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Abstract

Small, monomeric guanine triphosphate hydrolases (GTPases) are ubiquitous cellular integrators 

of signaling. A signal activates the GTPase, which then binds to an effector molecule to relay a 

signal inside the cell. The GTPase effector trap flow cytometry assay (G-Trap) utilizes bead-based 

protein immobilization and dual-color flow cytometry to rapidly and quantitatively measure 

GTPase activity status in cell or tissue lysates. Beginning with commercial cytoplex bead sets that 

are color-coded with graded fluorescence intensities of a red (700 nm) wavelength, the bead sets 

are derivatized to display glutathione on the surface through a detailed protocol described here. A 

different glutathione-S-transferase-effector protein (GST-effector protein) can then be attached to 

the surface of each set. For the assay, users can incubate bead sets individually or in a multiplex 

format with lysates for rapid, selective capture of active, GTP-bound GTPases from a single 

sample. After that, flow cytometry is used to identify the bead-borne GTPase based on red bead 

intensity, and the amount of active GTPase per bead is detected using monoclonal antibodies 

conjugated to a green fluorophore or via labeled secondary antibodies. Three examples are 

provided to illustrate the efficacy of the effector-functionalized beads for measuring the activation 

of at least five GTPases in a single lysate from fewer than 50,000 cells.
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1 Introduction

Members of the Ras-related superfamily of small, monomeric GTPases, including Rho, Ras, 

and Rab subfamilies, serve as critical integrators of cellular functions from cell division and 

survival to membrane trafficking [1–6]. Genetic diseases and infectious agents such as 

viruses and bacteria are known to co-opt the signaling functions of GTPases, making 

GTPases attractive diagnostic and therapeutic targets [7–15]. Current methods for measuring 

the activation status of small GTPases rely on glutathione bead-based effectorpull-down/

immunoblot assays, and ELISA-based effector-binding assay kits. The significant 

shortcomings of these methods are that they are labor intensive and require large sample 

sizes, purified effector proteins, or expensive kits. Additionally, sample processing times are 

critical because of the lability of the GTP-bound state due to hydrolysis. Here we describe 

the GTPase activity assay platform (G-Trap) [16], a multiplex, bead-based effector-binding 
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assay that can rapidly monitor the activation status of multiple GTPases from a single-cell 

lysate [16, 17].

The GST-effector proteins consisting of the minimal GTPase-binding domains (RBD) for 

the studies are PAK-1 RBD (a Rac1 and Cdc42 effector), Raf-1 RBD (a Ras effector), 

Rhotekin-RBD (a Rho effector), RalGDS-RBD (a RAP1 effector protein), and RILP-RBD (a 

Rab7 effector) [16, 17]. Beads for each target effector (10,000/target) are mixed and added 

to cell lysates typically generated from 50,000 cells. The beads are incubated with cell 

lysates for 1 h at 4 °C, centrifuged, and resuspended in 50 μL of buffer (1:20 final antibody 

dilution). Monoclonal antibodies for each target GTPase are pooled and added to the 

multiplex bead suspension and incubated for 1 h at 4 °C. A secondary antibody tagged with 

Alexa 488 dye is then used to label bead-associated antibodies fluorescently. The samples 

are then analyzed on a flow cytometer where the red fluorescence identifies the specific 

effector bead and is used to gate the green fluorescence and quantify the amount of each 

target, GTP-bound GTPase. We demonstrate the functionality of the assay in three tests 

involving the activation of multiple GTPases. The first example measures the signaling 

cascade of GTPases that are activated to allow β3 integrin-mediated cellular entry of Sin 

Nombre virus (SNV) in the course of a productive infection [16, 17]. The second example 

measures GTPase activity downstream of signaling of protease-activated receptors (PARs), 

after exposure to thrombin found in the plasma samples drawn from patients with hantavirus 

cardiopulmonary syndrome (HCPS) [18]. The third example measures GTPase activation 

due to bacterial factors [12, 19] present in a plasma sample from a septic patient. Control 

reagents used for these illustrative examples are given in Table 1.

It is well established that flow cytometry is an ideal platform for measuring multiple 

analytes, simultaneously using cytoplex bead populations encoded with fluorescent dyes of 

graded intensities, with which the bead is uniquely identified (see Fig. 1) [17, 20]. Flow 

cytometry is capable of exciting at multiple absorption bands and detecting fluorescence at 

different emission wavelengths, and it is then possible to detect various analytes, 

simultaneously from a single sample [21–25]. The commercially available cytoplex beads 

used by us have up to 12 different intensity levels that can be used as unique bead identifiers. 

Furthermore, the beads are currently available in two sizes that can be resolved by flow 

cytometry forward light scatter. Thus, up to 24 different analytes can be measured. Our 

experience to date suggests that a maximum of six targets at a time is optimal for 

reproducible assay results [17].

2 Materials

2.1 Microspheres, Supplies, and Equipment

1. Cyto-Plex™ far-red fluorescent carboxylated microspheres (beads), uniform 4–5 

μm in diameter, 12 sets with 12 discrete dye levels, at 108 beads/mL, 1 mL of 

each set (Thermo Fisher Scientific): We use the 5.4 μm sized beads.

