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Abstract: The effects of different drying methods, including sun-, oven-, and freeze-drying on
the changes in the antioxidant and anti-inflammatory activities of ginger (Zingiber officinale var.
Rubra) rhizome were studied. Sun-, oven-, and freeze-dried ginger showed a significant (p < 0.05)
increase in phenolic content by 1.79, 1.53, and 1.91-fold; flavonoid content increased by 6.06, 5.27,
and 4.90-fold; FRAP increased by 3.95, 3.51, and 3.15-fold; ABTS•+ scavenging activity increased
by 2.07, 1.72, and 1.61-fold; and DPPH• inhibition increased by 78%, 58%, and 56%, respectively.
Dried ginger also exhibited better inhibitory effects on the lipopolysaccharides-induced nitric oxide
production in murine macrophage RAW 264.7. The drying process demonstrated a positive effect on
the bioactivities of ginger. The sun-dried ginger exhibited the most potent antioxidant properties
with the best enhanced anti-inflammatory activity followed by the oven-dried ginger and lastly,
the freeze-dried ginger.
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1. Introduction

Ginger is the rhizome of the flowering plant, Zingiber officinale, a perennial herb from the family
Zingiberaceae that is widely used as food flavoring and also as a natural source of functional foods
and nutraceuticals. Traditionally, ginger is used as remedy in folk medicine to treat a wide range of
ailments, including nausea and vomiting, colds and flu symptoms, migraine and headaches, menstrual
periods, as well as muscular and rheumatic disorders [1,2]. The health-promoting behavior of ginger is
attributed to its rich and potent antioxidant phytochemicals. These phytochemicals have many health
benefits and contribute to the prevention of major oxidation-linked disease, such as cancer promotion,
arthritis, cognitive diseases, diabetes mellitus, and cardiovascular diseases, etc. [3].

In recent years, many reviews on ginger have reported its beneficial bioactivities such as its
antioxidant properties and anti-inflammatory action in biological systems [1,2,4,5]. Ginger has been
reported to protect humans from oxidative stress and inflammation related disorders [4]. Oxidative
stress is related to an imbalance between the production of free radicals and the antioxidant defense
system. Free radicals and their uncontrolled production initiate and propagate the oxidation chain
reactions and lead to inflammation development [6]. In inflammatory disorders, nitric oxide (NO) is
secreted excessively and overproduction of NO or prolonged inflammation result in the development
of disease. In the antioxidant defense system, enzymes (made in the body) and essential nutrients
(found in foods) deactivate these free radicals and help to decrease their harmful effects. The defense
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system also turns the free radicals into waste products that can be excreted by the body. Ginger,
a common herb-based functional food, has been reported for its potential protective benefits against
oxidation and inflammation related disorders [4,7].

Fresh ginger, has a high moisture content of 78.89% (United States Department of Agriculture
Nutrient Database Release 28) [8], and is classified as a highly perishable commodity. Ginger
with high moisture content is highly susceptible to spoilage through micro-organism growth and
moisture-mediated deteriorative reactions. Thus, drying ginger is a good post-harvest process that
extends its shelf life, whilst preserving its natural phytochemicals and enhancing its bioactivities [9].
Sun-, oven- and freeze-drying are the most common drying methods for food materials, and these
methods have their own particular characteristics. When water content is reduced to a low level,
growth of micro-organisms, enzymatic reactions and other detrimental changes are inhibited [9].
Oven-drying is often used because it lowers investment and operating costs, but the high temperature
applied results in inferior product quality [10]. Conversely, freeze-drying can help to maintain the
product’s quality attributes, such as nutrients, color, flavor with indistinguishable changes to the
original product, but it involves high production costs [11]. The sun-drying method has the advantage
simplicity and it is an economically affordable process. In addition, it has been recently hypothesized
that sun-drying, due to ultraviolet-B (UVB) rays may add the extra effect of vitamin D to the dried
samples [12]. The UVB from sunlight has also been reported to induce changes in the accumulation of
bioactive phytochemicals such as phenols and flavonoids, thus promoting better biological activities
for human health [13]. Open sun-drying of ginger [14,15] has been widely practiced in many urban
and rural areas of hot climate countries, probably because it is a cheaper method of drying even though
it has likely been used without the knowledge of the possible additional benefits of the sun rays.
Jayashree et al. [15] have reported that dried ginger obtained by sun-drying retained the maximum
essential oil and oleoresin content compared to those obtained by solar and convective air drying.

In Malaysia, ginger (Zingiber officinale) var. Rubra, known as Halia Bara is the most highly sought
and expensive ginger type used as a major herb, health food and in traditional medicine by the locals.
Due to its nutritive value and the presence of potent bioactive compounds, the use of this ginger
rhizome has increased drastically, resulting in an increase of 100% in market demand in the last 5
years (Food and Agriculture Organization) [16]. However, most of the ginger is used in its fresh form.
Hence, the present study investigated the effects of different drying methods on its phenolic and
flavonoid contents, reductive ability (FRAP), radical scavenging activity (ABTS•+ and DPPH•) and
anti-inflammatory behavior through the NO-inhibitory activity. Other studies on drying of similar
food products, such as Lamiaceae herbs [17] and green tea [18] have reported an increase in phenolic
contents and antioxidant properties. The aim of this study was to compare the basic sun-drying
method with equipment-based drying methods and to reveal its advantages.

