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Abstract: Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into
various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to
facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation
medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy
through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in
the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential
effect of MSCs in senescence cells related to osteogenesis.
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1. Introduction

Senescence is a time-dependent functional decline that affects most organisms and
is an important risk factor for human diseases such as malignancy, glucose metabolism
disorder, cardiovascular disease, and neurodegenerative process [1]. Cellular senescence
can be defined as persistent cell cycle termination associated with stereotyped phenotypic
changes [2–4]. The cellular senescence process can be altered in response to external stimuli,
including the lessening of telomere length, oxidative stress, deoxyribonucleic acid (DNA)
injury, and oncogene activation [5].

Mesenchymal stem cells (MSCs) are known as multiple, mature, non-hematopoietic
stem cells collected separately from bone marrow [6]. MSCs have been harvested and
extracted from different tissues and organs, such as peripheral blood, umbilical cord, bone
marrow, Wharton’s Jelly, placental tissue, breast milk, and other growth contributing
organs, via different methods [7–9].

In order to achieve a minimal capacity to differentiate between osteocytes, adipocytes,
and chondroblast in vitro, the International Society for Cellular Therapy (ISCT) has es-
tablished minimum criteria for development of MSCs such as good adherence to plastic
and fibro-blastoid, good immunophenotypic expression of cluster of differentiation (CD)
73, CD90, CD105, and minimal expression of CD34, CD45, CD14, CD19, CD79a, and hu-
man leukocyte antigen—DR isotype (HLA-DR) surface markers [10]. MSCs derived from
these tissues show heterogeneity in biological features and functional abilities related to
proliferative capacity, potentiation of multi-lineage derivative, proangiogenic ability, and
immunomodulatory activity [11].

Senescence in tissue or organs is related to the loss of regenerative ability and func-
tional deterioration, both of which are hypothetically associated with stem cells’ activity.
Senescence may also be associated with the decline of stem cells, senescence of cells,
premature aging, compromised renewal ability, or even skew differentiation [12].

Inside a normal bone, an osteogenesis process is regulated by biological stages in-
volving MSCs, leading to the modeling and partial remodeling process, causing prolifera-
tion [13]. Other processes also occur, such as lineage differentiation, expression of specific
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markers, extracellular matrix (ECM) mineralization, and collagen expression. In aging
bone, other known culprits than bone resorption activity are MSC impairment, shifting
of osteogenesis to adipogenesis, and decreased capacity for renewal activity [14,15]. This
imbalance activity may increase the risk of fractures [16]. Transcription factors in normal
conditions are needed in MSC differentiation to maintain normal osteogenesis in a well-
fashioned mechanism. The sequential activation of Runx2 and Osterix transcriptions is the
master regulator of osteogenesis. At the same time, CCAAT enhancer-binding protein beta
(CEBPβ), gamma (CEBPγ), alfa (CEBPα), and peroxisome proliferator-activated receptor-
gamma (PPARγ) are the master regulators of adipogenesis [17,18]. In the aging process of
the bone, there might be an imbalance related to these transcription factors.

As the senescence process continues, osteoblasts slowly decline in number, leading
to a positive net bone resorption. Similar to humans, mice’s trabecular and cortical bone
mass shows a decrease in cortical porosity and thickness due to the imbalanced remodeling
process. This low bone formation is positively associated with a decrease of osteoprogenitor
found inside the bone [19].

Decrease of Nicotinamide Adenine Dinucleotide (NAD+) in oxidized form when aging
is a co-enzyme that functions as the electron acceptor in young tissues [20,21]. Nicotinamide
mononucleotide (NMN) and nicotinamide riboside (NR) are NAD precursors which work
as an anti-aging agent in tissues such as the pancreas and muscle vasculature [22,23]. Most
of the cellular NAD+ is recovered from nicotinamide via the salvage pathway. Raising the
NAD+ level is associated with low events of DNA damage, mitochondrial dysfunction, cell
senescence, and stem cell degradation in many mice tissue studies via NAD-dependent
Sirtuin 1 activity (Sirt1). Sirt1 deacetylates of FoxOs and β-catenin stimulate Wnt signal-
ing and osteo-blastogenesis from osteoblast progenitors. An increase in reactive oxygen
species (ROS) in the mesenchymal lineage, such as stem cells, progenitor of osteoblasts,
and osteocytes, contributes to bone formation loss, thereby decreasing osteoblastogene-
sis [24]. This activity is stimulated by FoxOs activity and binding of the FoxOs to β-catenin.
Therefore, Sirt1/FoxOs/β-catenin in osteoprogenitor activity contributes to skeletal aging
as a significant inhibitor of bone formation [25–27].

