Equation 1, nonparametric bootstrap testing
proceeds by block-permutation (Davison and Hinkley, 1997;
Hušková, 2004; Kirch, 2007), such that temporal dependence in
the data is preserved (see Section 3.2). The candidate CP ĉ is
identified according to Equation 2 and its associated test statistic

S is computed by Equation 4. Estimates b̂ and ŵ are retrieved
from the arithmetic means of x before and after ĉ using the model
in Equation 1. By subtracting ŵ · 1t−ĉ from the time series x we
arrive at a time series x0 that provides an estimate of the null
distribution. The stationary time series x0 is split into n blocks
of size k, chosen such that temporal dependencies are mostly
preserved in the permuted time series (Davison and Hinkley,
1997). One way to do so is to select the block size to be larger
than the order of the underlying MA process, q + 1 (since the
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autocorrelation function of an MA(q) process cuts off at order q;
Davison and Hinkley, 1997). This requires identifying the order q
which can be determined from the H0-conform time series x0 by
inspecting its autocorrelation function (Fan and Yao, 2003) for
different time lags τ . The autocorrelation function’s asymptotic
distribution (Kendall and Stuart, 1983),

acorr(x0; τ ) ∼ N
(

−1/(T − τ ),+1/(T − τ )
)

, (5)

provides a test statistic for deciding the largest time lag q
at which to reject the null hypothesis H0 : acorr(x0; q) = 0,
given some preset significance level α ∈ [0, 1]. The resulting
blocks are randomly permuted and each permutation is CUSUM-
transformed according to Equation 3 to compute anH0-conform
sample S0 of the test statistic S in Equation 4 (note that we
do not know the true step parameter w or the true CP c, of
course, such that this procedure will only yield an estimate of the
H0 distribution). A sufficiently large number B of permutations
results in samples Si of an H0-conform empirical distribution
function (EDF) F(S0) ,

∑B
i=1 1S0−Si/B that weighs every sample

Si equally. The candidate CP ĉ is detected when the test statistic
S as computed from the original time series x satisfies S ≥
F−1(1− α), where α is a preset significance level and F−1(1− α)
the inverse of the EDF, defined as the (1 − α)Bth largest value
out of B permutations (Davison and Hinkley, 1997; Durstewitz,
2017).

2.2. PARCS: Paired Adaptive Regressors
for Cumulative Sum
The PARCS method for estimating multiple CPs rests on the fact
that the integral of a piecewise constant function is piecewise
linear. The AMOC model as defined in Equation 1 assumes a
piecewise stationary MA process, consisting of two segments
with constant mean. A process consisting of M + 1 segments
generalizes Equation 1 to data containing at-most-M-change,

xt = b+

M
∑

m=1

wm·1t−cm+
∑

τ≥0

κτ ǫt−τ ; κ0 = 1, ǫt ∼ N (0, σ 2).

(6)
The CUSUM transformation y = {yt}1 :T of this process as given
by Equation 3 corresponds to the numerical integration of a
piecewise stationary process x − 〈x〉. That is, y is approximately
(due to the noise) piecewise linear (exactly piecewise linear in
the mean; see Figure 1B). If points {cm}1 :M at which y bends
were known, the latter can be fitted by a weighted sum of local
piecewise linear basis functions or splines, centered at the knots
{cm}1 :M ,

h+t,cm =

{

t − cm if t > cm

0 otherwise
and h−t,cm =

{

cm − t if t < cm

0 otherwise
.

This fit corresponds to modeling the expected value of y,
conditioned on spline pair setH = {h±cm}1 :M , resulting in model
inference,

E
[

yt
∣

∣H
]

≈ ŷt,M = β̂0 +

M
∑

m=1

β̂+mh
+
t,cm
+

M
∑

m=1

β̂−mh
−
t,cm

,

which is a simple regression problem that can be solved by
estimating the intercept β̂0 and coefficients β̂±m that minimize the
mean-square-error,

mseM(y, ŷM) =
1

T

T
∑

t=1

(yt − ŷt,M)2. (7)

However, in the multiple CP detection setting (assuming M is
known), optimal knot placement is not known a priori, but can
be inferred by adaptively adjusting knot locations (Friedman
and Silverman, 1989; Friedman, 1991; Stone et al., 1997) to
maximally satisfy the goodness-of-fit criterion in Equation 7.
In other words, and as shown in Figures 1C,D, the problem of
identifying multiple CPs is replaced by the equivalent problem of
inferring the order-M PARCS model (or PARCSM model),

ŷM = β̂0 +

M
∑

m=1

β̂+mh
+
ĉm
+

M
∑

m=1

β̂−mh
−
ĉm
, (8)

with associated M-tuple ĉ , (ĉm)1 :M that best fits the CUSUM
transformation of the time series. Regression coefficients in
model 8 are real numbers, while knots in the present time series
context are positive integers, excluding the first and last time
steps, ĉm ∈ {2, 3, . . . ,T − 1}.

Fitting the PARCSM model is based on a forward/backward
spline selection strategy (Smith, 1982) with added CP ranking
stage and proceeds as outlined in Algorithm 1. Starting with
an empty PARCS0 model, containing only the intercept β̂0, a
forward sweep increases model complexity to a forward upper
bound order L > M by adding at each iteration the spline
pair h±c , not yet contained in the model, that decreases residual
mean-square-error the most. A reasonable heuristic for setting
L is 2–3 times M (assuming M is known or given some liberal
guess). This is followed by a backward pruning iteration, in which
the spline pair whose removal increases residual mean-square-
error the least is dropped from the model. Pruning removes
those knots that were added at the beginning of the forward
phase which became redundant as the model was refined by later
additions (Friedman and Silverman, 1989). This stage continues
until the number of knots reaches the preset final upper bound
of model complexity M, i.e., L − M knots are pruned. Knots
are then sorted in descending order according to the amount of
explained variance. The ranking iteration returns a nested model
by pruning the PARCSM model further, down to the PARCS0
model. The first knot to be pruned, reducing the number of knots
to M − 1, explains the least variance and is placed last as ĉM
in the M-tuple ĉ. The last knot to be pruned explains the most
variance and is placed first as ĉ1. Note that regression coefficients
are re-estimated every time a knot is added to or removed from
the PARCS model.

