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Objective: This study aims to differentiate preoperative Borrmann type IV gastric cancer
(GC) from primary gastric lymphoma (PGL) by transfer learning radiomics nomogram
(TLRN) with whole slide images of GC as source domain data.

Materials and Methods: This study retrospectively enrolled 438 patients with
histopathologic diagnoses of Borrmann type IV GC and PGL. They received CT
examinations from three hospitals. Quantitative transfer learning features were extracted
by the proposed transfer learning radiopathomic network and used to construct transfer
learning radiomics signatures (TLRS). A TLRN, which integrates TLRS, clinical factors, and
CT subjective findings, was developed by multivariate logistic regression. The diagnostic
TLRN performance was assessed by clinical usefulness in the independent validation set.

Results: The TLRN was built by TLRS and a high enhanced serosa sign, which showed
good agreement by the calibration curve. The TLRN performance was superior to the
clinical model and TLRS. Its areas under the curve (AUC) were 0.958 (95% confidence
interval [CI], 0.883–0.991), 0.867 (95% CI, 0.794–0.922), and 0.921 (95% CI, 0.860–
0.960) in the internal and two external validation cohorts, respectively. Decision curve
analysis (DCA) showed that the TLRN was better than any other model. TLRN has
potential generalization ability, as shown in the stratification analysis.

Conclusions: The proposed TLRN based on gastric WSIs may help preoperatively
differentiate PGL from Borrmann type IV GC.Borrmann type IV gastric cancer, primary
gastric lymphoma, transfer learning, whole slide image, deep learning.

Keywords: Borrmann type IV gastric cancer, primary gastric lymphoma, transfer learning, whole slide image,
deep learning
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INTRODUCTION

Gastric cancer (GC) and primary gastric lymphoma (PGL) are
the two most commonly encountered gastric malignancies (1),
whose treatment strategies are different (2). Surgical resection
remains the main treatment option for GC, especially for patients
who may be cured by radical resection. However, the best PGL
treatment options are chemotherapy or radiotherapy. Therefore,
accurate GC and PGL differentiation before treatment is critical
to choosing treatment options to avoid unnecessary surgery in
patients with PGL.

Endoscopy biopsies are generally used to diagnose Borrmann
type IV GC and PGL because of their high sensitivity. However,
previous studies showed that biopsy testing might not accurately
locate lesions, leading to high false-negative rates (3–5).
Moreover, the biopsy is an invasive procedure that may
increase potential perforation risk (4).

Noninvasive computed tomography (CT), widely used for
differential and preoperative diagnoses, therapeutic evaluation,
and staging in patients with gastric malignancies, can help find
tumor lesions (5, 6). Studies have shown that CT subjective
findings (e.g., gastric wall thickness and enhancement pattern)
play an important role in diagnosing gastric malignancies (7).
However, distinguishing Borrmann type IV GC and PGL in
lesion distribution, irregular gastric wall thickness and
enhancement pattern, and so on is difficult with CT (8). Thus,
an effective method is needed to differentiate Borrmann type IV
GC and PGL.

Convolutional neural networks (CNN) and other deep
learning models have shown great potential in medical imaging
(e.g., bladder cancer treatment (9), preoperative meningioma
grading (10), individual induction chemotherapy in advanced
nasopharyngeal carcinoma (11), and so on). CNN can
increasingly learn high-order features from images of large
neural networks and extract valuable features to the desired
outputs (12). However, the training dataset size is crucial to
building a robust deep learning model. Obtaining a large number
of medical images is difficult in clinical practice (13). Thus,
developing a method to improve the deep learning model’s
performance for the small dataset is necessary.