Senescence features of MSCs show hyper-glandular and enlarged morphology, de-
ficiency of proliferation and differentiation capacity, secretion of senescence-associated
secretory phenotype (SASP), and changes of nuclear morphology and formation called
senescence-associated heterochromatic foci (SAHF) [28–30]. MSC aging can also be mea-
sured with β-galactosidase activity, gene expression markers, length of telomere, gene
methylation, and epigenetic markers [31]. MSCs experience a decline in functional capacity
as well as an age increase. This will lead to decrease of tissue homeostasis, aging related
disease, and even organ failure. In this article, we will discuss the potential effect of MSCs
in senescence cells related to osteogenesis.

2. Cellular Senescence Process
2.1. Cell Cycle Arrest

The number of stimuli that cause aging gradually increases, and the mechanisms
involved are extensively studied. These stimuli are signaled through various signaling
pathways, many of which activate p53 (encoded with TP53 in humans and Trp53 in
mice), all of which are essentially cyclin-dependent kinase (CDK) inhibitors. Agents are
p16 (also known as INK4A; encoded by CDKN2A), p15 (also known as INK4B; encoded
by CDKN2B), p21 (also known as WAF1; encoded by CDKN1A) and p27 (encoded by
CDKN1B). Inhibition of the CDK-cyclin complex leads to growth arrest. A critical factor
in implementing aging is the hypo-phosphorylated RB (retinoblastoma family) [32]. This
accumulation leads to sustained RB family protein activity, inhibition of E2F transactivation,
and cell cycle arrest. It is irreversible when proteins of the RB or p53 family are later
inactivated [33]. These efforts are supported by the heterogeneity of E2F target genes [34],
the action of cytokines secreted by senescent cells [35], and the increased production of
long-lived ROS [36].
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2.2. Decreased Telomere Length and Response to DNA Injury

Telomeres function like a molecular clock that records the replication history. In
particular, “erosion” of telomeres due to sequential cell division that cannot preserve
telomere length can lead to reduced telomere length and “replicative senescence” type. The
loss of telomeres is recognized as DNA damage. It thus triggers a DNA damage response
(DDR) similar to ionizing radiation and chemotherapy drugs. Telomeres are also highly
susceptible to external DNA damage [37,38]. This is partly due to the inaccessibility of
telomeres to DNA damage repair machinery, from yeast to humans [39]. Key mediators of
DDR are the DNA damage kinases related to phosphorylation such as ATM, ATR, CHK1,
and CHK2. The activation of several cell cycle proteins, including phosphorylation p53,
activates the expression of p21, which binds and inhibits several CDK-cyclin complexes,
particularly those involving CDK2 [5].

2.3. CDKN2A Locus Depression

Duplications are also associated with the CDKN2A locus (also known as INK4A and
ARF), which encodes two important tumor suppressor factors, p16 and ARF. ARF regulates
the stability of p53 by inactivating the p53-degrading protein MDM2 ubiquitin ligase
E3 [40,41]. The CDKN2A locus is usually expressed at insufficient levels in new tissues but
is repressed with age [42]. Although the molecular mechanisms responsible for inhibition
of CDKN2A are not fully understood, it is well known that they are highly dependent on
loss of the Polycomb inhibitor complex [43–45]. It should be clear that DNA damage can
lead to degradation by reducing the level of ARF protein [46].

2.4. Stress-Inducing Senescence and ROS

ROS levels rise after various types of stress, including chemotherapy drugs, loss
of telomere defenses, DNA damage, and oncogene activation [39,43]. A role for aging-
related oxidative stress is evidenced by antioxidant treatment delaying or preventing
aging [47–49]. Mechanistically high levels of intracellular ROS induced by the RAS-RAF-
MEK-ERK cascade activate p38 MAPK to increase p53. transcriptional activation and p21
activation [40].

