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Abstract: Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic 

background, caused by gliadin-containing food. Undigested gliadin peptides induce innate 

and adaptive T cell-mediated immune responses. The major mediator of the stress and  

innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine 

interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte 

proliferation and the innate immune response has been described. In this paper, we review 

the most recent literature on the mechanisms responsible for triggering the up-regulation of 

these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte 

proliferation, structural changes and the innate immune response in CD mucosa in 

cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators 

related to vesicular trafficking. We will also review the literature that focuses on constitutive 

alterations of the structure, signalling/proliferation and stress/innate immunity pathways of 

CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide 

P31–43 in controls, mimicking the celiac cellular phenotype. 
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1. Introduction 

Ingested food can cause tissue inflammation through different mechanisms. In the intestine,  

and particularly in the enterocyte, nutrients are modulators of various cellular functions and may be 

involved in tissue immune response and inflammation [1]. An example of an intestinal inflammatory 

and remodeling response of the intestine to food is the small intestinal celiac lesion induced by gluten, 

an alimentary protein present in wheat and other cereals. Celiac disease (CD) is characterized by 

inflammatory and structural changes resulting in remodeling of the small intestinal mucosa [2–4]. 

Gliadin, the major protein component of wheat and other cereals, is a peculiar protein very rich in 

glutamine and proline. Several gliadin peptides are recognized by T-cells (TC) of the celiac intestine, 

and can induce the adaptive immune response, but most of them are digested by gastric, pancreatic and 

intestinal proteases. Only two main peptides remain undigested [5–8]: the 33-mer (P55–87) and the  

25-mer (P31–55). Consequently, these two peptides are the main peptides that are active in vivo in the 

celiac intestine after gluten ingestion. 

The inflammation of the intestinal mucosa is due not only to the adaptive but also to the innate 

immune responses to wheat gliadin. The A-gliadin 33-mer that is deamidated by tissue transglutaminase 

(tTG), binds to human leukocyte antigen (HLA) DQ2 and/or DQ8 and induces an adaptive Th1  

pro-inflammatory response [9]. The P31–43 peptide, which is contained in the 25-mer, is not recognized by 

TC in the celiac intestine and is able to damage the celiac intestinal mucosa in vitro and in vivo [10–12]. 

Moreover, the P31–43 gliadin peptide is able to initiate both a stress [13,14] and an innate immune 

response [15,16] with interleukin-15 (IL-15) as a major mediator. 

Although the structural changes of the celiac mucosa are considered a consequence of sustained 

mucosal inflammation due to the Th1-TC response, recent data have shown that gliadin peptides,  

in particular P31–43, induce proliferation of celiac enterocytes. This process is epithelial growth factor (EGF) 

and IL-15 dependent, and has profound upstream effects in inducing the crypt hyperplasia, which is 

characteristic of the remodeling of the celiac mucosa [17–19]. Moreover, gliadin peptides induce 

alterations of structure (cell shape, actin modifications, increased permeability [19] and vesicular 

trafficking alterations [17,20]), signaling [17,18] and proliferation [17] and stress/innate immunity 

activation in several cell lines [21–26] (Figure 1). 

Taken together, these data suggest that gliadin peptides (i.e., P31–43) can have several different  

non-T cell mediated effects, both in cell lines and cells and in biopsies from CD patients, that can be 

grouped into three sets: cell structural changes, including apoptosis, signaling/proliferative effects and 

stress/innate immunity activation (Figure 2). How these mechanisms of disease are related to the genetics 

of CD is unclear. 
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Figure 1. Peptide 31–43 (P31–43) has several effects on cell lines. Schematic representation 

of the effects of gliadin peptide P31–43 on several cell lines (Caco2, K562, Macrophages). 

The main effects were grouped in three sets: structural alterations (permeability, actin 

modifications and alterations in vesicular trafficking), signaling/proliferation (epithelial 

growth factor/epithelial growth factor receptor- interleukin-15/interleukin-15 receptor-α 

(EGF/EGFR-IL-15/IL-15R-α) activation, pY-extracellular signal-regulated kinase (pY-ERK)) 

and stress/innate immunity activation. In all cases there was a quantitative increase in the 

markers cited, although in the case of actin, the alterations were qualitative. Numbers 

indicate the bibliographic references. 