The use of transfer learning is ubiquitous to ameliorate the
dataset effect (14). Transfer learning (TL) improves model
performance in target tasks by transferring features from
source tasks that have already been learned (15, 16). Moreover,
TL has been gradually applied in recent years to many medical
image analytical fields (e.g., image segmentation, lesion
localization, and lesion pattern recognition) (17, 18). However,
a key factor in the performance of TL strategy is the similarity
between the source and target domain dataset (19, 20). From the
present strategies studied, using the natural image datasets (e.g.,
Abbreviations: GC, gastric cancer; PGL, primary gastric lymphoma; CT,
computed tomography; WSIs, whole slide images; AUC, areas under the curve;
CI, confidence interval; DCA, decision curve analysis; ROI, region of interest;
ROC, decision curve analysis; PPV, positive predictive value; NPV, negative
predictive value; TLRS, transfer learning radiomics signature; TLRPN, transfer
learning radiopathomic network; LASSO, least absolute shrinkage and selection
operator; TLRN, transfer learning radiomics nomogram; CM, clinical model.
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ImageNet dataset) as the source domain dataset for pretraining
in transfer learning-based methods is common (21). However,
natural images showed a weak correlation with medical images,
which may decrease model performance or even cause a negative
transformation (20). Medical gastric images (e.g., gastroscopic
images, CT images, and whole slide images (WSIs), and so on),
which contained different information and reflected the tumor
information of local lesions from a different level, could be more
relevant to the task. Thus, this study developed a TL model, pre-
trained with the WSIs of GC as the source domain dataset, and
fine-tuned the model on CT images. The TL model, combining
macroscopical and microcosmic information of tumors, might
provide prospects for constructing a more powerful model to
distinguish between Borrmann type IV GC and PGL.

This retrospective study aims to design a reliable model that
takes advantage of the more combined potential information to
differentiate Borrmann type IV GC and PGL preoperatively. This
tool will help identify patients that need active treatment.
MATERIALS AND METHODS

Patients
Internal Dataset
The hospital’s institutional review board approved this
retrospective study and waived informed consent. The basic
inclusion and exclusion criteria for the training and validation
sets are shown in Supplementary A1. Moreover, 184 patients
pathologically diagnosed as Borrmann type IV GC and PGL were
divided into the training (n = 110, January 2017–March 2018)
and internal validation (n = 74, April 2018–December 2019)
cohorts in a 6:4 ratio.

External Dataset
Data from patients with pathologically proven Borrmann type IV GC
or PGL, who had undergone CT from two other independent
institutions (the First Affiliated Hospital of Sun Yat-sen University
[n = 123] and Meizhou People’s Hospital [n = 131]), were also
approved by the institutional research ethics board where the data
originated. The exclusion criteria were similar to the internal dataset.

The Pathological Dataset
The pathological dataset, which contained 1,730 WSIs of gastric
cancer from the Mars Data Science Platform (https://www.
marsbigdata.com/), was used as the source domain of TL.
Figure 1 shows the design flow chart of this paper.

Pathological And CT Subjective
Findings Evaluation
All the surgical or biopsy specimens of the patients were taken in
3-mm serial sections and stained with hematoxylin and eosin.
Two pathologists evaluated the specimens (pathologists 1 and 2
with 10 and 15 years of experience, respectively, in the
pathological diagnosis of GC and PGL). The Borrmann
classification was confirmed by the GC Japanese classification
(22). The PGL diagnosis was assessed by the fourth edition of the
WHO Classification of Tumors of Haematopoietic and
January 2022 | Volume 11 | Article 802205
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Lymphoid tissues (23). Two radiologists (readers 1 and 2 with 10
and 15 years, respectively, of experience reviewing abdominal CT
images) were blinded to the clinical information and
histopathologic diagnosis. A consensus was reached by
discussion in case of disagreement. Supplementary A2 shows
the CT subjective findings evaluation in detail.

Images Acquisition And Segmentation
All of the patients fasted for at least 5 h and were encouraged to
drink 600–1,000 mL of water 30 min before CT examination. All
CT scans were performed with the patient in the supine position
Frontiers in Oncology | www.frontiersin.org 3
with the entire abdominal area under deep breathing.
Supplementary A3 shows the details of the CT protocol.

For the arterial and portal venous contrast-enhanced CT images
on the axial plane, the region of interest (ROI) for the Borrmann type
IV GC and PGL refers to their tumor lesion areas for quantitative
analysis. Supplementary A4 shows the pretreatment images.