2.5. Aging Related Oncogene

Normal cells respond to the activation of many oncogenes by cellular senescence.
Oncogene-induced by senescence was first detected in the oncogenic form of ASD in
human fibroblasts. The list of oncogenes that can cause aging has grown to about 50. Aging
caused by oncogenes occurs in vivo and is well known to act as a brake in the early stages
of carcinogenesis. Inhibition of the CDKN2A locus is a common hallmark of oncogenic
aging [41,42].

In addition, this type of senescence may also strongly induce DDR due to DNA damage
caused by abnormal DNA replication [50,51] and ROS [5,39–43]. The relative importance of
these mechanisms (p16, ARF, or p53 induced by DDR) is cell type dependent. In mice, the
ARFp53 pathway is an important activator of oncogene-induced senescence [52], whereas
in humans the DDRp53 pathway appears to play a more important role than the ARFp53
pathway [53]. Finally, p16 plays a small role in stimulating senescence in mice but is
essential in human cells [54].

2.6. Senescence-Associated Secretory Phenotype (SASP)

Senescent cells produce a complex pro-inflammatory response known as the SASP and
IL-8. Chemokines (monocyte chemoattractant protein (MCP) and macrophage inflamma-
tory protein (MIP)), growth factors (transforming growth factor (TGF-β) and granulocyte-
macrophage colony-stimulating factor (GMCSF)), proteases [55–59] and secretome aging
messages (SMS) [60,61] are also included.

Secretion of these and similar proteins by senescent cells induces inflammation and,
at least in some cases, may be necessary for phagocytotic senescent cell clearance [62,63].
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SASP components, especially TGF-β, can also induce senescence of adjacent cells in a
paracrine manner through mechanisms that generate ROS and DNA damage [64].

3. Mesenchymal Stem Cells (MSCs)

MSCs, also known as stromal cells, are a collection of tissue-specific progenitor cells
that can renew in long-term and potential differentiation as an important role in tissues
and organs balance [65–70]. These cells coexist and overlap due to plasticity differentiation
and support of the functioning tissue. This depends on the source of the tissue, donor
characteristics, culture media, and administration methods, “stem” or “stromal” [67]. MSCs,
in this term, become a long reservoir for the next generation of somatic cells and other
supernumerary cells.

MSCs can be isolated in large clusters from many sources such as tissues in bone
marrow, perinatal, and adipose, and can be expanded by ex vivo means. The adhesion
ability to plastic can be defined with a set of phenotype markers such as CD73+, CD90+,
CD105+, CD11b- or CD14-, CD19- or CD79a-, CD34-, CD45-, and HLA-DR-. The definition
is also not limited to the capacity of differentiation towards chondrocytes, adipocytes, and
osteoblasts [71].

Senescence in organisms is correlated with a decrease of MSC activity which implies
the declining of stem cell functions. This slowing activity reduces tissue repair and mainte-
nance speed, a characteristic of senescence. As an example, fractures in osteoporotic bone
associated with advanced age are more prone to delay in healing because of diminished
function and amount of MSCs [72].

MSCs may be an optimizing option in the regenerative medicine aspect and tissue re-
pair, with immunomodulatory benefit because of a convenient method of isolation and repli-
cation [73–75]. Paracrine activity in MSCs via soluble factor, exosome and micro-vesicles
may also help ease tissue modulation in the microenvironment, inhibiting inflammation
and contributing to the repair process [66,76,77].

MSCs secrete many soluble factors that work as autocrine or paracrine, including
chemokines, proteases, extracellular matrix (ECM) growth factors, and cytokines, possibly
used as cell-free-based therapy sources. Multiple functions such as pro-proliferative activity,
anti-inflammation, pro-angiogenic, anti-apoptotic, and anti-fibrotic functions are due to
the interaction between cells and secretion of abundant soluble factors. Anti-inflammatory
secretome activity releases prostaglandin E2, Transforming growth factor- β (TGF-β), IL-6,
IL-1, Tumor necrosis factor- inducible gene six protein (TSG6), IL-1 receptor antagonist
(IL-1RA), and nitric oxide [78].