 

2. Results and Discussion 

Many questions are unanswered regarding gliadin peptides, and in particular P31–43, effects on 

stress/innate immune response in CD. How gliadin peptides activate innate immune response?  

How innate immune response is related to gliadin biological effects on cells and tissues? What is the 

mechanism generating the stress/innate immune response? What makes the celiac cells susceptible to 

gliadin peptides effects? Are non-celiacs not susceptible to these effects? 

In this review, we will try to answer to these questions discussing some recent data from the literature 

on the effects of gliadin peptides, in particular P31–43, on control and celiac cells (fibroblasts and 

dendritic cells) and intestinal biopsies, highlighting their relationship with IL-15 and EGF/EGFR 

deregulation in CD. 
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Figure 2. P31–43 affects cells and biopsies from celiac disease (CD) patients. Schematic 

representation of the effects of gliadin peptide P31–43 on CD cells and biopsies. The main 

effects were grouped in three sets: structural alterations (permeability, actin modifications, 

cell shape and transport/trafficking), signaling/proliferation (EGF/EGFR-IL-15/IL-15R-α 

activation, pY-ERK) and stress/innate immunity activation as shown. In all cases, there was 

a quantitative increase in the markers cited, although in the case of actin, the alterations were 

qualitative. Numbers indicate the bibliographic references. GCD: gluten-containing diet. 

GFD: gluten-free diet. 

 

2.1. The Role of IL-15 in the Pathogenesis of CD 

IL-15 exerts pleiotropic activity that ultimately results in immunoregulatory cross-talk between cells 

of the innate and adaptive branches of the immune response. Moreover, IL-15 can induce the 

proliferation of intestinal epithelial cells [27,28]. 

2.1.1. IL-15 Expression in CD 

The increase of IL-15 and IL-15R-α is a major event in the initial phases of CD [29–31]. IL-15 is 

increased in the serum [32] and in the intestinal mucosa at the level of the enterocytes and of the lamina 

propria [33] of celiac subjects in the active and remission phases of the disease [14,16,34]. 

2.1.2. Role of IL-15 in the Break of Oral Tolerance to Gluten 

IL-15 inhibits regulatory T-cells (TREG) [14,35] and the immunoregolatory transforming growth 

factor (TGF) signalling, moreover it also interferes with suppressive activity of CD4+ CD25+ FOXP3+ 

regulatory T cells expanded in celiac intestinal mucosa [35–37]. These data provide a rational for the 

loss of intestinal tolerance to gluten. In a transgenic mouse that expresses the human HLA class II 

molecule DQ8 and IL-15 in the lamina propria and not in the epithelium, gliadin and retinoic acid 
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treatment can reproduce an early stage of CD with interferon (INF) γ producing anti-gliadin TC, anti-gliadin 

and anti-tissue transglutaminase antibodies and intraepithelial lymphocytosis in the absence of villous 

atrophy [38]. In conclusion IL-15 in the lamina propria can be responsible for the loss of oral tolerance 

to gluten in CD. 

2.1.3. Role of IL-15 in the Damage of the Enterocyte in the CD Intestine 

IL-15 stimulates the effector functions of intestinal epithelial lymphocytes (IEL) in active  

celiac disease with the production of γ-INF and perforin-granzyme-dependent cytotoxicity against  

the enterocytes [16,33]. 

In fact, the IL-15 in the intestinal mucosa of celiac disease up-regulates the expression in IEL of two 

receptors (CD94 and NKG2D) and in the enterocytes of their ligands (MICA and HLAE), resulting  

in apoptosis [16,29,39,40]. 