2. Carboxyl polystyrene beads, 5% w/v, 10 mL (Spherotech): Our batch was 5.28 

μm.

3. Amino polystyrene beads, 5% w/v, 10 mL (Spherotech): Our batch was 3.57 μm.
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4. Quantum™ FITC MESF (Molecules of Equivalent Soluble Fluorochrome) 

beads, five sets of commercial beads in which each subset is functionalized with 

discrete titers of fluorescein conjugates (Bangs Labs).

5. Refrigerated microcentrifuge with swinging bucket rotor and 0.65 mL 

microcentrifuge tubes.

6. Flow cytometer with a far-red laser, such as an Accuri C6.

7. pH meter.

8. Rotator, nutator.

9. Nitrogen-bubbling apparatus.

2.2 Synthesis of Glutathione Beads

1. 1% (v/v) Tween-20 stock.

2. pH 6 buffer: 0.1 M 2-(4-morpholino)-ethane sulfonic acid (MES), pH 6.0, 0.15 

M NaCl, 0.01% (v/v) Tween-20.

3. 1-Ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDAC).

4. Sulfo-N-hydroxysuccinimide (sNHS).

5. Rinse solution: 0.15 M NaCl, 0.01% (v/v) Tween-20, with no pH buffer.

6. pH 8.4 buffer: 0.1 M NaHCO3, pH 8.4, 0.01% (v/v) Tween-20.

7. 2 M 1,6-diaminohexane (hexamethylenediamine), pH 8.4.

8. pH 7 buffer: 0.1 M Sodium phosphate, pH 7.0, 0.01% (v/v) Tween-20.

9. Bifunctional crosslinker: 0.2 M Sulfosuccinimidyl 4-[N-maleimidomethyl] 

cyclohexane-1-carboxylate (sSMCC) in dimethyl sulfoxide (DMSO). Store at 

−80 °C.

10. 0.2 M Reduced glutathione, pH 7.0: Store in 50 μL aliquots at −20 °C.

11. 5 mg/mL Alexa Fluor 488 NHS ester (Thermo Fisher Scientific) in DMSO: Store 

at −80 °C

12. A fusion protein such as glutathione-S-transferase-green fluorescent protein 

(GST-GFP) to measure glutathione on the GST-functionalized beads, or your 

laboratory’s GST fusion protein and a fluorescent detection agent that binds to it.

2.3 Cell Culture

The G-Trap assay is used to measure GTP loading of multiple GTPase targets, found in cell 

lysates [16, 17]. The reader may cultivate cells using applicable standard procedures for their 

target cells, and treat cells with known activators and inhibitors (see Table 1) [16, 17] to 

establish the applicability of the assay in the setting defined by the reader.

2.4 GST-Effector Protein Production

Following GST-effector chimeras are used for the studies described here:
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1. p21 activated kinase protein-binding domain (PAK-1 PBD), a Rac1 effector 

(MilliporeSigma).

2. Raf-1 (v-raf-1 murine leukemia viral oncogene homolog 1) RBD, a Ras effector 

protein (MilliporeSigma).

3. Rhotekin-RBD, a Rho effector protein (Cytoskeleton).

4. Ral-GDS RBD, a Rap-1 effector protein (Thermo Fisher Scientific).

5. GST-RILP, prepared as previously described [16].

2.5 GTPase Assay

1. Antibodies: Monoclonal rabbit anti-Rap1 (Santa Cruz Bio-technology); 

monoclonal mouse antibodies anti-Rho (A, B, C) clone 55, anti-Rac1, anti-Rab7, 

and the secondary antibody goat anti-mouse IgG (H + L) conjugated to Alexa 

Fluor 488 (MilliporeSigma); monoclonal mouse anti-Ras antibody (Abcam).

2. Activators and inhibitors: Rap1 activator 8-Cpt-2me-cAMP (50 μM) (R&D 

Systems); Rac1 inhibitor NSC23766 (100 μM) and Rho activator calpeptin (1 

μM) (Millipore-Sigma); recombinant epidermal growth factor (EGF) (10 nM) 

(Thermo Fisher Scientific); mP6, a myristoylated hexapeptide (myr-FEERA-

OH), custom synthesized at New England Peptide, H-Ras and K-Ras inhibitor, 

FTI 277 (100 nM) (Tocris); Rap1 inhibitor (GGTI 298) (10 μM).

3. 2× RIPA buffer: 100 mM Tris–HCl, pH 7.4, 300 mM NaCl, 2 mM 

ethylenediaminetetraacetic acid (EDTA), 2 mM NaF, 2 mM Na3VO4, 2% (v/v) 

NP-40, 0.5% (w/v) sodium deoxycholate. Just before adding to the culture 

medium supplement with 2 mM phenylmethylsulfonyl fluoride (PMSF) and 2× 

protease inhibitors (Halt™ Protease and Phosphatase Cocktail # 78442, 

ThermoScientific).

4. HHB buffer: 7.98 g/L HEPES (Na salt), 6.43 g/L NaCl, 0.75 g/L KCl, 0.095 g/L 

MgCl2, and 1.802 g/L glucose.