4. The Roles of Extracellular Vesicles

Other substances such as hepatocyte growth factor (HGF), fibroblast growth factor
(FGF), and vascular endothelial growth factor (VEGF) are correlated with paracrine activity
in MSCs. These molecules work in the extracellular compartment and are secreted via
extracellular vehicles (EVs) for direct communication within the cells’ pathway. The EVs
are separated into two subtypes: exosomes and micro-vesicles (or microparticles) [79].
Originating from the endosomal reserve compartment, exosomes (size less than 120 nm)
produce multivesicular bodies (MVB), which fuse with the plasma membrane to secrete
the content. Micro-vesicles (100–500 nm) are budding vesicles that come from the plasma
membrane after stress induced by many conditions. Heterogeneity of EV size may result
in the separation of exosomes from the vesicle, which becomes hard through EV isolation
because of the physicochemical property existing between them. Large-size exosomes and
small-size micro-vesicles have similar densities and dimensions, which is hard to purify
because available purification methods can only separate small and large EVs irrespective
of the biogenesis process [80]. EVs consist of nucleic acid (mRNA, DNA, microRNAs,
and long non-coding RNAs), lipids, and proteins. The EVs are enhanced with specific
lipids (such as sphingolipids and cholesterol) and proteins (such as tetraspanins and heat
shock proteins).
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EVs give rise to phospholipid-walled particles via encapsulation with cytosol and
are important as cross-talk between cells in the physiologic and pathological condition
in MSCs. EVs interact with ECM and the cells themselves when outside the extracellular
medium. EVs also bring enzymes responsible for remodeling processes, such as metal-
loproteinases and regulators, or directly via secretion of the matrix-remodeling enzyme
from the environment of the cells. Overall, this process may contribute to tetraspanins
and proteoglycans, which alter the interaction between EVs and cells and modify ECM
composition, which drives the interaction. The interaction influences the size of EVs and
the acceptor cell’s physiological state [81].

The EVs’ capability to communicate can be recognized differently via activation of a
specific receptor on the cell surface or direct delivery into the cell. EVs may secrete TLR9
on the surface of inactive macrophages, recognized by an activated macrophage. Another
mechanism is release of chemokine TNF-α. Release of more EVs in MSCs may stimulate a
different process inside the MSC itself [2].

5. Characteristics of Senescent MSCs

MSCs in senescence may have a poor colony efficiency rather than the earlier passage
of MSCs [21]. MSC senescence is classically marked by the arrest of growth in the G1 phase
of the cell cycle, expression of senescence-associated β-galactosidase (SA-β-Gal), change
of morphology size, and senescence-associated lysosomal a-L-fucosidase (SA-a-Fuc) with
alteration in surface marker [14].

Senescent MSCs face morphological changes, including more abundant actin fibers,
reduction of bond capability to plastic surface, more flattened, hypertrophic and constricted
nuclei, and more granular cytoplasm. To measure this, a colony forming unit-fibroblast
(CFU-F) assay may be used and lipofuscin clumping may be increased after using aut-
ofluorescence. When MSCs are cultured inside dishes with low density plate culture,
CFU-F may adhere and proliferate. The number of colonies may indicate ability to pro-
liferate, while senescent MSCs decrease the amount of CFU-F. SA-β-Gal can be used for
biomarker in aging. Detection using histochemical process was first described in 1995 and
become a common assay used to determine the senescence of MSCs. Increase of SA-β-Gal
is positively associated with increased aging via lysosomal activities and change in pH
cytosolic [82,83]. The use of SA-a-Fuc has the potential ability to become a novel senescence
marker which increases in response to DNA damage, replication, and oncogenic activity
induced by senescence. It is even more sensitive and robust compared to SA-β-Gal in terms
of transcriptional process and enzymatic levels detection [84].