The model can be effortlessly extended to the multiple
response setting in the case of spatially independent time series
(extension to a nondiagonal MA covariance matrix, Stone et al.,
1997, will be considered elsewhere). Given N independent,
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Algorithm 1: Procedure for inferring the PARCSM model
with forward/backward spline selection (first/second loop)
and CP ranking (third loop). Regression coefficients are
computed by least squares estimation, conditioned on the
set of knot locations of predefined size M that minimizes
mean-square-error. Final knot locations are specified by
eliminating spurious knots through block-permutation
bootstrapping as described in Section 2.3.

Input: L,M and y

Output: ĉ , (ĉm)1 :M and ŷM
ĉ,H← ∅

form← 1 to L do // forward stage

ĉm ← argmin1<c<T

{

msem(y, ŷH∪h±c )
∣

∣h±c /∈ H
}

H← H ∪ h±
ĉm

form← L toM + 1 do // pruning stage

ĉ← argminc
{

msem−1(y, ŷH\h±c )
}

ĉ← ĉ\ĉ and H← H\h±
ĉ

ŷM ← β̂0 +
∑M

m=1 β̂+mh
+
ĉm
+

∑M
m=1 β̂−mh

−
ĉm

form← M to 1 do // ranking stage

ĉm ← argminc
{

msem−1(y, ŷH\h±c )
}

H← H\h±
ĉm

piecewise stationary MA processes with common CPs {cm}1 :M ,

xt,n = bn +

M
∑

m=1

wmn · 1t−cm +
∑

τ≥0

κτ ǫt−τ ,n;

κ0 = 1, ǫt,n ∼ N (0, σ 2), (9)

where n = 1, . . . ,N, the corresponding multivariate CUSUM
transformation yt = {yt,n}1 :N is fitted by the multiple response,
PARCSM model, conditioned on common spline pairs,

E
[

yt,n
∣

∣H
]

≈ ŷt,M,n = β̂0n +

M
∑

m=1

β̂+mnh
+
t,ĉm
+

M
∑

m=1

β̂−mnh
−
t,ĉm

,

using Algorithm 1. Returning CPs that are common to all
variables xn is done by using the goodness-of-fit criterion in
Equation 7, averaged over all responses yn.

2.3. PARCS Model Selection by
Block-Permutation Bootstrap
The piecewise linear PARCS formulation, Equation 8, of the
CUSUM transformation in Equation 3 bends at the CPs. Due
to the presence of noise in the original time series x, some
noise realizations may appear as slight bends in the CUSUM-
transformed time series, leading PARCS to return false CPs. As
such, the amount of bending at knot ĉm can be used as a test
statistic for bootstrap significance testing that can refine the
PARCS model further. No bending indicates either a constant
fit, β̂+m = β̂−m = 0, or a smooth linear fit, β̂+m = −β̂−m (see

also Figure 1C). Thus, a suitable test statistic that quantifies the
amount of bending at ĉm is given by,

S =
∣

∣β̂+m + β̂−m

∣

∣, (10)

where for multivariate time series, the test statistic is the average
over all time series.

Before describing the block-permutation bootstrap method
for PARCS, we outline a procedure for identifying the order q
of the MA noise process, provided as pseudocode in Algorithm

2. First, an H0-conform time series x0 = {xt,0}1 :T is computed
by regressing out the PARCS model ŷM of Equation 8 from
the CUSUM-transformed time series y and then inverting
the CUSUM transformation. This is followed by inspecting the
autocorrelation function of x0 for different time lags τ . The
largest time lag at which the null hypothesisH0 : acorr(x0; q) = 0
is rejected, given some preset significance level α ∈ [0, 1] is then
returned as the order q, given some predefined upper bound of
MA order, Q.

Algorithm 2: Identifying the order q of the MA process,
given some upper bound Q. The H0-conform time series x0
is estimated before entering the loop. The loop increases the
autocorrelation time lag and exits when the autocorrelation
of x0 is not significantly different from 0 anymore.

Input: y, ĉ,Q and α

Output: q ≤ Q
q← Q

y0 ← y−
(

β̂0 +
∑M

m=1 β̂+mh
+
ĉm
+

∑M
m=1 β̂−mh

−
ĉm

)

xt,0 ← yt,0 − yt−1,0 + 〈x〉 for t =
1, . . . ,T where y0,0 = 0

for τ ← 1 to Q do

Fτ ← CDF
(

N
(

−1/(T − τ ),+1/(T − τ )
)

)

if acorr(x0; τ ) ∈
[

F−1τ (α/2), F−1τ (1− α/2)
]

then

q← τ − 1
break

Given the M-tuple CP set ĉ returned by Algorithm 1 and an
estimate of the dependent normal noise order q by Algorithm

2, a block-permutation bootstrap test returns the subset ς̂ of
significant CPs, as outlined inAlgorithm 3. First, anH0-conform
time series x0 is computed. For each CP ĉm ∈ ĉ, starting with the
one ranked highest, all CP-splines already deemed significant by
the bootstrap test are regressed out of y. A PARCSmodel with the
remaining knots, including ĉm, is estimated and the test statistic S,
evaluated at ĉm according to Equation 10, is computed. Knot ĉm
is tested for significance against an H0-conform EDF, estimated
through block-permutation bootstrapping: A total of B bootstrap
samples is generated from theH0-conform series x0 by randomly
permuting blocks of size k = q + 1. For each of these i = 1 . . .B
bootstrap samples test statistic Si is evaluated at knot location ĉm,
yielding an EDF F(S0) which assigns equal probability 1/B to each
bootstrapped Si. A significant ĉm is then added to ς̂ , or rejected as
false discovery otherwise. The procedure repeats for the CP next
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in the rank order. Similar to Algorithm 1, regression coefficients
are re-estimated every time a knot is added to or removed from
the PARCS model.

Algorithm 3: Block-permutation bootstrap procedure for
PARCS, given block size k. The H0-conform time series x0
is estimated before entering the loop. The loop iterates over
the rank-ordered CPs to test for each CP’s significance.

Input: y, ĉ, k,B and α

Output: ς̂ ⊆ ĉ

ς̂ ← ∅

y0 ← y−
(

β̂0 +
∑M

m=1 β̂+mh
+
ĉm
+

∑M
m=1 β̂−mh

−
ĉm

)

xt,0 ← yt,0 − yt−1,0 + 〈x〉 for t =
1, . . . ,T where y0,0 = 0

form← 1 toM do

yĉ\ς̂ ← y−
(

β̂0 +
∑|ς̂ |

µ=1 β̂+µ h+
ς̂µ
+

∑|ς̂ |
µ=1 β̂−µ h−

ς̂µ

)

ŷĉ\ς̂ ← β̂0 +
∑M

µ=m β̂+µ h+
ĉµ
+

∑M
µ=m β̂−µ h−

ĉµ

S←
∣

∣β̂+m + β̂−m

∣

∣

F(S0)← BlockPermutationBootstrap(x0, ĉm, k,B)

if S ≥ F−1(1− α) then
ς̂ ← ς̂ ∪ ĉm

3. RESULTS

We first evaluate the PARCS method on synthetic data in single
and multiple CP detection settings, followed by a real data
example on detecting behavioral and neural change points during
rule learning.