5. HPSMT buffer (an intracellular mimic): 30 mM HEPES, pH 7.4, 140 mM KCl, 

12 mM NaCl, 0.8 mM MgCl2, 0.01% (v/v) Tween-20.

6. Blocking buffer 1: 0.1% Bovine serum albumin (BSA) in HPSMT.

7. Blocking buffer 2: 5% BSA in HPSMT.

8. 10 mM EDTA and 0.2% sodium azide for use at 1:10 dilution in storage buffer.

3 Methods

3.1 Synthesis of Glutathione Beads

High-site-density glutathione-derivatized beads used for flow cytometry have been 

synthesized previously from 13 μm dextran-cross-linked agarose beads [26, 27], and 4 μm 

amino polystyrene beads [20]. In this method, 5.4 μm Cyto-Plex™ carboxylated polystyrene 

bead sets are first converted to amino beads, and then to glutathione beads. We use standard 
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practices with high concentrations of reagents to obtain a high glutathione site density on the 

beads. A high surface coverage of glutathione (GSH) enables robust capture of soluble GST 

fusion proteins [28]. The 12 Cyto-Plex™ carboxyl bead sets are coded with 12 graded 

intensities of far-red fluorescence when excited at a fixed wavelength, which does not 

interfere with fluorescein or phycoerythrin fluorescence detection. We suggest the use of a 

centrifuge with a swinging-bucket rotor and slow deceleration for ease of removing 90% of 

the supernatant, without disturbing the beads, during the many centrifugations in this 

synthesis. All reactions are at room temperature. While the protocol below is written for 

Cyto-Plex™ beads, we used an inexpensive (nonfluorescent) set of polystyrene carboxyl 

beads for pilot-testing our protocol for optimizing the synthetic conversion of carboxyl- to 

amino-functional groups on the beads, and subsequent coupling to glutathione (see Note 1).

1. A bead set in its bottle is rocked gently on its side for 2 min, rotated ¼ turn and 

rocked again for 2 min, and continued until the beads are in a milky suspension. 

15 s of immersion in a low-power ultrasonic bath can help the resuspension.

2. Place 4 μL of 1% Tween-20 in a 0.65 mL centrifuge tube, add 400 μL of the bead 

suspension, mix gently with a pipette, and then allow the suspension to settle 

overnight to coat the beads and the tube with Tween-20, decreasing bead 

aggregation and adhesion to the tube (see Note 2).

3. Remove all but ~10 μL of the supernatant, resuspend the beads, and give two 

standard washes. For a regular wash, add 100 μL of pH 6 buffer to 10 μL of 

suspension, mix with a vortex mixer, centrifuge at 3–5000 × g for 2 min, remove 

100 μL of supernatant, and resuspend the remaining 10 μL of beads with a vortex 

mixer. This standard wash assures that a nominal factor of 10× dilution of the 

undesired solute is achieved. Resuspension in minimal buffer ensures equal 

exposure of all beads to the next reagent.

4. Weigh 4 mg of EDAC and 8 mg of sNHS into a microfuge tube, add 100 μL of 

pH 6 buffer, immediately dissolve by vortexing, add this to a bead set, and mix. 

Place the microfuge tube in a rotator with a horizontal axis of rotation for 30 min 

to keep the beads in suspension, away from the tube lid and sides, while the site 

density of sNHS ester intermediate builds on the beads.

5. Centrifuge at 3–5000 × g for 2 min, remove all but 10 μL of the supernatant, 

resuspend the beads, and then wash two times with 100 μL of rinse solution, 

which will dilute the EDAC and sNHS while keeping the pH low and the sNHS 

ester intact.

6. Resuspend the beads in 180 μL of pH 8.4 buffer, immediately add 20 μL of 2 M 

1,6 diaminohexane, mix, and rotate as in step 4 for 30 min. Centrifuge at 3000 × 

g for 2 min, remove all but 10 μL of supernatant, and resuspend the beads.

7. Wash four times with pH 8.4 buffer and resuspend the amino beads into a total of 

90 μL of pH 8.4 buffer. We derivatize six sets of beads at a time and leave the six 

sets overnight at this stage. The amino site density can be measured in a pilot 

assay to ensure optimal conversion of carboxyl- to amino-terminal groups (see 
Note 3).
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8. Add 10 μL of 200 mM sSMCC in DMSO, mix, rotate as in step 4 for 30 min 

while the site density of the crosslinker’s maleimide builds on the beads, 

centrifuge, and resuspend the beads in 10 μL.

9. Wash with 100 μL of pH 7 buffer and resuspend to 360 μL with pH 7 buffer.

10. Prepare and test the nitrogen-bubbling apparatus to give a slow series of bubbles 

(see Note 4).

11. Add 2 μL of 100 mM EDTA and 20 μL of 200 mM glutathione, pH 7, and bubble 

nitrogen slowly through the suspension for 2 min to remove most of the oxygen. 

Cap the tube and rotate it slowly for 30 min.