Classically, MSC is defined by ISCT with these minimal criteria: (i) may adhere
to plastic media; (ii) multiple differentiation potential of adipocytes, chondrocytes, and
osteoblasts in standard culture conditions in vitro; (iii) expression of surface markers CD73,
CD90, CD105 and absence of CD11b, CD14, CD15, CD19, CD34, CD79a, and HLA-DR [68].
However, these markers are equally expressed in young and senescent MSCs, increasing
the challenge for differentiating senescent MSCs from the young [85]. Stro-1 [27], CD106
(VCAM-1) [86], and CD146 (MCAM) [66] expressions have potential uses as positive and
negative markers of senescence during longstanding culture. CD106 especially is strongly
downregulated in MSCs after chondrogenesis, osteogenesis, and adipogenesis. Therefore,
this marker is beneficial in undifferentiated MSCs within MSC cultures. CD295 (leptin
receptor) increases intrinsic cellular aging, suggesting a marker in apoptotic cells [87]. It
can be concluded that MSCs can be divided into two groups. Stably expressed groups are
CD73, CD90 and CD105, which may have little benefit regarding senescence status, while
Stro-1 or CD106 rely on dependency donor, culture passages and other culture properties.
The switching ability of MSCs into osteogenesis or adipogenesis via differentiation is
mediated through signaling pathways, and transcription factors alter. One study shows
that MSCs’ low activity in osteogenesis may increase the life span of organisms in line
with the decrease in bone formation efficiency [88]. In bone-formation markers, alkaline
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phosphatase (ALP) and osteocalcin (OC) reduce the expression of senescence cells inside
the culture medium [89].

DNA markers in senescent cells show nuclei containing heterochromatin with small
and distinct spots called SAHF [90]. The spots represent dense chromatin, which is tran-
scriptionally inactive, and downregulation of transcription factors such as cyclin A and E2F
family member [90]. SAHF is identified via DAPI staining, heterochromatin finding associ-
ated histone markers, and high expression of H3K9me3 and H3K27me3 [91]. An increase in
both of these inhibitory markers, as previously mentioned, may decrease gene expression.

Regulation of epigenetic alteration involves histone modification and cellular senes-
cence, monitored via modification. It can be achieved via DNA methylation as the common
process in MSCs’ senescence [92,93]. Association between hypomethylation and senes-
cence occurs at the region of genome heterochromatic. This occurrence may interfere with
transcription factors such as transposons, methylated CpG binding proteins, repetitive
elements, and activation of the silenced gene [94]. There is also a decrease in gene-related
senescence such as KDM3a-b, KDM5d, and KDM6a-b (part of lysine-specific demethy-
lase) [95]. Therefore, senescence associate DNA methylation (SA-DNAm) can monitor
cellular senescence in a specific gene and histone modification [91].

Through the paracrine effect, senescence cells potentiate the effect of neighboring cells,
and this process is called the senescence-associated secretory phenotype (SASP) [96,97].
SASP factors consist of IL-1, IL-6, IL-8, matrix metalloproteinase 1 (MMP1), TNF-α, vascular
endothelial growth factor (VEGF), and many others [98,99]. Micro-vesicles (MVs) are
important for cell secretome components in senescence cells, which play important roles in
regulating immunomodulation and suppressing tumor growth [35,100].

Telomere erosion limits the MSC division in the senescence process, becoming the
hallmark of DNA damage in cells [101]. Response of DNA damage itself is associated
with cell cycle arrest and senescence. TTAGGG repeat of chromosome telomerase can halt
telomere erosion and promote elongation of the telomere. Telomerase reverse transcriptase
(TERT) overexpression is related to increase in lifespan in animal experimental [102].