3.1. Alleviating CUSUM Bias in AMOC
Detection
We first compare the CUSUM method for detecting a single
CP to the PARCS approach in order to evaluate the effect of
each method on the center bias in CP detection. Both white and
MA Gaussian noise are considered. We also compare PARCS
to the CUSUM locator statistic of Equation 2 with γ = 0.5
(the maximum likelihood estimator of CP location under the
assumption of i.i.d. Gaussian noise) and identify conditions
under which one method is preferable over the other.

Univariate time series of length T = 100 are simulated
according to the step model in Equation 1 with different levels
of white Gaussian noise, σ ∈ {0.4, 0.5, . . . , 1.0}, and different
ground truth CP locations, c ∈ {20, 30, . . . , 80}. Baseline is set
to b = 0 and step parameter to w = 1. Note that in the step
model with white Gaussian noise, increasing σ is equivalent to
reducing w. A single CP was identified by using the CUSUM
method and estimating the PARCS1 model, both followed by
bootstrap significance testing with B = 10,000 permutations,
nominal significance level α = 0.05, and blocks of size k = 1
(since noise is independent in this example). Each parameter
configuration was repeated for 1,000 noise realizations.

We compare bias in CP detection toward the center of the time
series in both the CUSUM and PARCS methods. We measure
this center bias by cb = (2 · 1c−T/2 − 1) · (c − ĉ), which is
positive when estimate ĉ falls onto the side located toward the
center from c, and is negative otherwise. As expected given the
choice γ = 0 in Equation 2, the CUSUM method shows a
strong center bias which increases for lower signal-to-noise ratio
and more peripheral CPs (see Figure 2A). The CUSUMmethod’s
power decreases for harder parameter settings (higher σ and
more peripheral c) in that true CPs are missed in more of the
realizations. The PARCSmethod results in a significant reduction
in center bias but does not eliminate it completely, and yields
more misses relative to CUSUM if both are run at the same
nominal α level (see Figure 2B). Summary comparison between
the two methods is shown in Figure 2C for two exemplary CP
locations, c ∈ {20, 60}.

To fully appreciate the source of CUSUM center bias and
its reduction by PARCS, time series realizations with the two
hardest parameter settings (c ∈ {20, 80} and σ = 1.0) are
considered in Figure 2D, which compares the distribution of cb
in the 81% of realizations in which both CUSUM and PARCS
returned a CP. The histograms show a strongly skewed, heavy-
tailed distribution for CUSUM, compared to a more symmetric
distribution around 0 for PARCS, indicating only little bias. Most
of the center bias in PARCS is accounted for by outliers. This is
illustrated by excluding outliers in the boxplots, which show a
median of 1 time step center bias in PARCS against median center
bias of 4 time steps in the case of CUSUM. Note that measuring
center bias as defined above does not differentiate between biased
detections and false discoveries where, in extreme cases, a CP
may be detected beyond the middle point T/2 of the time series,
corresponding to center bias greater than |c−T/2|. However, this
scenario rarely occurred in the simulation results reported here.

While PARCS reduces center bias, the simulation results above
indicate that it behaves more conservatively than CUSUM at the
same nominal α level. In principle, falseH1 rejection rates (type II
errors) may be reduced by adjusting the α level, at the same time
producing more false discoveries. In order to assess how well the
nominal significance level α agrees with the empirical type I error
rate (false discoveries), 1,000 white Gaussian noise realizations
of length T = 100 are simulated with σ = 1.0. Conclusions
drawn from this analysis are largely the same for larger signal-
to-noise ratio (results not shown). A single CP was extracted
using the CUSUM method and estimating the PARCS1 model
on these time series conforming to the null hypothesis H0 :w =
0. Type I error rates at different nominal α levels are shown
in Figure 2E as probability-probability (P-P) plots, depicting the
nominal, 1 − α, against the empirical, 1 − α̂, probabilities of
accepting the null hypothesis when the null hypothesis is true.
While the empirical type I error rate of CUSUM perfectly agrees
with the nominal significance level, for PARCS, in contrast,
the empirical rate of false discoveries tends toward 0% for
α = 0.05 and remains smaller than 1% for α as large as
0.18. This entails that PARCS behaves highly conservatively, and
that the nominal α level may be adjusted considerably upward
without strongly influencing the false discovery rate. On the
other hand, despite being more conservative, Figure 2I shows
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FIGURE 2 | Center bias in PARCS compared to CUSUM for temporally independent noise; (A,B) bias, 〈ĉ− c〉, color-coded as indicated by the color bar; numbers

indicate rounded type II error rates; (C) bias ± s.e.m. for c = 20 (solid) and c = 60 (dashed); (D) center bias distributions for c ∈ {20, 80} and σ = 1.0; inset shows

center bias distributions as boxplots that mark the median and first and third quartiles; whiskers include points within 1.5 times the interquartile range; outliers are

excluded; (E–H) P-P plots comparing nominal (x-axis) vs. factual (y-axis) true H0 rejection rates in time series of length (E) T = 100, (F) T = 50, (G) T = 26, and (H)

T = 10; dotted vertical line, nominal α = 0.05; dotted horizontal line, factual α̂ = 0.05; (I–L) ROC curves depicting false discovery rate (type I error rate; x-axis) versus

power (y-axis) for different series lengths as in (E–H); dotted vertical line, nominal α = 0.05; In (E–L), larger filled circles indicate the empirical H0 rejection rates at a

nominal α = 0.05, and empty circles indicate where the factual α̂ ≈ 0.05.

that the receiver operating characteristic (ROC) curve for PARCS,
depicting the method’s false discovery rate against its power for
different nominal α levels, consistently lies above that of CUSUM.
For estimating the statistical power of each method, 1,000 white
Gaussian noise realizations with one CP at a random location
in the range [20, 80]%T (and w = σ = 1.0) are simulated and
type II error rates at different nominal α levels are computed.
This ROC analysis indicates that for every nominal α level for
CUSUM, there exists at least one nominal α for PARCS such
that PARCS has both higher power (fewer type II errors) and
lower false detection rate (fewer type I errors), making it the
preferable method. This point is explored in more detail later in
the context of multiple CP detection in Section 3.2. For shorter
time series, PARCS behaves similarly as for longer time series in
our simulations, while for CUSUM type I error rates now start to
fall below the nominal α level as well (Figures 2F–H). The area
under the ROC curves become smaller for shorter time series

for both methods, but the ROC curve of PARCS consistently lies
above that of CUSUM in those cases as well (Figures 2J–L).