TL Radiopathomic Network And Signature
Construction
TL (14–18) migrates a network trained on a large dataset to a
different related task and avoids overfitting problems caused by
A

B

D

C

FIGURE 1 | The design flow chart of this paper. (A) Acquisition of ROI images for Borrmann type IV GC and PGL. (B) The ROI features extraction by Densenet121.
(C) Transfer learning features selection process and model building, statistical analysis of clinical characteristics, and CT subjective findings. (D) Performance
evaluation of the transfer learning radiomics nomogram. GC, gastric cancer; PGL, primary gastric lymphoma; ROI, region of interest.
January 2022 | Volume 11 | Article 802205
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insufficient training data in regular deep learning. This study
proposed a transfer learning radiopathomic network (TLRPN),
which consisted of two parts (parts 1 and 2). Firstly, all
parameters of the DenseNet121 network were trained by the
WSIs of GC, and the parameters of the first 39 convolutional
layers were frozen (part 1). Secondly, part 2 included the other
convolutional layers trained by the dataset of CT images.
Moreover, the parameters of the other network layers were
fine-tuned because these become progressively more specific to
the subtle features. Figure 2 describes the proposed TL
framework. The experimental details are provided in the
Supplementary A5.

Based on the TLRPN, 11,264 transfer learning features were
extracted, and the classification layer was trained. The details of
TL feature extraction and selection are presented in
Supplementary A5. In the classification layer training step, the
least absolute shrinkage and selection operator (LASSO) logistic
regression was used to build the transfer learning radiomics
signature (TLRS), built by linearly combining the LASSO-
selected features with their corresponding coefficients. Finally,
the features with non-zero coefficients were considered valuable
predictors for predicting Borrmann type IV GC and PGL.

Visualization Of The Transfer Learning
Radiomics Signature
To further understand TLRS, the visualization algorithms were
used to display how the network learned the tumor features (24).
Generally, TLRS mainly visualizes the transfer learning features
learned by the convolutional layer and the output response of
each lesion corresponding to the convolutional layer. The
visualized TLRS process was developed in three steps. Firstly,
the ROI images were regarded as the TLRPN input. Secondly, the
filter visualization technique was used to visualize each
convolution filter response situation on these ROI images from
Frontiers in Oncology | www.frontiersin.org 4
the different lesion types. Finally, diagnostic feature maps were
visualized, which contributed to understanding the conventional
filters and enabling a quick educated diagnosis.

Development Of Transfer Learning
Radiomics Nomogram
The transfer learning radiomics nomogram (TLRN),
incorporating TLRS, clinical factors, and CT subjective
findings, was built with multivariable logistic regression
analysis by inputting variables found to be significant on
univariate analysis. The backward stepwise selection method
was used in which the likelihood ratio test of the Akaike
information criterion was regarded as the stopping criterion.

Independent Validation Of The TLRN
The area under the curve (AUC) of receiver operating characteristic
curve (ROC) with 95% confidence interval (95% CI), sensitivity,
specificity, accuracy, positive predictive value (PPV), and negative
predictive value (NPV) (25) were to evaluate the performance of
TLRN and the Delong test was used to compare different AUCs.
The highest Youden’s index on ROC curve of the training set was
regarded as optimal cut-off value, which used to differentiate the
patients’ groups of the Borrmann type IV GC and PGL. To estimate
the clinical usefulness of the TLRN, the decision curve analysis
(DCA) was performed with net benefits for threshold probabilities.

Statistical Analysis
The independent-samples t-test or the Mann–Whitney U-test
was used for continuous variables. The Fisher’s exact test or chi-
square test was used for categorical variables to assess the
differences in patient characteristics between the two groups.
All statistical analyses were two-tailed. A p value less than 0.05
was considered to be statistically significant. Supplementary A6
presents the statistical software.
FIGURE 2 | Illustration of the overall transfer learning framework of this study. The convolutional layer of the DenseNet121 model was taken out as the feature
extractor of this study.
January 2022 | Volume 11 | Article 802205
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RESULTS

Clinical Characteristics Analysis
And Model Building
The clinical characteristics of the patients in the sets are listed in
Table 1-1 and 1-2. There was significant difference in high enhanced
mucosal sign, high enhanced serosa sign, nodular or an irregular
outer layer of the gastric wall, and perigastric fat infiltration between
Frontiers in Oncology | www.frontiersin.org 5
Borrmann type IV GC and PGL in the training and validation sets
(all P < 0.05). In addition, they were all significantly different between
groups in the training and validation sets (all P < 0.05).

The clinical model (CM) incorporates four CT subjective
findings as multivariable logistic regression inputs. However,
high enhanced serosa sign, nodular or an irregular outer layer of
the gastric wall, and perigastric fat infiltration were selected as
independent predictors for CM. Table S1 shows the results.
TABLE 1-1 | Clinical characteristics of PGL and Borrmann type IV GC patients in the training and internal validation cohorts.