Meanwhile, EV secretion from senescent cells is partially dependent on the p53 path-
way and the downstream target gene via tumor suppression-activated pathway 6 (TSAP6).
P53 has an essential role as a gene-regulator of transcription, including Rab5B and Rab27B.
These two regulators are vital in exosome biosynthesis and regulators of endosome [103].
EVs’ enhanced secretion is explained by two possible mechanisms. First, EVs mediate the
cytoplasmic removal of DNA, which is not needed by the cell, misfolded, or recognized
as a toxic molecule, enhancing cell survival. The fragmented DNA will activate DNA
damage response (DDR) and is then exported by the EVs to prevent the deviation of the
DDR activation pathway itself. As seen in MSCs, senescent cells release EVs as a defense
mechanism to be marked as a distress signal, allowing nearby cells to respond to stress
efficiently [104]. Secondly, EVs released from senescence cells are modulated via chronic
systemic inflammation during the aging process, which somehow progresses in aging-
related disease. miRNAs may be responsible (as so-called inflammamiRs) for aging-related
processes, DDR, oxidative stress, mitochondrial dysfunction, and proteotoxic stress envi-
ronment [105]. MSCs miRNA in turn is also modulated with the aging increase; therefore,
decreased miRNA expression may correlate with the MSC-EVs’ aging process [106,107].

6. Osteogenesis in Healthy and Senescent MSCs

Aging in tissue and organ stages is related with stem cells. In human and animal
research, aging impacts MSCs via a decreased series of MSCs within the bone marrow,
and bias differentiation into adipocytes, which sacrifice osteoblasts. MSCs, or stromal
mesenchymal cells, can grow in culture plate, proliferate in vitro, and differentiate into
osteoblasts, chondrocytes and adipocyte. In addition, MSCs have been isolated from fats,
pulp, amniotic fluid, placenta, and Wharton’s jelly [108].

Skeletal tissue MSCs are composed of bone and cartilage in response to growth factors
such as bone morphogenetic proteins (BMPs) and Wnt molecules. MSCs express the
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bone morphogenetic transcription factors Runx2 and Osterix (Osx), which differentiate
into osteoblasts. MSCs can express Sox9 and differentiate into cartilage, thereby forming
chondrocytes. MSCs can also express CCAAT/enhancer-binding protein (C/EBPa) and
peroxisome proliferator-activated receptor (PPAR-γ), which differentiate into bone marrow
adipocytes [109,110].

In addition to osteoblasts, bone additionally incorporates osteoclasts that act as bone
resorption elements from the HSC monocytic lineage. HSCs are pluripotent stem cells
within the bone marrow that may produce all forms of blood cells. HSC-derived monocytes
can grow to become macrophages and granulocytes, similar to osteoclasts. Osteoclasts
are giant cells with many nuclei that secrete proteases which wreck bone matrix proteins
and collagen. In addition, osteoclasts act synergistically with osteoblasts via complicated
binding mechanisms. For example, MSC and osteoblasts secrete MCSF, RANKL, and OPG
to modify osteoclast formation, and monocyte and osteoclasts secrete numerous boom
elements to alter osteoblast formation. Osteoblast-mediated osteogenesis and osteoclast-
mediated bone resorption are reservoirs of equilibrium. Osteogenesis outweighs bone
resorption during a boom, and bone mass increases [111,112]. Senile osteoporosis is ordinar-
ily because of a lower quantity of MSCs within the bone marrow and a lower osteogenesis,
due to the differentiation of distorted MSCs into adipocytes at the price of osteoblasts [89].
MSC is known to have an osteogenesis and adipogenesis differentiation capability which is
altered in older MSCs. Older MSCs tend to differentiate into adipocytes, thus the markers of
osteogenesis, such as alkaline phosphatase (ALP) activity and osteocalcin (OC) expression,
were down-regulated in aged MSCs during culture in the bone-forming media [113].

Aging can directly affect osteogenesis by preventing proliferation and inhibiting the
function of MSCs, which can differentiate into a wide variety of cell populations, including
osteoblasts and adipocytes [14,33,114]. Induction of aging is primarily regulated by the
p53 and retinoblastoma pathways (pRb/p16INK4a) [115,116]. Expression of p16INK4a
and the presence of lesions due to unresolved DNA damage are the best markers of aging
in vivo [42,117,118]. Both pathways are closely associated with bone homeostasis. For
example, pRb is directly involved in the differentiation of bone progenitor cells because it
can bind to and activate major osteogenesis regulators such as Runx2 [119,120]. pRb can
also suppress adipogenic differentiation through a mechanism of action on the peroxisome
proliferator-activated receptor-γ subunit (PPAR-γ) [121]. Decreased p53 or p21CIP1 reg-
ulators may increase the likelihood of mouse stromal cell proliferation and osteogenesis
differentiation [118,121,122]. Increased expression of the osteogenesis transcription factors
Runx2 and Osterix (Osx) may be the underlying mechanism of control of osteogenesis
by p53.