Next, we examine the behavior of the tests with dependent
noise. In the case of temporally dependent noise, an appropriate
block size for the bootstrap procedure could be determined by
inspecting the autocorrelation function of x0 (see Equation 5
and Algorithm 2). One thousand noise realizations of length
T = 100 are drawn from an order-2 MA process with coefficients
κ1 = −0.5/σ and κ2 = 0.4/σ . Since increasing noise variance in
the temporally dependent case is not equivalent to decreasing the
step parameter, we repeat the analysis with the same parameters
from the temporally independent case above but varying the step
parameter, w ∈ {0.7, 0.8, . . . , 1.3} and considering two levels of
Gaussian noise, σ ∈ {0.7, 1.0}.

Figure 3 shows results of the comparison for σ = 0.7 (top
row) and σ = 1.0 (bottom row). Similar to the white noise
case, the CUSUM method’s center bias increases for smaller
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FIGURE 3 | Center bias in PARCS compared to CUSUM for temporally dependent noise with σ = 0.7 (top) and σ = 1.0 (bottom); (A,B) bias, 〈ĉ− c〉, color-coded as

indicated by the color bar; numbers indicate rounded type II error rates; (C) bias ± s.e.m. for c = 20 (solid) and c = 60 (dashed); (D) center bias distributions for

c ∈ {20, 80} and σ = 1.0; inset shows center bias distributions as boxplots that mark the median and first and third quartiles; whiskers include points within 1.5 times

the interquartile range; outliers are excluded.

signal-to-noise ratio (smaller w), and PARCS, in comparison,
consistently reduces center bias. For the same nominal α level,
PARCS misses more of the true CPs than CUSUM for peripheral
CPs when σ = 0.7 (top panels of Figures 3A,B), but the type
II error rate of the two methods is more comparable in the
high noise case, σ = 1.0 (bottom panels of Figures 3A,B),
despite the PARCS method’s more conservative behavior (far
lower type I error rates) in this setting as well. A summary
comparison between the two methods is shown in Figure 3C for
two exemplary CP locations, c ∈ {20, 60}. Despite a significant
reduction when using PARCS, both center bias distributions in
the 62% of realizations with a CP identified by the two methods,
and with the two hardest parameter settings (c ∈ {20, 80}, σ =
1.0 and w = 0.7) remain strongly skewed (bottom panels of
Figure 3D).

So far, we compared PARCS to the CUSUM statistic with
γ = 0. It is intuitive when developing PARCS to choose γ = 0
for the CUSUM transformation in Equation 2, since this directly
corresponds to the numerical integral of the time series upon
which the PARCS approach is based (but see Section 4). Besides,
under certain conditions, the CUSUM method using the test
statistic with γ < 0.5 is more sensitive than that with γ =

0.5 (Antoch et al., 1995). However, the CUSUM statistic with
γ = 0.5 returns the maximum likelihood estimator of CP
location in an AMOC scenario when noise in the step model of
Equation 1 is i.i.d. and normally distributed, leading theoretically
to the strongest center bias reduction under those conditions
(Antoch and Hušková, 2001). We therefore also compare PARCS
to this maximum likelihood CUSUM estimator here, henceforth
referred to as CUSUMML.

Univerariate time series of length T = 100 are simulated
according to the step model in Equation 1 with different ground
truth CP locations, c ∈ {20, 30, . . . , 80}. We consider only the
scenario with largest white Gaussian noise variance, σ = 1.0, in
this analysis, for which PARCS showed the largest center bias.
A single CP was identified by using the CUSUMML method
and estimating the PARCS1 model, both followed by bootstrap

significance testing. Other parameters are as in the previous
analyses above. CUSUMML results in a significant reduction in
center bias compared to PARCS in three of the most peripheral
ground truth CPs, c ∈ {20, 30, 80}, but does not eliminate
it completely (see Figure 4A). For the same nominal α level,
CUSUMML also shows lower type II error rates compared to
PARCS for these CPs as reported in Table 1, but recall that
PARCS has a far lower type I error rate than CUSUM for the same
choice of nominal α (cf. Figures 2E–H and Kirch, 2007). The two
methods are comparable in the quality of their detections for all
other ground truth CP locations, c ∈ {40, . . . , 70}, with PARCS
having a slight advantage.

In order to assess how well the two methods fare in the small
sample size limit, and to characterize the convergence behavior
of the bootstrap procedure in each method, we repeat the same
analysis for shorter series lengths, T ∈ {50, 26}. Ground truth
CPs are set to the same relative location within the time series
as in the T = 100 simulations. As summarized in Table 1,
detection rates deteriorate as series length decreases, as does the
bias relative to series length (where the relative location within
the series with respect to the periphery is more relevant than the
absolute CP location; see Figures 4B,C). Especially for T = 26,
PARCS performs mostly better than CUSUMML, giving higher
detection rates (see Table 1) and smaller center bias (Figure 4C)
in the majority of ground truth CPs, although it is still more
conservative with near 0% type I error rate (given the bootstrap
resolution; see Figure 2G). As we show next, this is a particularly
important advantage of PARCS over the CUSUM-based methods
when detecting multiple CPs, since CUSUM-based techniques
rely on dissecting the time series into smaller segments in this
case, reducing sample size at each iteration.

3.2. Detecting Multiple CPs in Univariate
Data
For the scenario with multiple CPs, we assess the performance
of PARCS in comparison to the CUSUM method with
standard binary segmentation (Scott and Knott, 1974;
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FIGURE 4 | Bias ± s.e.m. in PARCS compared to CUSUMML with time series of length (A) T = 100, (B) T = 50, and (C) T = 26; noise is temporally independent

with σ = 1.0.

Bai, 1997) for univariate data with white Gaussian noise.
Standard binary segmentation is known to mislocate CPs
in some scenarios, but modifications to the segmentation
procedure have been proposed for solving this problem
(Fryzlewicz, 2014). We show that PARCS provides an alternative
approach. We then discuss a fundamental practical problem
in statistical testing when using segmentation methods in
general that is avoided by PARCS. Through comparison
with standard binary segmentation, we illustrate conditions
under which using such methods becomes infeasible. We
then consider temporally dependent noise in univariate time
series.