Transgenic mice that express human IL-15 specifically in the enterocytes develop villous  

atrophy, crypt proliferation and severe duodenal-jejunal inflammation with massive accumulation of  

NKG2D-expressing CD8+ intraepithelial lymphocytes in the affected mucosa, reproducing the 

intraepithelial inflammation and damage typical of CD in a gluten-independent way. The blockage of 

IL-15 signaling with antibodies leads to a reversal of the intestinal damage [41]. These mice also display 

autoantibodies, including antibodies against tTG2, and extensive lamina propria plasmacytosis, features 

that are characteristic of CD, suggesting that epithelial expression of IL-15 drives both the CD8+ TC 

and B cell pathologic effects seen in CD [42]. 

IL-15 is therefore a major mediator of the stress and innate immune response to gliadin peptides  

(e.g., P31–43) and a central regulator of celiac disease immunopathology. For a recent review on this 

subject see the publication of Abadie and Jabrì [43]. 

Although in the past it was suggested that gliadin peptides could promote IL-15 expression by IEC 

(Intestinal Epithelial Cells) [15], the mechanisms responsible for triggering IL-15 up-regulation in CD 

have not been well defined [43]. More recently some reports, which we will review in this paper, have 

begun to unveil a possible mechanism of IL-15 activation by gliadin peptides in enterocytes. 

2.2. Role of P31–43 in Enterocyte Proliferation, Structural Changes and Innate Immune Response in 

CD Mucosa: EGF and IL-15 

Damage to the intestinal mucosa in CD is mediated both by inflammation due to the adaptive and 

innate immune response to gliadin and by proliferation of crypt enterocytes as an early alteration of CD 

mucosa causing crypt hyperplasia [2–4]. The celiac intestine is characterized by an inversion of the 

differentiation/proliferation program of the tissue, with a reduction in the differentiated compartment, up to 

complete villous atrophy, and an increase in the proliferative compartment with crypt hyperplasia [18,44,45]. 

Gliadin peptides and P31–43 induce cell proliferation and actin rearrangements [8,17] in various cell 

lines, mimicking the effect of EGF [17]. Gliadin peptides enhance the EGF pathway by increasing EGFR 

and ERK phosphorylation with consequent actin remodeling and proliferation. The activation of the 

EGFR pathway is a consequence of delayed endocytosis and delayed inactivation of the EGF receptor 

(see mechanisms paragraph) [17,46,47]. 
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P31–43 is also able to enhance proliferation of the celiac enterocytes in an EGF-dependent way and 

to delay the trafficking and degradation of EGFR at the epithelial level, suggesting a role for EGFR 

activation in CD, particularly in determining crypt hyperplasia and the tissue remodeling of the celiac 

intestine. Persistent epithelial cell proliferation leads to inhibited maturation and differentiation of 

epithelial cells and loss of the normal villous structure [17]. Gliadin peptide- and P31–43-induced 

proliferation of CD crypt enterocytes (and Caco2 cells) is dependent not only on EGFR but also on IL-15 

activity, as demonstrated by the inhibitory effect of antibodies neutralizing EGFR and IL-15 and by 

silencing experiments [8,48]. 

In particular, in Caco2 cells, proliferation can be induced by both IL-15 and EGF and is dependent 

on interplay between EGFR and IL-15R-α. The cooperation is mediated by a complex between  

IL-15R-α and EGFR which is increased and activated by each ligand. The signaling, beginning with the 

complex of the two receptors can be activated by EGF and IL-15, with each of them able to stimulate its 

own and the other receptor. Moreover, both EGF and IL-15 can induce transcriptional activation of each 

other. P31–43, which induces enterocyte proliferation and the activation of IL-15 in CD, increases the 

complex, the activation and the downstream signaling of both receptors together with the transcripts of 

both ligands. These data show that the proliferation of enterocytes can be regulated by interplay between 

growth factors (EGF) and cytokines (IL-15) and that P31–43 can stimulate growth and the innate 

immune response by employing such cooperation [8]. 

2.3. Mechanisms of IL-15 and EGF Up-Regulation in CD Induced by P31–43: Role of  

Vesicular Trafficking 

The mechanisms through which P31–43 might induce the celiac intestine innate immune response 

and EGF- and IL-15-mediated enterocyte proliferation have recently been investigated. Recent  

evidence [17,47,48] points to an effect of P31–43 on the endocytic compartment. 