12. Centrifuge at 3000 × g for 2 min, remove all but 10 μL of supernatant, and 

resuspend the glutathione beads. Wash beads four times in the storage buffer of 

your choice, reducing the concentration of glutathione from 20 mM to below 2 

μM. Add 1 mM EDTA and 0.02% sodium azide in the storage buffer to inhibit 

bacterial growth. Store at 4 °C at a concentration of 108 beads/mL. The beads 

have been stable for over 2 years. A portion of each bead set is diluted 10× in a 

storage buffer for ease of assay. Each assay uses 104 beads per target GTPase or 

1 μL of diluted beads.

13. It is useful to quantify the number of GST-binding sites on the newly 

functionalized beads using commercial Quantum™ FITC MESF (see Fig. 2) or 

other methods [29, 30]. Assay the beads by incubating them in 25 nM GST-GFP 

for 30 min. Use 100 μM soluble glutathione to determine nonspecific binding of 

GST-GFP to the glutathione beads. Using Quantum™ FITC MESF beads, the 

glutathione beads synthesized as described support >1.0 million GST-binding 

sites. At high surface density (>1300 fluorophores/μm2), fluorophores on a bead 

surface undergo self-quenching with increasing site occupancy [31]. It is 

therefore likely that the 1.0 million sites determined by the calibration beads are 

a lower limit. However, this measure is useful for tracking the useful shelf life of 

the beads.

3.2 Production of a Cleared Cell Lysate

1. Two days before an assay seed a 48-well plate with 20,000 target cells in 100 μL 

of culture medium per well, resulting in about 50,000 cells the next day. The rate 

of cell proliferation might vary based on cell type and conditions. The critical 

target is 50,000 cells at the start of an experiment.

2. Remove the culture medium and replace with 100 μL of serum-free medium 

overnight. Specific inhibitors of signaling can be added to the cells for the 

desired amount of time depending on the requirements of the reader’s assay to 

establish proper inhibition before stimulation.

3. After stimulating the cells (see Subheading 3.5 for examples), chill the plate in 

an ice/water bath. Add 100 μL of cold 2× RIPA buffer to each well with a 1 mL 

pipette and triturate the mixture gently to achieve homogenous lysis of the cells.
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4. Transfer the lysate into a 0.65 mL microfuge tube and centrifuge at 3–5000 × g 
for 2 min. The 200 μL of cleared lysate is enough for triplicate assays using 50 

μL for each test.

3.3 Molecular Assembly of GST Effector Proteins on Glutathione Beads

Briefly, glutathione beads are mixed with the desired, purified GST-effector protein of 

desired concentration (Eq. 1), incubated with rotation overnight at 4 °C, collected by 

centrifugation, and resuspended in HPSMT buffer to 10,000 beads/μL. Beads are prepared 

fresh for each experiment and kept on ice until use on the same day. It is desirable to use the 

beads as a limiting reagent. In this way, uniform site occupancy (θ in Eq. 1) of the GSH sites 

is assured for each bead preparation. The equilibrium dissociation constant (Kd ~ 80 nM) 

[26] measured for GST-GFP is used to estimate the occupancy of GSH sites on beads 

according to Eq. (1):

θ = GST effector free/Kd / 1+ GST effector free/Kd (1)

Site occupancies of ligand-binding sites at saturation are in the range of 1–4 × 106 ligand 

sites/bead. Equation (1) can be used to estimate ligand-occupied sites according to the 

example: 10,000 beads present an upper limit of 4 × 1010 sites or 3.3 nM in 20 μL. 

Incubating 800 nM (10× Kd) GST ligand with 10,000 beads is expected to yield an 

occupancy, θ, of 0.91 (or 91%).

1. 12–18 h before a putative assay of 12 samples for 5 GTPase targets perform the 

following:

a. Mix 12 μL (12 × 104 beads) of each set of 700 nm color-coded 

glutathione beads with a tenfold excess (120 μL) of HPSMT blocking 

buffer #1 for 20 min at room temperature, to block the nonspecific 

binding sites on the particles.

b. Centrifuge the beads at 3–5000 × g for 2 min, our standard.

c. Resuspend each of the five sets in 15 μL of the residual buffer. All 

further operations are performed at 0–4 °C.

2. Add five distinct GST-effector proteins (800 nM) separately to the five particle 

sets, where specific effector proteins are associated with the 700 nm intensity 

register of the bead. Mix the suspensions gently with a nutator overnight. 

Centrifuge at 3–5000 × g for 2 min to reduce the supernatants to 5 μL.

3. Wash the bead sets. For this, add 50 μL of HPSMT to each set and mix, 

centrifuge at 3000 × g for 2 min to reduce the supernatants to 5 μL, resuspend the 

pellet, and dilute it in 50 μL of HPSMT, giving about 8 nM GST-effector. The 

beads are ready for use and can be stored at 4 °C overnight.
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3.4 Assay Runtime

1. Just before the addition of lysates, mix the five different effector beads, 

centrifuge at 3000 × g for 2 min, and reduce the supernatant to about 5 μL. 

Resuspend the beads in 65 μL of HPSMT, giving approximately 0.8 nM of each 

GST-effector. Add 5 μL of this suspension to twelve 0.65 mL microcentrifuge 

tubes for 12 multiplex assays. Leftover beads can be used later to set up the 

cytometer.