The binary segmentation method (Scott and Knott, 1974; Bai,
1997) for detectingmultiple CPs proceeds as follows (pseudocode
can be found in Fryzlewicz, 2014): If, according to a CUSUM test
criterion, a CP ĉ1 is detected over the full time series, the series
is partitioned at ĉ1. The procedure is repeated on the resulting
left and right segments, potentially returning two additional CPs,
ĉ21 and ĉ22, respectively. The procedure is terminated when no
more CPs are detected after subsequent partitioning. Similar to
the single CP case, we use bootstrap testing in deciding the
significance of a CP at each stage. In the present context, we will
refer to this CUSUM-based binary segmentation method simply
by “CUSUM”.

Three different processes with white Gaussian noise, σ = 1.0,

of the form given by Equation 6 and of length T = 100 are
simulated for 1,000 realizations each. A baseline b = 0 and two

CPs at time steps c1 = 20 and c2 = 60 are set in all three

scenarios. Weights (w1,w2) are set to (1, 2), (2,−1), and (2, 1)
(see insets in top row of Figure 5). For the present comparison,
binary segmentation is terminated after at most one partitioning,

as this completely suffices to compare the methods (note that this
allows CUSUM to detect up to three potential CPs, with only two
present in the series). Similarly, the PARCS3 model is estimated,
and both methods use the corresponding permutation bootstrap
test with B = 10,000 and k = 1. In order to compare type I
and type II error rates between the two methods, we set nominal
α levels to 0.05 and 0.30 for CUSUM and PARCS, respectively,
which is expected to return about the same factual type I error

TABLE 1 | Type II error rates in PARCS compared to CUSUMML for different

lengths of the time series; underline, method with higher detection rate; nominal α

level, 0.05 for both methods.

T Method Type II error rate

c = round ( 20 30 40 50 60 70 80 %T)

100 CUSUMML 07 03 02 01 01 03 12

PARCS 17 03 01 01 01 03 16

50 CUSUMML 30 20 16 13 16 26 37

PARCS 44 22 12 08 10 19 41

26 CUSUMML 53 38 35 32 38 44 59

PARCS 68 41 32 24 29 37 58

rates of 5% for both methods in series of length T ∈ [26, 100],
according to Figures 2E–G.

A first look at Figure 5 suggests that both CUSUM and
PARCS detect CPs that are close to the ground truth. A more
detailed comparison with respect to type I and type II error
rates and the quality of CP detections is provided in Table 2.
The quality of detections using accuracy scores is defined as
the correct detection rate within a ±5%T range from the
ground truth CP location, adjusted for type I errors by an

additive term of −α̂/M, where α̂ is the factual (empirical) α

level. This way, the accuracy score is an overall performance

measure that takes into account both type I and type II
errors, and how far off the detected CP is from the true
one.

The first scenario (left panels in Figure 5) has the hardest
parameter setting, since c1 is both more peripheral and smaller
in magnitude than c2. CUSUM first detects the easier CP,

followed by detecting c1 at the left hand segment as ĉ21, but

with a lower accuracy score as confirmed in Table 2. Similarly,

PARCS returns c2 and c1 as the first and second rank CPs,
respectively, with accuracy scores higher than those of CUSUM.

The relatively low accuracy scores at detecting c1 in both
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FIGURE 5 | Comparing PARCS to CUSUM with binary segmentation for multiple CP detection; stacked histograms of correct detection rates for CUSUM’s

ĉ1, ĉ21, ĉ22 (top) and PARCS’ ĉ1, ĉ2, ĉ3 (bottom) over 1,000 realizations; transparent bars show candidate CPs excluded by the permutation test; dashed gray,

ground truth CPs; top inset, deterministic component of time series for the respective column’s scenario; left, center, and right refer to first, second, and third scenario,

respectively.

TABLE 2 | Comparing PARCS to CUSUM with binary segmentation for multiple

CP detection for different lengths of the time series; error rates and accuracy

scores are rounded; triplet, scenarios 1 / 2 / 3; underline, method with lower error

rate or higher accuracy score; nominal α levels, 0.05 and 0.30 for CUSUM and

PARCS, respectively.

T Method Error rate Accuracy score

type I type II c = 20%T c = 60%T

100 CUSUM 10 / 14 / 41 08 / 02 / 01 72 / 92 / 77 91 / 78 / 45

PARCS 02 / 03 / 02 04 / 00 / 01 80 / 96 / 95 96 / 74 / 76

50 CUSUM 12 / 18 / 19 27 / 21 / 11 34 / 56 / 61 74 / 38 / 16

PARCS 04 / 04 / 03 13 / 02 / 05 51 / 82 / 82 85 / 52 / 52

26 CUSUM 12 / 22 / 18 41 / 44 / 16 28 / 44 / 71 77 / 26 / 25

PARCS 06 / 07 / 06 24 / 09 / 10 37 / 75 / 76 79 / 47 / 47

methods are due to its peripheral location and small magnitude.
Both type I and type II error rates are markedly lower in
PARCS.

The second and third scenarios (center and right panels
in Figure 5, respectively) are easier in terms of ground truth
parameter settings, since the more peripheral CP c1 has the

larger magnitude. In the second scenario (center panels in
Figure 5), the two methods are comparable with regards to their
overall accuracy scores as defined above (many detections lie
outside the ±5%T accuracy score range, especially for c2), but
PARCS has the lower type I and type II error rates. CUSUM
has a higher rate of false discoveries than in the first scenario.
Its first detection is the higher magnitude CP, which comes
with a lower accuracy than PARCS, followed by a detection at
the right hand segment with a higher accuracy than PARCS.
The relatively low accuracy rates for detecting c2 in both
methods are due to its small magnitude. The third scenario
(right panels in Figure 5) is an example of a setting in which
standard binary segmentation may fail in correctly allocating
CPs (see Fryzlewicz, 2014, for a binary segmentation approach
that solves this problem). While the performance of PARCS
remains about the same as in the second scenario, CUSUM’s
first detection diverges from either of the two ground truth
CPs in a large number of realizations (see top-right panel in
Figure 5). The large type I error rate (more than three times
that in the first and second scenarios) markedly reduces the
accuracy scores, which are substantially lower than for PARCS
for both ground truth CPs (see Table 2). Another factor behind
the high type I error rates of any iterative procedure including
binary segmentation is that the same CP could be detected
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again at later iterations when an earlier detection is slightly
biased.