Endocytosis has many effects on signaling; in fact, signaling pathways and endocytic pathways  

are regulated in a reciprocal manner. It is now widely accepted that the “endocytic matrix” is a  

master organizer of signaling, governing the resolution of signaling in space and time. Consequently, 

endocytosis affects several cell functions, ranging from proliferation to actin organization, cell motility 

and stress/innate immunity activation [49,50] (Figure 3a,b). 

P31–43 is strikingly similar to a region of hepatocyte growth factor regulated substrate (HRS) kinase, 

a key molecule regulating endocytic maturation, which is localized on the membranes of early endocytic 

vesicles [51] (Figure 3b). 

The sequence similarity between gliadin peptide P31–43 and HRS is in a small area of the 

proline/glutamine rich domain of HRS. The COOH- terminal of HRS contains a clathrin-binding domain 

that binds clathrin to clathrin-coated vesicles [52] and is one of the domains needed to localize HRS to 

the vesicle membranes [53–56]. Both in Caco2 cells and in the celiac enterocytes, P31–43 localizes in 

the early endosome and delays vesicular trafficking. 
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Figure 3. (a) Schematic representation of receptor-mediated endocytosis. Trafficking of  

IL-15R-α, EGFR and transferrin in normal cells. The ligands bind to their receptors on the 

cell surface. The ligand/receptor complexes are internalized by a process of endocytosis and 

enter into vesicles “early”. The protein hepatocyte growth factor regulated substrate (HRS) 

regulates the maturation of endosomes from early to late. If HRS is not properly localized 

on the membrane of early endosomes, vesicular trafficking is altered. IL-15 and transferrin 

entering the compartment vesicular recycling are transported to the cell membrane. Receptor 

tyrosine kinases, such as EGFR, are only partially recycled because their principal destiny 

is to be transported in the late vesicular compartments to be degraded in lysosomes. When 

these receptors are in the early compartment, they can still signal within the cell. These 

transport phenomena within the cell regulate the duration of the activation of the receptors 

regulating processes essential for cell function, such as activation of innate immunity, cell 

proliferation, regulation of the actin cytoskeleton, motility and permeability. Alterations in 

the maturation of endosomes may therefore impair the functionality of the cell in many 

different ways; and (b) Effect of P31–43 on vesicular trafficking of IL-15R-α, EGFR and 

transferrin within the cells. The peptide P31–43, due to a sequence homology with HRS, 

interferes with its correct localization at the level of early endosomes, with a consequent 

slowing of the maturation of endosomes from early to late, prolonged activation of EGFR, 

and an increase of transferrin on the cellular membrane and trans-presented IL-15. The main 

biological consequences at the level of enterocytes of the altered trafficking of these 

receptors are: Increased proliferation, an alteration in permeability, alterations in the 

cytoskeleton and cell shape, and an increase in the innate immune response. 
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Figure 3. Cont. 

 

In Caco2 cells, P31–43 interferes with the correct localization of HRS at the level of the early 

endosomes, interfering with HRS-mediated maturation of early endosomes. By interfering with the 

localization to the endocytic membrane of HRS, P31–43 induces two important effects: (a) it delays 

endocytic maturation and (b) it alters the recycling pathway. By delaying the maturation of endocytic 

vesicles, P31–43 reduces the degradation of EGFR and other receptor tyrosine kinases (RTKs) that are 

endocytosed in these vesicles, and prolongs their activation, resulting in increased proliferation, actin 

remodeling and other biological effects. The alteration of the recycling pathway is able to direct more 

transferrin receptor [48] and IL-15R-α to the cell surface, allowing more IL-15/IL-15R-α trans-presentation 

in epithelial cells. Moreover, the trans-presented IL-15 is able to activate IEL in vitro in an  

IL-15-dependent way, demonstrating that the effects of P31–43 on enterocytes can activate signaling  

in lymphocytes. Interestingly, more IL-15R-α is expressed in CD enterocytes and in patients on a  

gluten-free diet [31], indicating that in the CD mucosa, a constitutive alteration of IL-15R-α trafficking 

could be present (see below). 