2. Add 50 μL of a cleared lysate to each of the 12 tubes, mix, and rotate for 1 h. 

When prepared as in Subheading 3.2, there is enough of each lysate for triplicate 

determinations.

3. Centrifuge the tubes at 5000 × g for 2 min, reduce the supernatant to about 5 μL, 

and resuspend the beads in the residual volume.

4. Wash the beads with 50 μL of blocking buffer #2 to block the beads’ nonspecific 

antibody-binding sites, centrifuge at 3000 × g for 2 min, and resuspend in 5 μL 

of residual buffer (see Note 5).

5. Add 50 μL of primary antibodies (1:20 dilution) against the 5 GTPases to each 

tube, mix, and rotate the tubes for 1 h.

6. Wash the beads with 50 μL of blocking buffer #2, centrifuge at 3000 × g for 2 

min, and resuspend in 5 μL of residual buffer. Add 50 μL of goat anti-mouse 

antibody fluorescently labeled with Alexa488 (1:100 dilution) to each tube, mix, 

and rotate the tubes for 1 h.

7. Centrifuge the tubes at 3000 × g for 2 min, reduce the supernatants to 5 μL, and 

resuspend the beads in the 5 μL of residual buffer.

8. Dilute the beads from each tube with 100 μL of blocking buffer #1 just before 

each flow cytometric reading.

3.5 Applications of G-Trap Assay

3.5.1 Single-Target Format Measurement of GTP Loading of Rab 7 
Associated with the Trafficking of EGF Receptors in EGF-Stimulated Cells—
The single-target format of this assay recapitulates published data [16]. The example is 

shown here as a simplified example of the assay that shows quantification of the active 

GTPase-occupied sites on the beads using Quantum FITC™ MESF beads. In this 

experiment, HeLa cells were stimulated with EGF ligand for 10 min and then lysed [16]. 

Cell lysates of resting and EGF-activated cells were probed with RILP effector beads. One 

set of beads had no GST-effector protein, and was used to measure nonspecific binding; this 

is subtracted from the appropriate sample readings. The results are shown in Fig. 2.

3.5.2 Sin Nombre Virus Induces Multiple GTPase Signaling Cascades—
Integrins are cell adhesion receptors that signal bidirectionally (“inside-out” and “outside-

in”) across the plasma membrane [32]. Inside-out signaling stimulates increases in the 

ligand-binding affinity of integrins [33]. Outside-in signaling by integrins occupied by 

immobilized ligands [34, 35] induces cell spreading, retraction, migration, proliferation, and 
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survival [32, 35]. Integrin signaling requires both heterotrimeric and monomeric small 

GTPases [37]. Many viruses engage cellular receptors such as integrins to transit the plasma 

membrane by hijacking the intrinsic endocytic pathways of desensitizing receptors [38, 39]. 

Recent studies from our lab have shown that SNV engages the β3 integrin plexin-

semaphorin-integrin (PSI) domain and initiates integrin outside-in signaling downstream of 

Gα13 activation [17]. In the setting of SNV engagement, outside-in signaling stimulates 

cytoskeletal remodeling, receptor clustering, internalization, and trafficking [17]. The 

signaling events involved GTP loading of several GTPases associated with integrin 

activation (Rap1) [40], cytoskeletal remodeling (RhoA, Rac1) [41], and cargo trafficking 

(Rab7) [42]. Here we highlight the use of the glutathione bead sets (synthesized as detailed 

in Subheading 3.1) in a multiplex assay of RhoA, Rap1, Rac1, and Rab7 (see Fig. 3a) to 

determine the signaling outcome of SNV-induced outside-in signaling as previously 

established [17]. We also use a myristoylated peptide (Myr-$32#-FEEERA-OH) called mP6 

[43] to inhibit Gα13-dependent outside-in signaling caused by SNV [17]. In this setting there 

are three different experimental conditions (see Fig. 3b). 50,000 CHO-A24 cells in 48-well 

plates are treated with mP6 or with 0.1% DMSO (solvent for mP6) for 30 min. UV-

inactivated particles of Sin Nombre virus (SNV) are added and the cells are incubated for 5 

min at 37 °C. The cells are lysed and GTP loading of four GTPases is measured as described 

in Subheadings 3.2–3.4. Lysis buffer is used to determine the aggregate nonspecific binding 

of the four reporter antibodies used to detect GTPases associated with the beads. As shown 

in Fig. 3b, blocking the interaction between the β3 integrin cytoplasmic tail and Gα13 with 

mP6 inhibits GTP loading of all GTPases associated with integrin activation (Rap1), 

cytoskeletal remodeling (Rac1), and trafficking (Rab7). The reader is referred to ref. [17] for 

the rationale and further details. The top histograms are derived from lysates of cells treated 

with UV-inactivated SNV, whereas the bottom histograms are derived from beads incubated 

in RIPA buffer alone, and serve as a measure of nonspecific binding. The quantitative data 

are shown in Fig. 3c [17].