We now compare the impact of shorter series on the
performance of binary segmentation methods and PARCS. We
consider 1,000 noise realizations from each of the three scenarios
with T ∈ {50, 26}. Two ground truth CPs are set to the same
relative location within the time series as for T = 100. As
seen in Table 2, both type I and type II error rates increase
in both methods with the decrease in series length, with the
exception of type I error rates for CUSUM in the third scenario.
PARCS is consistently the superior method, having both higher
statistical power and less false discoveries than CUSUM. While
accuracy scores predictably decrease with shorter series length,
comparison between the two methods remains qualitatively
similar to the T = 100 case in the first and third scenario,
while there is a marked change in the second scenario: While
CUSUM is slightly superior in accurately detecting c2 for T =
100, PARCS progressively surpasses CUSUM in accuracy as series
length decreases. This behavior is a result of deterioration in the
power of the bootstrap test statistic for shorter series. Not only
does the overall sample size decrease, but CUSUM in the second
scenario with T = 26 is tasked after a potential first detection of
c1 with bootstrapping the CUSUM test statistic on segments as
short as 4 or 5 time steps only, which is statistically infeasible,
either when using bootstraps or approximate parametric tests
(Olshen et al., 2004; Fryzlewicz, 2014; Cho and Fryzlewicz, 2015).
We stress that this is a fundamental drawback to any method
that relies on partitioning, and is not specific to standard binary
segmentation.

The limitations of binary segmentationmethods becomemore
obvious when noise is temporally dependent. For instance, given
a time series of length T = 100 with parameters as in the
second scenario and an order-2 MA noise process, blocks of size
k ≃ 3 are required for proper block-permutation. If CUSUM
first detected c1 = 20 accurately, ĉ1 = 20, the left hand segment
would be only 20 time steps long. This allows for only 7 blocks,
yielding 5040 possible permutations. This number drops to 720
permutations had ĉ1 been detected only 2 time steps further to
the left, which makes it hard to approximate the EDF of the
CUSUM statistic reliably. In addition, specifying the block size
first requires estimating the MA process order by approximating
the H0-conform time series (see Algorithm 2), but potential CPs
are not known a priori, due to the recursive nature of binary
segmentation methods.

Given these considerations, we focus on PARCS only as we
now move over to the case of detecting multiple CPs in series
with temporally dependent noise. 1,000 noise realizations of
length T = 100 are drawn from an order-2 MA process with
σ = 0.7 and coefficients κ1 = −0.5/σ and κ2 = 0.4/σ .
Other parameters are as in the previous analysis. In Figure 6, we
show distributions of correct detections for the second scenario
only (with the other two scenarios qualitatively comparable to
their counterparts in Figure 5), but error and accuracy rates on
these scenarios are reported as well. After removing the three
step changes following PARCS3 CP detection, the majority of
residual time series (70% as shown in bottom panel in Figure 6A)
had an autocorrelation that cuts off at the correct order of the

ground truth MA(2) noise process, i.e., with acorr(x0; 2) being
the last coefficient that lies outside the 95% confidence bounds
(dashed lines; top panel in Figure 6A; results for the first and
third scenarios are comparable). Block-permutation bootstrap
testing with nominal α = 0.05 and B = 10,000 is carried out
on these series with blocks of size 3 and, for other time series,
according to the estimated order in Figure 6A (with an upper
bound of 10 on block size). Exactly two CPs are detected in
more than 99.5% of realizations in all scenarios. Figure 6B shows
that the distribution of correct detections for the second scenario
is largely concentrated around the ground truth CPs. Accuracy
scores in each scenario are, respectively, 96, 99, and 99% for
c1 and 99, 89, and 89% for c2. Note also the oscillation in the
example realization in Figure 6C, which results from dependent
noise with a negative MA coefficient κ1.

3.3. Detecting Multiple CPs in Multivariate
Data
The PARCS method’s ability to detect multiple CPs in spatially
independent, multivariate time series is demonstrated in Figure 7
on 1,000 realizations of length T = 100 with N = 9 covariates
and white Gaussian noise, σ = 1.0. Parameters are set to b =

(0, 0, 0, 2, 2, 2, 0, 1, 2), c1 = 20, w1 = w0 · (1, 2, 2,−2, 0, 0, 0, 0, 0),
c2 = 60 and w2 = w0 · (2, 1,−1, 0, 1,−1, 0, 0, 0). The scaling
parameter w0 controls signal-to-noise ratio in the time series
and is initially set to 1.0. Given these parameter values, the two
CPs are not represented in all covariates of the time series, as
exemplified in Figure 7A, rendering CPs harder to detect from
the averaged univariate time series (with steps differing in sign
across the covariates partially canceling each other, resulting in
small weights, 〈w1〉 = 3/9 and 〈w2〉 = 2/9, for the resulting
univariate time series).

Following PARCS3 CP detection, augmented by a bootstrap
test with nominal α = 0.05, B = 10,000 and k = 1, exactly
two CPs are detected in 99.9% of realizations. Accuracy scores
are 99.8 and 98% for c1 and c2, respectively. The lower variance
in c1 detections, as seen in Figure 7B, is due to the higher average
absolute weight

〈

|w1|
〉

= 7/9 compared to
〈

|w2|
〉

= 6/9.
We then test the method’s performance for smaller signal-

to-noise ratios with w0 ∈ {1.0, 0.9, . . . , 0.1}. Figure 7C shows
that correct detection rates within a ±2%T range from the
ground truth CPs for different values of w0 remain above
50%, even for magnitudes as small as w0 = 0.5. These
rates are a result of PARCS leveraging CP information from
multiple covariates simultaneously, rather than depleting the
signal through averaging.

3.4. Detecting Neural Events That Reflect
Learning
A previous study by one of the authors and colleagues exemplifies
the practical value of change point detection in neuroscience
(Durstewitz et al., 2010). These authors demonstrated that
acquiring a new behavioral rule in rats is accompanied by sudden
jumps in behavioral performance, which in turn is reflected in
the activity of neural units recorded simultaneously in the medial
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FIGURE 6 | Multiple CP detection in temporally dependent data from the second scenario; (A) estimating MA order; (top) average autocorrelation over time series

realizations for different time lags ± s.d.; dashed gray, 95% confidence interval; (bottom) ratio of 1,000 realizations with a given estimated order; (B) stacked

histograms of correct detection rates over 1,000 realizations; transparent bars show candidate CPs excluded by the permutation test; dashed gray, ground truth CPs;

inset, deterministic component of time series; (C) deterministic component of the time series (gray) superimposed on an exemplary time series (blue); bottom shows a

close up over 16 data points around c1; red line highlights oscillation due to the negative MA coefficient.