Characteristics Training cohort (n = 110) Internal validation cohort (n = 74)

PGL (n = 30) Borrmann type IV GC
(n = 80)

P value PGL (n = 25) Borrmann type IV GC
(n = 49)

P value

Gender
Male 15 51 0.190 16 31 0.950
Female 15 29 9 18
Age, years
(mean ± SD)

56.97 ± 12.16 59.24 ± 13.04 0.409 56.40 ± 10.69 62.82 ± 10.88 0.018*

High enhanced mucosal sign
Present 18 65 0.021* 13 37 0.041*
Absent 12 15 12 12
High enhanced serosa sign
Present 4 62 <0.001* 1 30 0.001*
Absent 26 18 24 19
Nodular or an irregular outer layer of the gastric wall
Present 10 63 <0.001* 9 38 <0.001*
Absent 20 17 16 11
Perigastric fat infiltration
Present 8 61 0.001* 9 34 0.006*
Absent 22 19 16 15
TL score: median (interquartile range) 1.425

(0.070 to 2.547)
−2.516

(−4.183 to −1.821)
<0.001* 0.068

(−1.038 to 1.840)
−2.657

(−3.982 to −1.233)
<0.001*
January
 2022 | Volume 11 | Article
TABLE 1-2 | Clinical characteristics of PGL and Borrmann type IV GC patients in the external validation cohorts 1 and 2.

Characteristics External validation cohort 1 (n = 123) External validation cohort 2 (n = 131)

PGL (n = 48) Borrmann type IV GC
(n = 75)

P value PGL (n = 50) Borrmann type IV GC
(n = 81)

P value

Gender
Male 29 46 0.919 28 57 0.094
Female 19 29 22 24
Age, years
(mean ± SD)

63.05 ± 10.81 64.23 ± 12.12 0.370 55.25 ± 11.37 61.81 ± 10.33 0.531

High enhanced mucosal sign
Present 25 36 0.659 29 40 0.337
Absent 23 39 21 41
High enhanced serosa sign
Present 7 26 0.014* 45 55 0.004*
Absent 41 49 5 26
Nodular or an irregular outer layer of the gastric wall
Present 28 49 0.434 15 67 <0.001*
Absent 20 26 35 14
Perigastric fat infiltration
Present 20 55 0.083 21 60 <0.001*
Absent 28 20 29 21
TL score: median (interquartile range) 0.017

(0.001 to 0.038)
−0.1754

(−0.998 to −0.053)
<0.001* −0.371

(−0.999 to −0.0261)
−0.023

(−0.060 to −0.001)
<0.001*

SD, standard deviation; PGL, primary gastric lymphoma; GC, gastric cancer; TL, transfer learning. *Statistically significant.
802205
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Diagnostic TLRs Performance
In total, 1,998 TL features significantly differed by Mann–
Whitney U-test between the Borrmann type IV GC and PGL
groups. Then, 100 TL features were obtained by applying the
criteria of minimum redundancy maximum relevance. Among
these, 10 TL features with non-zero coefficients were selected by
LASSO logistic regression, which were used to develop a TL score
calculation formula (Supplementary A7).

TLRN Construction And Validation
On multivariate analysis, high enhanced serosa sign (P = 0.026;
OR, 0.046; 95% CI, 0.003–0.697) and TL score (P < 0.001; OR,
0.462; 95% CI, 0.322–0.661) were identified as independent
indicators to TLRN building (Table S2). By incorporating
these independent factors, a combined model was constructed
and presented as a radiomics nomogram (Figure 4A). Using the
calibration curve, a marked connection between the predicted
and actual data in the training and validation cohorts was
confirmed (Figure 4B, C).

Method Evaluation And Comparison
Performance Comparison Between Transfer and
Nontransfer Learning
In this position, a nontransfer learning radiomics signature
(NTLRS), based on the DenseNet121 network, was developed.
The TLRS performance was analyzed based on the pathological
image of GC and NTLRS. In the internal validation and two
external cohorts, the under the curves (AUCs) of TLRS were
0.904 (95% CI, 0.814–0.961), 0.834 (95% CI, 0.756–0.895), and
0.894 (95% CI, 0.828–0.941), which were 0.076, 0.097, and 0.031
higher than the AUCs of NTLRS, respectively. The ROC curve is
shown in Figure S4A.