2. Materials and Methods

2.1. Sample Preparation

Fresh rhizome of Halia Bara grown in the farm area of Tendong, Pasir Mas, Kelantan, Malaysia
was obtained during the period of December 2014 to January 2015. The matured gingers (at 8 months)
were sliced into thicknesses of less than 5mm and subjected to sun-, oven-, and freeze-drying. Fresh
ginger was used as control.

2.2. Drying Treatment and Sample Processing

Freeze-dried ginger was prepared by freezing at −30 ◦C in a freezer (Haier, Biomedical,
Malaysia), and then lyophilized in a freeze-dryer (Coolsafe Benchtop, Scanvac, Sweeden) for 3 days.
For oven-drying, ginger slices were spread on stainless steel trays (size 30 cm × 40 cm) and dried
in an oven (UM500, Memmert GmbH, Schwabach, Germany) at 60 ◦C for 4 days. For sun-drying,
ginger slices were spread out on a 70 cm diameter round rattan tray and dried under direct sunlight
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at temperatures between 28 and 44 ◦C, for 3 days with about 36 h of daylight. Mid-day temperature
reached up to 44 ◦C. The completely dried samples, which had 7–10% moisture content, were pulverized
separately using an electrical food blender (RT-02A, Taiwan). The powdered samples were packed in
air-tight containers and stored at 4 ◦C (Model SD-700, Protech, Malaysia) for extraction studies. Fresh
samples of ginger were crushed for subsequent analysis.

2.3. Extraction Procedures

Ginger samples of 10 g (fresh and dried) were extracted by ethanol at the ratio of 1:10 (10:100 mL)
in conical flasks. The flasks were shaken at 150 rpm to mix the samples with solvent in an incubator
(Wisecube WIS-30, Daihan Scientific, Korea) for 24 h at room temperature. After standing overnight,
the extracts were filtered through filter paper (Fioroni Grade 601) to separate the liquid. The residue
mass was then re-extracted with the same solvent to ensure complete extraction. The collected extract
was combined and evaporated to dryness at 40 ◦C to yield solid extract. The solid extract was weighed
to determine the yield of the soluble constituents using Equation (1):

Extract Yield% =
Weight of solid extract

Weight taken for extraction
× 100%. (1)

Five mg of solid extract was used for the antioxidant and anti-inflammatory activities analyses
where 1 mg/mL standard stock solutions in ethanol solvent were prepared and stored at 4 ◦C.

2.4. Determination of Phenolic Content

The assay was conducted following the Folin-Ciocalteau method [19]. Aliquots (100 µL) of ethanol
extracts were made up to 1 mL with distilled water. Then, 0.5 mL Folin-Ciocalteu reagent (diluted
1:1 with water, v/v) and 20% (w/v) sodium carbonate (2.5 mL) was added. The mixture was left at
room temperature for 40 min in the dark. Absorbance of the resulting blue color was measured at
725 nm using a spectrophotometer (Ultrospec 3100 pro, Amersham Biosciences, Piscataway, NJ, USA).
The results were expressed as milligram of gallic acid equivalents (GAE) per gram of dry extract.

2.5. Determination of Flavonoid Content

Flavonoid content was determined following the method described by Zhishen et al. [20]. Extract
solution (100 µL) was made up to 2 mL with distilled water. Then, 0.15 mL sodium nitrite (5%, w/v)
was added to the mixture. After 6 min incubation, 0.15 mL aluminium chloride (10%, w/v) was added
to the mixture. The mixture was allowed to stand for 6 min before 2 mL sodium hydroxide (4%, w/v)
was added and the total volume of the mixture was made up to 5 mL with distilled water. The solution
was vigorously mixed and allowed to stand in the dark for 15 min. Absorbance of the resulting
yellowish-orange color was measured at 510 nm. The results were expressed as milligram of rutin
equivalents (RE) per gram of dry extract.

2.6. Assessment of Antioxidant Activity

2.6.1. Ferric-Reducing Antioxidant Power (FRAP)

The antioxidant potential of ginger extract was determined using the FRAP assay described by
Pulido et al. [21]. A potential antioxidant reduces ferric ion (Fe3+) to the ferrous ion (Fe2+). The ferric
ion reagent consists of 20 mmol/L TPTZ (2,4,6-tripyridyl-s-triazine) in 40 mmol/L HCl, 20 mmol/L
FeCl3·6H2O and 300 mmol/L acetate buffer pH 3.6 in the ratio of 1:1:10. This 900 µL of FRAP reagent
was added to the 30 µL of sample extract and the mixture was made up to 1 mL with distilled water.
The mixture solution was vigorously shaken and the absorbance was measured at 593 nm after 30 min
of incubation. Methanol solutions of FeSO4·7H2O were prepared as standard curve between 10 to
100 µmol/L. Results were expressed as mmol Fe(II) equivalents per gram of dry extract.
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2.6.2. Radical Scavenging Activity on ABTS Radical Cation