3.5.3 GTPase Signaling Downstream of Protease-Activated Receptors—Here 

we use the G-Trap assay to measure in parallel RhoA·GTP, Rac1·GTP, and Rap1·GTP levels 

in endothelial cells exposed to plasma samples from de-identified subjects previously 

hospitalized for hantavirus cardiopulmonary syndrome (HCPS). Sample use was approved 

under UNM IRB#15–166. The bead sets were prepared as described in Subheading 3.3. The 

assay required five sets of beads for the conditions of the experiment and was performed in a 

single afternoon (≤4 h).

Thrombin activates PARs and causes loss of cell barrier function [44–47]. G12/G13–

RhoA·GTP–MLCK (myosin light chain kinase) and Gi-Rac·GTP (Gq-Rap1·GTP) signaling 

axes are cytoskeletal altering pathways that control cell contraction and spreading, 

respectively (see Fig. 4a). These signals ultimately combine to induce profound changes in 

vascular endothelial cells, including increased endothelial monolayer permeability [44, 47, 

48]. High concentrations of thrombin expressed in the circulation of HCPS subjects 

significantly contribute to loss of cell barrier function in endothelial cells [18]. Argatroban, 

an orthosteric inhibitor of thrombin (Ki ~ 10−8 M), can be used to block thrombin activity 

[49]. Because GTP loading of RhoA is associated with loss of cell barrier function, a set of 
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beads were used to interrogate lysates of cells treated with an inhibitor of Rho kinase 

(Y27632) before exposing them to plasma samples. In a pilot study of a specific PAR4 

antagonist, ML354 [50], we tested the G-Trap platform to determine the role of GTP loading 

of RhoA, Rap1, and Rac 1 on cell barrier function using telomerase-immortalized 

microvasculature endothelium (TIME) cells [17]. We first assayed the effects of plasma and 

PARsignaling inhibitors in terms of the status of cell-cell barrier integrity using electric cell-

substrate impedance sensing (ECIS). We then correlate changes in cell barrier function to a 

time-course measurement of GTPase activity. As shown in Fig. 4b, ECIS measurements 

show that HCPS patient plasma caused loss of cell barrier function in TIME cells. The cell 

barrier function of Y27632-treated cells was conserved, consistent with normal activation of 

RhoA. ML354 treatment conferred only short-term barrier protection and argatroban 

supported long-term cell barrier integrity to cell monolayers (see Fig. 4b). We measured 

GTP loading of RhoA, Rap1, and Rac1 in a multiplex format. The G-Trap assays show that 

the short-time (15 min) exposure of cells to plasma increased RhoA·GTP 15-fold, Rap1·GTP 

7-fold, and Rac1·GTP 4-fold relative to active GTPase levels in resting cells (see Fig. 4c). 

ML354 and argatroban limited GTP loading to ten-, five-, and threefold for RhoA, Rap 1, 

and Rac 1, respectively, in the short term. However, after 1-h exposure to plasma, the 

efficacy of ML354 at limiting GTP loading to the target GTPases is lost, while the activity of 

argatroban is conserved (see Fig. 4d). These assays demonstrate the utility of the G-Trap 

assay in easily connecting functional (ECIS cell barrier sensing) and mechanism (GTP 

loading primarily to RhoA).

3.5.4 Testing Septic Patient Plasma for GTPase Activity—Bacteria overcome 

host defenses, by hijacking Rho GTPases that regulate the actin cytoskeleton [11, 12, 51]. 

During initiation of infection, bacterial adhesins favor tissue colonization, whereas, at later 

stages, exotoxins promote bacterial spread and blockage of immune cell responses [52]. By 

downregulating Rho GTPases, bacterial pathogens can block crucial immune cell functions 

such as chemotaxis, phagocytosis, and antigen presentation [12, 53]. Bacteria produce 

various toxins and virulence factors that activate or inactivate Rho GTPases by different 

mechanisms. The processes include (a) posttranslational modification of the GTPases; (b) 

bacterial protein mimics of GTPase regulatory factors, including guanine nucleotide 

exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide 

dissociation inhibitors (GDIs); and (c) modification of upstream regulators of Rho GTPases 

[1, 12].

Here we test the applicability of the G-Trap assay for detecting bacterially induced GTPase 

activity in serial plasma samples from a de-identified septic patient (UNM IRB #13–312). 

The patient was diagnosed with community-acquired pneumonia (S. pneumoniae on hospital 

admission) and treated with antibiotics. Vero E6 cells from a cell culture were treated with 

10 μL of plasma samples/test. Following a 30-min incubation, Vero cell lysates were 

prepared as described in Subheading 3.2 and GTP loading of Rho A, Rac1, and Rap1 were 

simultaneously measured in each lysate using a mixture of PAK-1 RBD, Rhotekin-RBD, and 

Ral GDS-RBD beads. As shown in Fig. 5, the plasma samples added to Vero E6 cells in 

culture elicit GTP loading principally of Rac1 during the first 4 days after hospital 

admission. After that, plasma levels of the Rac1-activating factor decreased in response to 
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antibiotic treatment and Rac1 GTP levels reverted to basal levels similar to RhoA and Rap1, 

which were unchanged across the entire time course of patient hospitalization. The selective 

activation of Rac1 by blood plasma collected during the infectious phase is consistent with 

the fact that S. pneumoniae produces a toxin, pneumolysin, which activates Rac1 GTPases 

[54, 55]. Serial samples from patients with sterile inflammations indicated basal GTPase 

activity only (not shown). It is also interesting to note that on day 5 the patient underwent 

stomach surgery, which did not elicit overt GTPase activity. These results illustrate the 

potential utility of the G-Trap assay for diagnostic purposes using serial samples.