Performance Comparison Between TLRS and
Transfer Learning Based on Source Data 1:
ImageNet Dataset
A transfer learning signature was developed based on the
ImageNet datasets (named the TLRS-ImageNet) to analyze the
impact of source domain data for transfer learning. Figure S4B
showed the ROC curves of the prediction results for the two
models. For the results, AUCs of TLRS reached 0.904 (95% CI,
0.814–0.961), 0.834 (95% CI, 0.756–0.895), and 0.894 (95% CI,
0.828–0.941), which were significantly better than the TLRS-
ImageNet. Compared with the TLRS-ImageNet, these results
indicated that the TLRS made critical contributions to
improve accuracy.

Performance Comparison Between TLRS and
Transfer Learning Based on Source Data 2:
Pathological Images of the Lung
In addition, the transfer learning radiomics signature (named
TLRS-Lung), which was pre-trained by pathological images of
lung cancer from the TCGA, was developed. Compared with the
TLRS, the TLRS-Lung showed unsatisfying performances in
distinguishing between PGL and Borrmann type IV GC in the
internal cohort (AUC = 0.774), external validation cohort 1
Frontiers in Oncology | www.frontiersin.org 6
(AUC = 0.787), and external validation cohort 2 (AUC = 0.821).
Figure S4C shows the details of the result.

Performance Comparison Between VGG16, Extreme
Learning Machine, Hand-Crafted Radiomics
Signature, and TLRS
To comprehensively evaluate the TLRS performance, the TLRS
was compared with the other three methods: (1) the hand-crafted
radiomics signature (HCRS) was developed by the following
steps: ROI acquirement, feature extraction, feature selection, and
model construction (Supplementary A8); (2) the VGG16
network (26); and (3) the extreme learning machine (ELM).
The results showed that the TLRS indicated higher AUCs than
the other three methods. Table S3 shows the diagnostic
performance of the TLRS, HCRS VGG16, and ELM.

Performance Comparison Between CM,
TLRS, and TLRN
The diagnostic performance of CM, TLRS, and TLRN are
summarized in Table 2 and Figure 3. For the internal and two
external validation cohorts, CM showed lower AUC of 0.820
(95% CI, 0.718–0.921), 0.816 (95% CI, 0.736–0.880), and 0.866
(95% CI, 0.795–0.919), while the TLRN achieved the highest
AUC of 0.958 (95% CI, 0.883–0.991), 0.867 (95% CI, 0.794–
0.922), and 0.921 (95% CI, 0.860–0.961).

DCA indicated a higher net benefit for the TLRN in
differentiating the GC and PGL groups than the clinical model.
The threshold probability was within the range of 0.01 to
0.93 (Figure 4D).
DISCUSSION

The accurate and noninvasive PGL and Borrmann type IV GC
classification is of crucial importance in clinical practice.
Integrating lesion information on a more visual scale to
develop a more reliable and generalized method to differentiate
PGL and GC remains a challenging issue. This multicenter
retrospective study built a preoperative TLRN using WSIs of
GC and CT images with a transfer learning strategy to
differentiate patients with PGL and Borrmann type IV GC.
The proposed TLRN, combining useful lesion information
from WSIs and CT images by using transfer learning strategy,
showed better predictive performance in the internal validation
cohort (AUC = 0.958), external cohort 1 (AUC = 0.867), and
external cohort 2 (AUC = 0.921). The performance of the TLRN
model indicated a strong association between high-dimensional
CT and pathological images features. Therefore, the model
served as a novel tool to accurately identify patients with
Borrmann type IV GC and PGL and guide the treatment.

Subjective CT findings are the commonly used diagnostic and
differential bases, which reflect the pathological characteristics of
advanced GC and PGL to a certain extent. A high enhanced
serosa sign was an important risk factor incorporated into the
TLRN of the current study. Moreover, studies have shown that
high enhanced serosa sign was a useful important factor for GC
January 2022 | Volume 11 | Article 802205
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diagnosis (27). The high enhanced serosa sign by subjective CT
findings evaluation was perfect, demonstrating that it was a
robust subjective CT finding. In addition, the high enhanced
serosa sign may be related to scirrhous metastasis in GC. When
the GC tumor cells infiltrate all layers, it expands the mucosa,
submucosa, and serosa rather than the muscularis propria
because the muscle cells of muscularis propria are arranged
more closely. Therefore, in a contrast-enhanced scan, the
muscularis propria showed slightly low density due to poor
Frontiers in Oncology | www.frontiersin.org 7
enhancement. In contrast, the subserosal tissue and serosa
showed obvious enhancement due to tumor invasion,
expansion, and thickening, forming the high enhanced serosa
sign (27).