The production of IL-15 is tightly controlled at multiple levels, not only at the level of intracellular 

trafficking but also of transcription and translation [43]. P31–43 increased IL-15 mRNA levels only after 

prolonged incubation, whereas the increase of the trans-presented IL-15/IL-15R-α complex on the cell 

surface was an early effect [48]. 

By increasing the synthesis of IL-15 and the amount of the cytokine that is trans-presented to the 

neighboring cells, P31–43 affects both enterocyte proliferation, which is EGFR-IL-15 dependent, and 

the activation of innate immunity [48]. 
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We would like now to review the hypothesis that the effects of gliadin and P31–43 on endocytosis, a 

pathway nodal to many cell functions, could explain the sensitivity to gluten of CD cells. 

2.4. Constitutive Alterations in CD Cells 

Recent observations suggest an effect of P31–43 on the maturation and function of early endocytic 

vesicles and consequently on EGFR signaling, enterocyte proliferation and IL-15 trans-presentation and 

synthesis [17,46–48,51]. However, the explanation for why the stress/innate immune and proliferative 

responses to certain gliadin peptides (e.g., P31–43) in the CD intestine are so intense and disruptive has 

not been elucidated. For this reason, it is interesting to review the recent literature regarding constitutive 

alterations in CD biopsies and cells. Several reports note constitutive, gluten-independent alterations of 

the CD cells. They have been studied in the normalized intestinal biopsies of patients in the remission 

phase of the disease on a gluten-free diet and in cells obtained from tissues far away from the intestine, 

the primary site of inflammation (Figure 4). 

2.4.1. Structural Alterations 

Different studies have identified the importance of the disruption of the integrity of the epithelial 

layer in CD. One of the first structural alterations identified is the alteration of the cell-to-cell junctional 

complexes that regulate intestinal permeability. Patients show enhanced intestinal permeability and 

altered tight junction (TJ) morphology, and these disruptions persist in patients who are on a gluten-free 

diet (GFD) with a normalized intestine, suggesting that permeability may play a driving role in the 

development of CD [57–61]. Moreover, epithelium integrity is impaired in the early stage of the disease [62]. 

Polymorphisms in the TJ genes PARD3 and MAGI2 have been associated with disease susceptibility in 

a Dutch cohort [63]. Interestingly, PPP2R3A, implicated in the negative control of cell growth, division 

and TJ regulation, remains down-regulated at the intestinal level in patients on a gluten-free diet [64]. 

These observations suggest a role for this pathway in the pathogenesis of CD. 

Recent genetic studies point to the importance of polymorphisms of CD genes that are involved in 

actin remodeling and cell adhesion. Among these, the LPP gene presents the strongest non-HLA 

association signal, mapped in intron 2 [65]. More recently, it has been suggested that deregulation of 

transcription binding properties, due to single point mutations, might be the causal mechanism 

underlying the association of CD with the LPP region [66]. The LPP protein localizes to focal adhesions, 

which are the site of membrane attachment to the extracellular matrix and cell-cell contact [67].  

A constitutive alteration of LPP sub-cellular distribution together with alterations of cell shape, actin 

cytoskeleton and focal adhesion has been demonstrated in CD fibroblasts from GFD patients [68]. 

Moreover, cell shape and actin rearrangements are altered in CD dendritic cells from GFD patients. 

Taken together, these data indicate that structural alterations are present in CD cells independent  

of gluten. 
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Figure 4. Constitutive alterations in cells and biopsies from CD patients. Schematic 

representation of constitutive alterations of CD cells and biopsies. These alterations have 

been described in gluten-free diet (GFD) CD patient cells and biopsies. The main 

constitutive alterations found in GFD CD cells and biopsies were grouped in three sets: 

Structural alterations (permeability, actin modifications, adhesion), signaling/proliferation 

(EGF/EGFR activation, NF-κB, pY-ERK) and stress/innate immunity activation as shown. 

In all cases there was a quantitative increase in the markers cited, although in the case of 

actin, the alterations were qualitative. Numbers indicate the bibliographic references. 