FIGURE 7 | Multiple CP detection in spatially independent, multivariate data; (A) deterministic component of the different covariates in the time series (gray)

superimposed on an exemplary time series (blue); (B) stacked histograms of correct detection rates over 1,000 realizations; transparent bars show candidate CPs

excluded by the permutation test; dashed gray, ground truth CPs; (C) stacked histograms of correct detection rates over 1,000 realizations given different

signal-to-noise ratios (controlled by w0), and binned with 5 time step windows; rates are logarithmically scaled as indicated by the color bar.

prefrontal cortex (mPFC). In the current section, we revisit part
of these data to showcase PARCS in a real data scenario.

Before moving to the demonstration, it is important to
note that the data in question are not normally distributed
and potentially include linear trends (Durstewitz et al., 2010)
not accounted for by the step models in Equations 1, 6,
and 9. As such, some preprocessing may be necessary for
a statistical analysis that is more consistent with the step
model assumptions (this may include detrending and potentially
some mild smoothing with Gaussian kernels; see Durstewitz
et al., 2010). However, to keep the present demonstration
simple, PARCS was applied directly to the data with minimal
preprocessing, which only involves square-root-transforming
the neural count data for bringing them closer to a Gaussian
distribution and stabilizing the variance (Kihlberg et al., 1972).

In order to show that PARCS can still return reasonable CP
estimates under these non-Gaussian conditions, we first test its
performance on simulated spike count data, before applying
it to the empirical data. We simulate 1,000 realizations of
length T = 100 with N = 9 covariates according to a
Poisson process. Parameters are set to b = (1, 1, 1, 3, 3, 3, 1, 2, 1),
c1 = 20, w1 = (1, 2, 2,−2, 0, 0, 0, 0, 0), c2 = 60 and w2 =

(2, 1,−1, 0, 1,−1, 0, 0, 0). This choice of parameters results in
average firing rates that are comparable in their means to the
white Gaussian noise case (cf. Figures 7A, 8A) and to the low
firing rates often observed in mPFC neurons. One obvious
diversion fromGaussian assumptions in the case of Poisson noise
is that the variance is not constant anymore, but is equal to
the means within each of the segments separated by true CPs.
Following square-root-transforming the data and PARCS3 CP
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FIGURE 8 | Multiple CP detection in spatially independent, multivariate,

Poisson data; (A) deterministic component of the different covariates in the

time series (gray) superimposed on an exemplary time series (blue); y-axis,

square-root-transformed spike counts; (B) stacked histograms of correct

detection rates over 1,000 realizations; transparent bars show candidate CPs

excluded by the permutation test; dashed gray, ground truth CPs.

detection, augmented by a bootstrap test with nominal α = 0.05,
B = 10,000 and k = 1, exactly two CPs are detected in 92%
of realizations. Accuracy scores are 98 and 70% for c1 and c2,
respectively. The lower accuracy scores compared to the white
Gaussian noise scenario are due to the lower signal-to-noise
ratios, resulting from the increase in noise variance with firing
rates (cf. Figures 7B, 8B). Nevertheless, these results sufficiently
justify the use of PARCS in the present context.

We now turn to the experimentally obtained dataset. Six
animals were trained on a two-choice deterministic operant rule
switching task which proceeds as follows: At the beginning of
the session, the animal follows a previously acquired behavioral
rule whereby it responds to a visual cue by a lever press for
attaining a reward (visual rule). Unknown to the animal, reward
contingencies are switched after 20 trials to a novel spatial rule,
in which attaining the reward requires pressing a certain baited
lever (right or left), regardless of the visual cue. The session
is terminated when the animal reaches a preset criterion that
indicates that the new rule behavior has been learnt. In addition
to the binary behavioral data of lever presses over trials, spike
counts emitted bymPFC units during the 3 seconds following cue
onset were collected through single unit recording techniques.
Neural and behavioral data from one animal are shown in
Figures 9A,B, respectively. Trials corresponding to the steady
state visual and spatial rule (first and last 20 trials, respectively)
are not considered in the analysis.

Time series with one or two significant CPs were described
in the original study by Durstewitz et al. (2010), so PARCS2
models are estimated for each animal for both the multivariate
neural data (multiple response PARCSmodel; Figure 9A) and the
univariate behavioral data (Figure 9B), in addition to PARCS1
models for the behavioral data as summarized in Figure 9C.
As shown in Figure 9B, one neural CP in that exemplary
animal matches its behavioral counterpart. The second neural

CP, while not as close to its behavioral counterpart, is only 7
trials apart, and the two are highly correlated across animals,
as shown in Figure 9C, concurring with the original findings of
Durstewitz et al. (2010). Besides the significant correlation, the
corresponding black linear regression line lies very close to the
diagonal, indicating that neural and behavioral CPs are not only
correlated, but are almost equal. Moreover, those authors report
that data from many animals contain at most a single CP (also
note the low weight of one of the CPs as estimated from one of
the animals using PARCS2). Comparing the PARCS1 behavioral
CP to its neural counterpart (blue circles in Figure 9C) shows
that correlation remains high and significant. A sample size of
s > 5 is usually recommended for evaluating the significance
of a correlation. However, the corresponding linear regression
line is also close to the diagonal, in further support for the
reliability of this result, and in agreement with the original
results despite different procedures: For the neural data in the
original study, CUSUM-based detection was performed on a
multivariate discrimination statistic defined across the whole
neural population, while here, the model was determined directly
from the multiple spike count data.

4. DISCUSSION

In the current article, we introduced PARCS, a method
for detecting multiple step changes, or CPs, in potentially
multivariate, temporally dependent data, supported by a
bootstrap-based nonparametric test. We also showed that
PARCS substantially reduces center bias in estimating CPs
compared to the most basic specification of the CUSUM
method, and presented conditions under which it compares
to or outperforms the maximum-likelihood CUSUM statistic.
Furthermore, we demonstrated that PARCS may achieve higher
sensitivity (statistical power) than CUSUM-based methods while
at the same time having lower type I errors in multiple CP
scenarios, mainly because PARCS can make use of the full time
series while CUSUM-based methods rely on segmenting the time
series for detecting multiple CPs. We finally confirmed previous
results pertaining to the acquisition of a new behavioral rule and
the role of the medial prefrontal cortex in this process.