The PGL originated from the submucosa layer, mainly
diffusing infiltration growth. Moreover, tumor cell infiltration
in the muscularis propria is relatively homogeneous compared
with the other layers. The PGL density is then relatively
homogeneous on enhanced CT images. Thus, the high
TABLE 2 | Diagnostic performance of the HCR, CM, TLRS, and TLRN in the training and validation sets.

Model AUC(95% CI) Sensitive Specificity Accuracy PPV NPV

Training cohort CM 0.894
(0.827–0.960)

0.850 0.800 0.836 0.919 0.667

TLRS 0.986
(0.942–0.999)

0.975 0.967 0.973 0.987 0.936

TLRN 0.989
(0.947–1.000)

0.975 0.967 0.973 0.987 0.936

Internal validation cohort CM 0.820
(0.718–0.921)

0.720 0.796 0.770 0.936 0.667

TLRS 0.904
(0.814–0.961)

0.980 0.720 0.892 0.872 0.947

TLRN 0.958
(0.883–0.991)

0.857 0.960 0.891 0.976 0.774

External validation cohort 1 CM 0.816
(0.736–0.880)

0.827 0.687 0.772 0.805 0.717

TLRS 0.834
(0.756–0.895)

0.986 0.729 0.886 0.850 0.972

TLRN 0.867
(0.794–0.922)

0.987 0.729 0.886 0.851 0.972

External validation cohort 2 CM 0.866
(0.795–0.919)

0.926 0.640 0.817 0.807 0.842

TLRS 0.894 (0.828–0.941) 0.852 0.900 0.872 0.932 0.790
TLRN 0.921 (0.860–0.961) 0.926 0.820 0.886 0.893 0.872
Ja
nuary 2022 | Volum
e 11 | Article 8
AUC, area under curve; CI, confidence interval; CM, clinical model; TLRS, transfer learning radiomics signature; TLRN, transfer learning radiomics nomogram.
FIGURE 3 | The AUCs of three model. The clinical model, transfer learning radiomics signature based on the pathological image of gastric cancer (TLRS) and
transfer learning radiomics nomogram (TLRN).
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enhanced serosa sign rarely appears in PGL (28). However,
imaging data alone requires high diagnostic experience for
radiographers because doctors’ subjectivity is too strong, large
differences between observers exist, and subjective errors are also
inevitable. Therefore, a method to compensate for the lack of
clinical diagnostic methods and improve preoperative
differentiation of PGL and Borrmann type IV GC is
urgently needed.

This study used the deep learning method, based on TL, to
differentiate PGL and Borrmann type IV GC preoperatively.
Frontiers in Oncology | www.frontiersin.org 8
The different-source domain datasets, including the ImageNet
dataset, WSIs of the lung, and WSIs of GC, were analyzed. The
TLRS based on the pathological GC images had a better
performance than TLRS-ImageNet and TLRS-Lung in the
internal and two external validation cohorts. Compared with
the TLRS-Image, the TLRS had a better performance due to these
characteristics. First, the pathological GC images contained
pathological information from microscopic observation, and
they are in the similar medical images category with the CT
images of GC. The extraction features based on the pathological
A

B

D

C

FIGURE 4 | The performance of the transfer learning radiomics nomogram and curve analysis for the various models. (A) The TLRN is based on TLRS and CT
subjective findings. Calibration curves of the TLRN in the training cohort (B) and three validation cohorts (C). (D) Decision curve analysis for various models.
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GC images were more specific to the target task, which were
more relevant to the task. Moreover, the Wasserstein distance
(29), which provides a more meaningful notion of similarity for
probability distributions between the source and target domain
features, quantifies the correlation between the feature and the
model. The Wasserstein distances were calculated for the TLRS
and TLRS-ImageNet, which were named the W1 and W2. The
results indicated that the W1 was smaller than W2 (0.0433 vs.
0.1157), which manifested that the similarity between the source
and target domain features was higher for TLRS.