Several studies have shown that the osteogenesis activity of MSCs deteriorates with
increasing lifespan, which is associated with decreased osteogenesis efficiency. This osteo-
genesis is associated with the expression of RUNX2/CBFA1 via the PI3KAKT signaling
pathway. It is an important transcription factor of the osteogenesis/chondrogenic lineage as
an activator and marker of MSC osteogenesis [123,124]. A slight decrease in its expression
has been observed with age [125]. The core factor-kB ligand-receptor activator (RANKL),
which is essential for osteoclast differentiation and maintenance, has been highly expressed
in late MSC. Transforming growth factor (TGF/SMAD3) signaling pathways are essential
for osteogenesis differentiation and may induce ERK phosphorylation. ERK inhibitors have
been shown to suppress TGFβ-induced osteogenesis differentiation [126,127].

Potentiation of adipogenic MSCs’ capacity is relative and may be worsened or en-
hanced. The general view is that the adipogenesis activity of MSCs may decrease in
conjunction with usual culture media. PPARµ is a member of the ligand-activated nuclear
receptor superfamily, and may act as adipogenic-specific transcription factor, including
transcriptional activation. This PPARµ targets different genes related to lipid metabolism
and adipocyte development. The expression may be decrease, alongside with senescence,
and the impairment of this expression along with C/EBP may alter the fate of MSCs’
osteoblast lineage. The inhibition pathway of C/EBP and PPARµ is mediated via WNT/β-
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catenin signaling and is therefore aimed at MSC differentiation into osteoblasts. Hence, it
can become the key regulator of adipogenesis and osteogenesis [54]. Phosphorylation of
AKT by insulin may suppress the expression of Forkhead box O3 (FOXO3) and activate
PPAR, which opposes the balance of differentiation and enhances adipogenesis activity.

FOXOs play an essential role in bone turnover and osteoclast activation by decreasing
the ROS substance [59]. FOXO1, 3, and 4 deletions in the osteoclast progenitor increase
osteoclast proliferation and formation, thus reducing the trabecular and cortical bone mass.
On the contrary, the increased function of FOXO3 in turn inhibits the osteoclast differ-
entiation and increases the survival of osteoblast via catalase and superoxide dismutase.
The last two enzymes mentioned prevent oxidative injury occurrence [47,60]. FOXO1 also
helps collect glutathione, which decreases ROS via the sulfhydryl moieties redox-active
pathway [128].

The PI3K-PKB/AKT regulates the transcriptional activity of the FOXOs via the canon-
ical pathway. FOXOs and Sirt1 are related to the increase in bone lifespan through the
balance of bone formation and resorption, while IGF1 and IGF-R1 act oppositely. Sirt1
modifies posttranslational FOXOs and prevents bone turnover while enhancing bone for-
mation. Wnt signaling and insulin-like signaling (ILS) are reduced with FOXOs activity.
The decreased signaling of Wnt may induce protein aggregation, which contributes to early
cell deterioration [129].

The Insulin/Insulin Growth Factor 1 (IGF-1) signaling system (IIS) regulates metabolism,
including activity concerning an organism’s nutrition balance, growth, and development.
Mammals have three sepae ligand molecules of insulin /IGF-1 receptors: insulin, IGF-1, and
IGF-2. There are also three diverse insulin/IGF tyrosine kinase receptors: insulin receptor
(IR), IGF-1 receptor (IGF-1R), and the so-called orphan IR related receptor (IRR). The
activated IGF-1 or insulin receptors begin with phosphorylation in intracellular substrates,
then dock for intracellular effectors. The site of this docking process for intercellular
effectors includes growth-factor-receptor-bound protein-2 (Grb2) and the p85 regulatory
subunit of PI-3K. Activation of Ras-MAPK and PI-3K-PKB/AKT pathway occurs as 2 major
signals. The last pathway mentioned has been known to regulate insulin/IGF-1 signaling
metabolic effect [130].