 

2.4.2. Signaling and Proliferation 

Alterations in signaling pathways and cell proliferation have been demonstrated in CD biopsies and 

cells (enterocytes, skin fibroblasts, dendritic/monocytes) of patients on a GFD. 

NF-κB Pathway 

The NF-κB pathway is constitutively altered in CD, with more than 20 components of the pathway 

increased in GFD-CD biopsies. Most of the mRNA over expressed in GFD-CD was central to the 

regulation of the pathway [69]. Interestingly, two key mediators of the NF-κB pathway, TNFAIP3, have 

CD-associated gene variants [70]. It is widely accepted that NF-κB is a key regulator of inducible  

gene expression in the immune system. Both innate and adaptive immune responses, as well as the 

development and maintenance of the cells and organs that comprise the immune system are, at multiple 

stages, under the control of the NF-κB family of transcription factors. Moreover, NF-κB is responsible 

for the transcription of genes encoding a number of pro-inflammatory cytokines and chemokines [71]. 

It has also been shown that NF-κB is a major mediator of IL-15 [72], which, among its many pleiotropic 
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effects, is also able to decrease claudin-2 levels in epithelial tight junction structures and leads to 

augmented paracellular permeability, a phenomenon that is relevant and persistent in CD. 

EGF Receptor/Ligand System 

Constitutive activation of the EGF receptor/ligand system is also present in CD enterocytes [18]. 

Increases in EGFR protein levels, EGF mRNA, the downstream effector molecule ERK and 

proliferation, which is ERK-dependent, have been found in enterocytes from normal biopsies of  

GFD-CD patients [73]. 

2.4.3. Stress/Innate Immunity Activation 

Cellular Stress 

Cellular stress has been implicated in the early events of the disease, in particular in the epithelium [13,14]. 

Heat Shock Protein-65 (HSP-65) is increased in CD enterocytes before they develop the disease, 

indicating that epithelial stress may play a role in the pathogenesis of CD [74]. An alteration of this 

pathway was confirmed later with the observation that HSP-72 increased [75]. More recently, a marker 

of endoplasmic reticulum (ER) cellular stress, the molecular chaperone glucose regulate protein 78 

(GRP78), the master negative regulator of the unfolded protein response (UPR), was found increased in 

enterocytes with moderate and severe enteropathy and after at least two years on a gluten-free diet. 

Remarkably, the increased peri-nuclear GRP78 aggregates co-localize with increased MICA/B+ in CD 

enterocytes, linking cellular stress and innate immunity in CD [76]. 

IL-15/IL-15R-α 

IL-15 is elevated in intestinal biopsies from CD patients on GFD [43]. In dendritic cells from CD patients 

at all stages of the disease, more IL-15 has been found in the cell membranes, indicating that this key 

mediator of the immune response is constitutively altered in [77]. In CD patients at GFD, the IL-15R-α 

receptor has been observed at higher levels in intestinal biopsies [31]. 

In conclusion, the data in the literature point to several constitutive alterations of cell structure, 

signaling, proliferation and stress/innate immunity in CD cells (Figure 4). These pathways, already 

constitutively altered in celiac cells, render them more susceptible to the effects of the gliadin peptides 

that can act on the same pathways. These same three sets of metabolic pathways can be triggered in 

normal cells by P31–43, which mimics the celiac cellular phenotype in controls, as we will discuss in 

the next paragraph. 

2.5. Celiac Cellular Phenotype Induced by Gliadin/P31–43 in Control Cells and Biopsies 

Several reports in the literature introduced the concept that gliadin may not be safe for non-celiac 

individuals (Figure 5). 
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2.5.1. Structural Alterations 

In the 1980s, it was reported that gluten could induce small intestinal mucosal structural alteration and 

symptoms in normal subjects, suggesting that gliadin may not be safe for non-celiac subjects [78,79]. 

More recently, we have demonstrated that the peptide P31–43 reproduces the structural alterations of 

the celiac cells in several cell types. These include actin modifications and cell shape alterations [17,80]. 

Remarkably, P31–43 could induce in control fibroblasts cell shape and actin modifications with 

alterations of focal adhesion and adhesion similar to the constitutive alterations described in celiac 

fibroblasts [68]. Moreover, in dendritic cells from control subjects, P31–43 can induce alterations of cell 

shape and motility [81] that mimic the alterations of cell shape and actin constitutively present in celiac 

dendritic cells [82]. 