In addition, compared with the TLRS-ImageNet, the TLRS-Lung
demonstrated poor performance in the internal validation cohort
(AUC = 0.774), external validation cohort 1 (AUC = 0.787), and
external validation cohort 2 (AUC = 0.821) due to the following
characteristics. First, the features based on the pathological images
of the lung showed a weak correlation with features based on the CT
images of GC, which may not be of use to transfer to the target task
and even cause negative transformation. Second, although the
pathological image of the lung was also a medical image, the
results demonstrated that TL does not always result in better
performance. Extraction features based on the TLRS-Lung are not
easily transferred to the target task (e.g., from the pathological
images of the lung to the CT images of GC). The Wasserstein
distances were calculated for the TLRS-ImageNet and TLRS-Lung,
which were named the W2 and W3. The results indicated that the
W2 was smaller thanW3 (0.1157 vs. 0.2168), which manifested that
the similarity between the source and target domain features was
higher for the TLRS-ImageNet.

The results indicated that the source images similar to those
in the task might be important in the TL strategy. A similar study
showed that TL performance could improve significantly when
TL used a source dataset with different images but of the same
anatomy (19, 20). Furthermore, in order to verify the effect of
transfer learning based on WSIs of GC, some common model
Frontiers in Oncology | www.frontiersin.org 9
were developed and validated: (1) the classical convolutional
neural network—VGG16 network (26); (2) the residual neural
network (ResNet) (30). Compared to the deep learning without
TL, the results showed that the VGG16 and ResNet with WSIs of
GC as source domain data also have good performance in
different validation cohort (Table S4).

In addition, the current study further analyzed the correlation
between the features and models, including the TLRS, TLRS-
ImageNet, and TLRS-Lung. First, the CNN network visualization
algorithm displayed how the network learned the tumor-related
information, generating an attention map to identify areas of
importance. In the same two patient cases (one patient with
Borrman type IV GC and the other with PGL), two filters were
visualized (the first column in Figure 5A, named the positive and
negative filters, respectively) for the three models to explore the
association between TL features and lesion images. For the TLRS,
the positive filter had strong responses to patients with Borrman
type IV GC and weak responses to those with PGL. Similarly, the
negative filter had strong responses to patients with PGL and was
nearly shut down in patients with Borrman type IV GC
(Figure 5A). The current study visualized the TLRS-ImageNet
model (Figure 5B) and TLRS-Lung (Figure 5C) models for the
same patient cases compared with the TLRS. The results showed
that the response degree for the TLRS was stronger than the
other two models, and the high-response area was more focused
on the lesion.

The TLRN, built by incorporating TLRS, clinical factors, and CT
subjective findings, performed better than the other validation sets.
The result indicated that the method could mine more image
features valuable for diagnosing Borrmann type IV GC and PGL.
This study can extract features layer by layer because the TL model
consists of multiple layers of autonomous learning units. They
contain more lesion information, which is of great value in the
diagnosis of this paper. The current method does not need to mark
FIGURE 5 | Visualization of two patient samples for the three methods. (A) The TLRS-Gastric is based on the WSIs of GC. (B) The TLRS-ImageNet is based on
the ImageNet dataset. (C) The TLRS-Lung is based on the WSIs of the lung. The positive and negative filters for the three methods are in the first row. In the
second and third rows, the response heat map of the two patients’ negative and positive transfer learning features was noted. The red region represents a larger
weight, which shows that the model focuses on the area of the CT image. GC, gastric cancer; PGL, primary gastric lymphoma; TLRS, transfer learning
radiomics signature.
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the location of the lesion accurately, but only needs to take CT
images as input so that the relationship between the
microenvironment information around the lesion and the
attached tissues (lymphatic vessels, blood vessels, and so on) can
be well evaluated, which can better diagnose Borrmann type IV GC
and PGL.

This retrospective study has some limitations. First, the
selection of samples was biased when strict inclusion and
exclusion criteria were performed, affecting the model training.
Second, the TL features were extracted from all tumor lesion
slices. However, a single patient’s features were obtained by
averaging the features of all lesion images. The current study
was based on constructing a two-dimensional slice feature
model, and the performance of the three-dimensional features
remains to be further studied. Furthermore, the WSI and CT
samples are small. Although the current study results show that
TLRN has great potential to distinguish PGL and Borrmann type
IV GC, adding more samples for further research is necessary.
Finally, the TL features were only extracted from arterial and
venous phase CT images. However, images from other phases
(e.g., plain scan phase), may provide effective clinical guidance.
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