Sirtuin1 (Sirt1)3 is an NAD+-dependent deacetylase that delays and opposes aging-
related processes in lower organisms in mammals [131,132]. Sirt1 is responsible for biolog-
ical activity such as DNA repair, metabolism of energy, mitochondrial homeostasis, and
tumor suppression. This activity is linked with the deacetylation of the FOXO family and
β-catenin, which acts as co-activator of canonical Wnt signaling [133].

Osteoblasts are terminally differentiated and have a short life span, which explains
the need for continuous replacement from a mesenchymal progenitor to maintain bone
growth and development [134]. This replacement activity is maintained by proliferation
and differentiation of progenitor osteoblast, expressing Runx2 and Osterix1 (Osx1). Then,
the progression of this committed progenitor into mature osteoblast is regulated by Wnt
signaling [135]. Canonical Wnt signaling is first modulated by binding Wnt ligands to
Frizzled and low-density lipoprotein receptor related to 6 cell membrane receptors. This
activity halts the destruction of β-catenin and promotes its accumulation. Inside the
nucleus, β-catenin is associated with the T-cell factor (TCF)/lymphoid-enhancing factor
(Lef) family of transcription factors and enhances the expression of contributing genes
involved in proliferation and differentiation. Wnt signaling can be downregulated with
an extracellular and intracellular inhibitor. Then, the FOXOs further downregulate the
Wnt signaling via β-catenin binding and prevent the β-catenin with TCF/Lef [136]. The
alleviation of β-catenin/TGF transcription via FOXOs in osteoblast progenitors halts bone
development, which decreases the mass itself [137].

Reduction of NAD+ somewhat in line with senescence of osteoblast progenitors was
associated with an increase in CD38 expression (main nicotinamide nucleotidase found
in mammalian tissues) [137]. CD38 is a protein with a multifunction process involved
in the formation of the second messengers ADPR and cyclic-ADPR (cADPR), related to
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signaling-dependent-calcium intracellular formation. Along with NADase activity, CD38
also contributes significantly to the homeostasis of NAD inside cellular and tissue. This
finding is supported by inhibition, via pharmacology or genetics, of CD38 increased NAD+
in multiple mice organs. Therefore, the senescence-related NAD+ process becomes slower,
which results in attenuation in mitochondrial dysfunction and improvement of glucose
tolerance [138,139].

The level of Nicotinamide phosphoribosyl-transferase (Nampt) protein inside os-
teoblast cells from old mice was lower than in young mice. Along with this finding,
deletion of Nampt in mesenchymal lineage cells is associated with a significant decrease in
bone density and supports the hypothesis that NAD+ plays a role in osteoblast progenitor
but may retard bone formation. This finding is strengthened via NR administration, which
may increase the osteoprogenitor number and mineralization of bone in aging mice [140].

NR administration decreases the acetylation of FOXOs and β-catenin related age.
Further decrease of NAD levels via pharmacological or genetic means correlates with
further enhancement of acetylation of both proteins. Acetylation of FOXOs will increase
β-catenin and decrease Wnt signaling, therefore decreasing osteo-blastogenesis [137,141].
Otherwise, Sirt1 deacetylates FOXOs and β-catenin, which provide the activation of osteo-
blastogenesis [142,143]. In mice, osteoblast cells lacking FOXO1, 3, and 4 are protected
partially from FK866, supporting the evidence that Srt1/FOXOs may mediate the effect
of NAD+ in the osteo-blastogenesis process. The administration of Srt1 agonist in mice
diminished skeletal aging [144].

7. Conclusions

Cellular senescence displays a decreased capacity of MSCs and permanent cell cycle
arrests. Osteogenesis differentiation decreases over time, whereas adipogenesis increases
over time. Decrease in osteoblast progenitors and osteoblasts itself contribute to loss of
bone formation. The role of each molecular mechanism of MSCs in aging remains unclear.
Intrinsic factors including signaling pathways and effector molecules, and extrinsic factors
including systemic factors and niche molecules, may control the senescence process of
MSCs. Further studies are needed to unravel the exact functions of these factors. MSC net-
works and delays in MSC aging may inhibit senescence development at the cellular level.
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