As already apparent from some of our simulation studies,
the basic PARCS method as introduced here leaves room for
improvement. In the presence of a single CP, we showed
that PARCS strongly reduces the amount of bias toward the
center that results from the direct application of the most basic
form of the CUSUM locator statistic. Theoretically-grounded
modifications to the CUSUM transformation that reduce this
amount of bias rely on down-weighing more centrally-located
points (Kirch, 2007). As shown with PARCS, this problem is
not quite as severe. Nevertheless, since PARCS approximates
the CUSUM transformation using a regression model, similar
down-weighing could be incorporated into the PARCS procedure
as well by using weighted least squares instead of regular
least squares (Hastie et al., 2009), which is a straightforward
amendment. Furthermore, the PARCSmethod currently requires
a liberal guess of the number M of CPs in advance, followed
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FIGURE 9 | Comparing behavioral and mPFC neural CPs; (A) blue, square-root-transformed spike count data in the three seconds following cue onset from 6

representative mPFC units of one rat; gray, mean as estimated by inverting the neural multiple response PARCS2 model. Note potential CP in top-center unit which

was not detected by PARCS2 since it did not contribute strongly to population-wide CPs; dashed lines, behavioral CPs from the same animal; (B) blue, lever press at

each trial; this animal is rewarded for pressing the right lever during the spatial rule; gray, probability of pressing right lever as estimated by inverting the behavioral

PARCS2 model; dashed lines, neural CPs from the same animal (see A); (C) relating behavioral and neural CPs; blue, behavioral CPs with higher weight; r, correlation

coefficients as computed over all 12 data points (black) and over those where behavioral CPs have the higher weight (blue); p-values, significance levels of

corresponding r; black and blue lines, respective least-square linear regression fits to the two sets of data points; red and yellow circles, neural and behavioral CP

pairs from the exemplary animal in (A,B), respectively.

by refinements through nonparametric bootstrap testing. It is
desirable, however, especially when no prior information on
M is available, to have statistical tests as termination criteria
for the forward and backward stages. In adaptive regression
spline methods (Friedman and Silverman, 1989; Friedman, 1991;
Stone et al., 1997), there is strong empirical evidence (Hinkley,
1969, 1971b) backed by theoretical results (Feder, 1975) that
the difference in residual mean-square-error between two nested
models that differ in one additional knot is well approximated,
albeit conservatively, by a scaled χ2 statistic on 4 degrees
of freedom (Friedman, 1991). This led to one nonparametric
termination recipe that is based on generalized cross-validation
(Craven and Wahba, 1978). Another approach is to infer the
piecewise linear regression model with the aid of a parametric
test for specifying the number and location of knots, without
recourse to iterative procedures (Liu et al., 1997). Unfortunately,
neither approach is directly applicable to PARCS, since they
both require assumptions that are not met in the CUSUM-
transformed time series. The CUSUM transformation of the
time series is a nonstationary ARMA(1, q) process. Deriving

reasonable generalized cross-validation (Craven and Wahba,
1978; Friedman and Silverman, 1989; Friedman, 1991), F-ratio
(Hastie et al., 2009; Durstewitz, 2017) or parametric (Liu et al.,
1997) test statistics require currently unknown corrections to
those tests which account for nonstationarity and the particular
form of the ARMA model underlying the CUSUM-transformed
data.

When multiple CPs are present in the data, PARCS can
outperform standard binary segmentation (Scott and Knott,
1974; Bai, 1997). Other segmentation methods also solve the
problem of mislocating CPs inherent in the standard procedure
(Olshen et al., 2004; Fryzlewicz, 2014; Cho and Fryzlewicz,
2015). Wild binary segmentation (WBS; Fryzlewicz, 2014), for
instance, relies on sampling local CUSUM transformations of
randomly chosen segments of the time series. The candidate
CP with the largest value among sampled CUSUM curves is
returned to be tested against a criterion, followed by binary
segmentation. WBS is preferable to PARCS in that its test statistic
and termination criterion when noise is independent are backed
up by rigorous theory, and may be the favorable method when
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segments are large enough for the test statistic to converge. If
series of only limited length are available, however, WBS may
run into similar problems as standard binary segmentation for
CUSUM, since each detection is still followed by partitioning
the data further. WBS also, to the best of our knowledge,
currently lacks a thorough analysis on the behavior of its test
statistic for dependent data. It is tempting to speculate on
the potential for a hybrid approach that capitalizes on the
desirable features of both methods. Computational demands
arise in WBS from the need to choose segment range parameters
by sampling few thousand CUSUM curves to which PARCS
may offer an easy and efficient workaround: Fryzlewicz (2014)
demonstrated that the optimal WBS segment choice is the
segment bounded by the two CPs closest to the target CP from
each side. PARCS could thus provide an informed selection of
boundaries by returning candidate CPs in the data and use
these to demarcate segments, rather than random sampling as in
WBS.

In dealing with multivariate data, recent methods tackled
the computational demands of having a large number of
covariates and sparse CP representations (Cho and Fryzlewicz,
2015; Wang and Samworth, 2018). These methods rely on
low dimensional projections of the multivariate CUSUM curve
that preserve the CPs and follow this projection by a binary
segmentation method. Since PARCS for multivariate time
series is also based on the CUSUM transformation, it is
straightforward to leverage the computational savings provided
by such projection methods in reducing the dimensionality
of the PARCS input, while avoiding the drawbacks of binary
segmentation methods. This may offer a route for extending
PARCS to the important case of multivariate CP detection
in mutually dependent time series with spatial dependence, a
configuration which these projectionmethods also consider (Cho
and Fryzlewicz, 2015; Wang and Samworth, 2018). Alternatively,
nondiagonal covariance structure in multivariate series may
be accounted for by extending the PARCS formulation to the
multivariate regression spline realm (Friedman, 1991; Stone et al.,
1997).

Finally, when analyzing the neural and behavioral data during
the rule switching task, we mentioned that data may also
contain trends that are not accounted for by step change time
series models (Durstewitz et al., 2010). Caution must be made
when analysing real data using CP detection methods in that
these methods, PARCS included, assume a step change model

underlying the generation of the data and hence may attempt
to approximate trends and other nonstationary features by a
series of step changes, a point made more explicit by Fryzlewicz
(2014) (Durstewitz et al., 2010, therefore removed trends around
candidate CPs first). Hence, to avoid wrong conclusions with
respect to the source and type of nonstationarity in experimental
time series, it may be necessary to either augment change point
detection by adequate preprocessing (Durstewitz et al., 2010) or
to generalize time series models for CP detection to include other
forms of nonstationarity.
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