4 Notes

1. The site density of glutathione sites on beads governs the magnitude of the 

fluorescence signal from GST proteins bound to the beads. A low site density of 

GST sites on beads can yield variable data or poor binding results [28]. 

Derivatization of the carboxyl Cyto-Plex™ beads to glutathione requires an 

intermediate step of functionalizing to amino groups. Optimizing the synthesis of 

amino groups is essential. Derivatizing the amino-terminated groups with a 

fluorescent probe such as NHS-Alexa 488 tests optimum conversion of carboxyl 

to amino groups. For this purpose, it is useful to use inexpensive carboxyl-

functionalized beads such as those from Spherotech (see Note 3). Glutathione 

derivatization is tested with 25 nM GST-GFP for 30 min as described in Sub-

heading 3.1, step 13.

2. All buffers contain 0.01% Tween-20, which is compatible with most biological 

molecules.

3. To test the conversion efficiency of carboxyl beads to amino beads, we 

derivatized 10 μL of generic carboxyl beads (Spherotech) to amino beads. We 

use commercial amino beads of similar size with known amino group site density 

for comparison, with our synthesis. The two amino bead sets are then reacted 

with NHS-Alexa488 in parallel. Approximately 0.1 mg of NHS-Alexa488 is 

dissolved in 20 μL of dry DMSO to give about 5 mg/mL, which is stored at −80° 

C. Ten thousand synthesized amino beads and ten thousand commercial amino 

beads are put in 20 μL of pH 8.4 buffer, 2 μL of NHS-Alexa488 solution is 

added, the suspension is mixed, and reagents are allowed to react for 30 min in 

the dark. The beads are washed twice with pH 7 buffer, diluted to 50 μL of 

buffer, and analyzed by flow cytometry. We determine nonspecific binding of 

NHS-Alexa488 to beads by mixing carboxyl beads with the fluorophore. In our 

setting the fluorescence from the nonspecific attachment of NHS-Alexa488 to 

carboxyl beads was 20% of the conjugated fluorophores. Our amino beads were 

comparable to the commercial beads.

4. Bubbling nitrogen slowly through 400 μL of suspension in a 1.6 mL microfuge 

tube is not easy. We use a narrow nitrogen line and very low nitrogen pressure, 

and notice that the angle of the tube of suspended beads matters: tipping the 

slowly bubbling microfuge tube from horizontal to upright can stop bubbling, 

probably due to increased hydrostatic pressure. Another technique to prevent 
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bubbling is to use a soft nitrogen tubing line, which can be pushed against the 

bottom of the centrifuge tube to stop bubbling. Tween-20 gives an observable 

bubble running up the microfuge tube, and we estimate that the volume of air 

above the suspension is displaced about ten times during the 2 min of bubbling.

5. Blocking of nonspecific binding sites for primary and secondary antibodies with 

BSA is critical for limiting nonspecific binding. It is also important to test new 

antibodies in single-target format before using in a multiplex format. In our 

experience new antibody batches from “trusted sources” can be highly 

nonspecific, and could bind to all bead surfaces regardless of effector 

functionalization, and either raise the background intensity for all beads in the 

multiplex assay or at worst degrade the readout of all the beads in a multiplex 

configuration.
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Fig. 1. 
The GTPase effector trap flow cytometry assay (G-Trap). The plot of red fluorescence (FL4) 

versus side scatter (SSC) of a set of 12 of Cyto-Plex™ beads dyed with 12 discrete levels of 

700 nm fluorescence. In the G-Trap assay, the letters a, b, c, d, and e identify and link 

effectors, their cognate GTPases, and fluorescently labeled antibodies FL1 (520 nm 

emission) or FL2 (580 nm emission) used for readout. In single or multiplex format, 

glutathione bead populations coated with effectors are used to capture specific active 

GTPases. In multiplex format, the effector and GTPase identities are defined by the intensity 

level of red fluorescence encoded on each bead
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Fig. 2. 
Single-analyte assay for RILP: GTP·Rab7 captured on beads. Fluorescently labeled 

detection antibody added to lysis buffer is used to assess nonspecific binding of the antibody 

to beads. Flow cytometry histograms of RILP-RBD effector beads incubated at 4 °C with 

resting HeLa cell lysates or with EGF-stimulated HeLa cell lysates show increased Rab7-