Figure 5. Celiac cellular phenotype induced by gliadin/P31–43 in control cells and biopsies. 

Schematic representation of the effects of gliadin peptide P31–43 on cells and biopsies from 

normal subjects. The main effects were grouped in three sets: structural alterations  

(actin modifications, cell shape, adhesion and cell migration), signaling/proliferation (NF-κB, 

pY-Fak, pY-paxillin, pY-ERK) and stress/innate immunity activation. In all cases, there was 

a quantitative increase in the markers cited, although in the case of actin, the alterations were 

qualitative. Numbers indicate the bibliographic references. 

 

2.5.2. Cell Signaling and Proliferation 

Exposure of the intestine of normal subjects to gliadin may cause the overall deregulation of  

NF-κB-related gene expression similar to the alteration of the pathway augmented in the CD intestine with 

and without gliadin treatment, although these alterations are more evident in the CD intestine [69]. 

Moreover, treatment with P31–43 can transiently increase EGFR staining of normal intestinal 

biopsies [83]. After treatment with P31–43, in fibroblasts and dendritic cells of normal subjects, many 
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reports show an increase of several signaling pathways, including mitogen-activated protein kinase 

(MAPK) [8], ERK and other kinases similar to those constitutively altered in CD cells [17,68]. 

2.5.3. Stress/Innate Immunity Activation 

IL-15, the main mediator of the innate immunity response to gliadin in the celiac intestine, can be 

induced in intestinal biopsies of normal subjects by gliadin [84], confirming that gliadin is able to 

activate the same pathways found in celiac lesions in normal subjects. In control dendritic cells,  

gliadin can activate several cytokines and the inflammasome pathway [24,85]. Remarkably, P31–43 is 

able to increase IL-15 on the dendritic cell surface of normal subjects, mimicking the celiac dendritic 

cell phenotype [82]. 

Thus, gliadin is an activator of various signals at the cellular level mimicking the constitutive 

alterations found in celiac cells and intestinal biopsies. These pathways, constitutively altered in celiac 

cells, render them more susceptible to the effects of the gliadin peptides that, acting on the same 

pathways but in the celiac background, are able to produce long-term damage, including structural 

alterations, over-proliferation of crypt enterocytes and stress/innate immune response activation. 

3. Conclusions 

In the general issue of food and tissue inflammation, gliadin and its undigested peptides plays a 

leading role. In this paper, we have reviewed most of the effects of the gliadin peptide P31–43 in 

intestinal biopsies and cells from normal subjects and CD patients at different stages of the disease.  

We have highlighted the effects of an alimentary peptide, contained in very common foods, that is 

biologically active on cell structure, signaling/proliferation pathways and stress/innate immune 

activation. These are also constitutively altered in celiac cells and biopsies, rendering them more 

sensitive to the effects of gliadin. 

What remains to be understood is the molecular defect explaining the alterations of the celiac cells, 

most likely due to a particular genetic make-up. 

Gluten and other wheat proteins can induce inflammation in the intestine and outside. This also may 

occur in non-celiac subjects; i.e., a particular fraction of wheat albumin, able to inhibit amylase and 

trypsin, can cause Toll-like receptor 4 (TLR4)-mediated intestinal inflammation [86]. 

Gluten itself could play a role in the pathogenesis of diseases different from CD, such as type 1 

diabetes. In children with insulin-dependent diabetes but not celiac disease, intestinal inflammation [87,88] 

is triggered by viral infections and alimentary proteins [89]. In particular, signs of an altered mucosal 

immune response to gliadin have been described in type 1 diabetes both by challenging the rectum with 

gliadin peptides in vivo [90], and the proximal small intestine in vitro [91]. 

In conclusion, gliadin and its undigested peptides have biological effects not only in cells and the 

intestinal mucosa of patients with CD but also in normal subjects or in different diseases. How these 

effects can affect the health of non-celiac subjects will be the object of future research. 
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