GTP bound, the levels of which can be quantified using commercial standard calibration 

beads (Quantum™ FITC MESF). Quantum™ FITC MESF beads comprise five sets of 

distinct bead populations. Each bead population is distinguished by a discrete number of 

doped fluorophores of known calibration. The average fluorophores/bead on each bead 

population is shown on the x-axis. The calibration beads are used to quantify the occupancy 

of Rab7-specific antibodies on RILP-effector beads. After correcting for nonspecific 

binding, 7.1 ± 1.2 × 103 Rab7-GTP molecules/bead were recovered in resting cell lysates, 

and 6.7 ± 0.3 × 104 Rab7-GTP molecules/bead were retrieved in EGF-stimulated cell lysates 

[16]
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Fig. 3. 
Example output from G-Trap multiplex assay. (a) Histograms of a mixture of four Cyto-

Plex™ bead populations, identified by their red fluorescence address. Each bead is 

functionalized with an effector molecule for Rac1 (PAK-1 RBD), H-Ras (RAF RBD), Rho 

A (Rhotekin-RBD), Rap1 (Ral GDS-RBD), and Rab 7 (RILP-RBD). Gates are used to select 

beads associated with effector proteins labeled with green fluorescent antibodies shown in 

panel b. (b) Top panels show histograms of beads incubated with CHO-A24 cell lysates 

derived from cells treated with SNV and vehicle (0.1% DMSO), 250 μM DMSO-solubilized 

mP6 and SNV, and resting cells. Bottom panels represent beads incubated in cell lysis buffer 

to determine nonspecific binding of anti-GTPase antibodies. (c) Respective plots of site 

occupancy/bead of active GTPases, established from Median Channel Fluorescence (MCF) 

of histograms shown in b after correction for nonspecific binding. Quantum™ FITC MESF 

were used to analyze the data shown in b. The error bars represent triplicate measurements 

for each target. Error bars represent standard deviation. Reproduced from ref. [17] with 

permission
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Fig. 4. 
RhoA activation stimulates loss of cell barrier function. (a) Model of protease-activated 

receptor-1 and −4 (PARs) coupling to multiple G proteins (Gαi/o, Gαq, and Gα12/13), 

upstream of small GTPase activation. Activation of PARs results in cell barrier disruption 

(RhoA) whereas Rac1 and Rap1 signaling are believed to be barrier protective [57–58]. 

Argatroban is an orthosteric inhibitor of thrombin interaction with PARs and is barrier 

protective. ML354 is a specific inhibitor of PAR4 activation. (b) Electric cell-substrate 

impedance sensing (ECIS) measurement of the effects of plasma from a patient with 

hantavirus cardiopulmonary syndrome (HCPS) on the cell barrier function of telomerase-

immortalized microvascular endothelial (TIME) cell monolayers. Inhibitors are added to cell 

monolayers 30 min before the plasma is added as indicated by arrows and barrier function is 

measured. (c) GTPase activity measured in TIME cells after t1 = 15-min exposure to HCPS 

plasma. The results are corrected for nonspecific binding and normalized to resting cells. 

GTP loading increases in plasma treated cells. Drugs limit the increase in GTP loading 

compared to untreated cells. GTP loading in cells treated with ML354 is comparable to 

argatroban treatment. Cell barrier disruption is consistent with a significant increase in GTP 

loading in RhoA. Each multiplex data point was measured using effector beads prepared as 

described in Subheading 3.3. (d) After 1-h exposure to plasma, RhoA activity is observed in 

ML354 but not argatroban-treated samples. GTP loading is consistent with cell barrier 

disruption shown in the ECIS time course. The multiplex beads used for this dataset were 
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similar to panel c, for cells lysed after 1-h exposure. Error bars are standard deviation. *P < 

0.05; **P < 0.01, ****P < 0.0001 by Dunnett’s t-test
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Fig. 5. 
GTP loading of RhoA, Rap1, and Rac1 measured in TIME cell lysates after 30-min 

exposure to serial plasma samples drawn from a septic patient (P14) 0–12 days after hospital 

admission for sepsis. The patient underwent gastric surgery after day 5 when the bacterial 

infection was brought under control. The sterile inflammation resulting postsurgery did not 

elicit any further spike in GTPase activity. (a) Raw G-Trap data for a patient who tested 

positive for bacterial infection (S. pneumoniae) on day 0, and was treated with antibiotics. 

(b) Data normalized to GTP loading of each GTPase as measured on day 11
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Table 1

Reagents, concentrations, and conditions used for illustrative experiments [16]

GTPase Effector Activator; final concentration; 
incubation time

Inhibitor; final concentration; 
incubation time

SNV particle titer; incubation time

RhoA Rhotekin RBD Calpeptin; 1 μM; 30 min 10,000/cell; 3, 10, 20, 30, 60 min

Rac1 PAK-1 PBD EGF; 10 nM; 15 min NSC23766; 100 μM; 30 min 10,000/cell; 3, 10, 20, 30, 60 min

Rap1 Ral-GDS RBD 8-Cpt-2me-cAMP; 50 μM; 30 min GGTI 298; 10 μM; 30 min 10,000/cell; 3, 10, 20, 30, 60 min

R-Ras Raf-1 RBD FTI-277; 100 nM; 30 min

H-Ras Raf-1 RBD FTI-277; 100 nM; 30 min

Rab7 RILP RBD EGF; 10 nM; 15 min 10,000/cell; 3, 10, 20, 30, 60 min
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