The radical cation 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay was
based on the method of Re et al. [22]. The ABTS reagent was freshly prepared by mixing an oxidant
(2.45 mmol/L potassium persulfate) and 7 mmol/L ABTS stock solution and was incubated in the dark
for 12–16 h at 37 ◦C. The reaction produced a stable, dark blue-green radical solution. The solution then
was diluted with ethanol to an absorbance of 0.70 (±0.02) at 734 nm. Diluted ABTS•+ solution (0.9 mL)
was added to the 100 µL of extract sample and mixed uniformly and absorbance was measured at
734 nm after 30 min incubation. Trolox standards (final concentration 0–15 µmol/L) were used as an
antioxidant standard. Results were expressed as mmol of Trolox equivalents antioxidant capacity
(TEAC) per gram of dry extract.

2.6.3. Radical Scavenging Activity on DPPH Radical

The stable radical 1,1-diphenyl-2-picryl-hydrazyl (DPPH•) scavenging activity was determined
using the method proposed by Sowndhararajan et al. [23] by preparing DPPH solution (0.1 mmol/L) in
absolute ethanol. Ginger extracts at various concentrations was taken and the volume was adjusted
to 50 µL with methanol. Then, 950 µL of DPPH solution was added and allowed to react for 20 min
in a dark place. Absorbance of the sample was measured at 517 nm. IC50 values were determined
by plotting a graph of the percentage of inhibition against the concentration using linear regression
analysis. IC50 values represent the concentration needed to scavenge 50% of free radicals in a sample.
Antioxidants with higher scavenging abilities have lower IC50 values.

2.7. Assessment of Anti-inflammatory Activity

2.7.1. Cell Culture Experiment

The murine macrophage cell line RAW 264.7 were purchased from American Type Culture
Collection (Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin (P/S) at 37 ◦C in a 5% CO2

incubator. The tested samples were diluted with culture medium into different concentrations. Cell
viability was then evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay [24]. MTT assay was performed to examine cell viability to ensure that the ginger extracts
exhibited no cytotoxicity against RAW 264.7 cells at their effective concentrations.

2.7.2. Determination of Secreted NO Amounts

The concentration of NO in the medium was then determined by the Griess reaction using the
protocol reported in [24]. The amount of nitrite released, essentially the primary stable breakdown of
NO in the media, was calculated from the sodium nitrite (NaNO2) standard curve.

2.7.3. Inhibitory Effect on Lipopolysaccharide (LPS)-Induced Nitric Oxide (NO) Production

The capacity (%) of each ginger extract to inhibit the production of the inflammatory mediator
(NO) was calculated as follow:

NO inhibition(%) =
1−
(
Cginger+LPS − C−LPS

)
C+LPS − C−LPS

× 100%, (2)

where Cginger+LPS is the inflammatory mediator concentration (NO) of conditioned medium collected
from cell culture co-treated with ginger extract and 1 µg/mL of LPS. C-LPS is the concentration
of conditioned medium collected from cell culture only treated with DMEM media. C+LPS is the
concentration of conditioned medium collected from cell culture treated with LPS (1 µg/mL) without
any other intervention component.
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2.8. Statistical Analysis

Statistical analysis of the data was conducted using Minitab 16 statistical analysis software
(Minitab Inc., State College, PA, USA). Results were expressed as mean ± standard deviations (SD).
Differences among drying methods were tested by one way-ANOVA followed by Tukey’s test for mean
comparisons. p values less than 0.05 were considered significant.

3. Results and Discussion

3.1. Phenolic and Flavonoid Contents of Ginger Extracts

Table 1 shows the extract yield and phenolic and flavonoid content of fresh and dried gingers
prepared using different drying methods. The extractive value of dried ginger, which ranged from 8.21
to 9.87% is greater than that of the fresh ginger at 3.40%, and the highest value was from the sun-dried
ginger. According to Hossain et al. (2010), the drying process makes the tissue samples more brittle,
which in turn results in the breakdown of cell wall during milling, thus promoting the homogenization
steps in the extraction process. During the extraction, the broken cells liberate more extract compounds
into the solvents when they are shaken overnight. Shirsath et al. [25] have reported that dried samples
are also higher in porosity when the diffusion rate of solute and solvent extraction are enhanced and
result in higher extract yields than fresh sample.

Table 1. Ginger Halia Bara’s extraction yield and its phenolic and flavonoid content.

Drying Extract Yield
(%)

Phenolic Content
(mg GAE/g Dry Extract)

Flavonoid Content
(mg RE/g Dry Extract)

Fresh 3.40 ± 0.80 b 10.53 ± 0.21 d 96.5 ± 4.08 c

Sun-dried 9.87 ± 1.31 a 18.94 ± 0.29 b 584.8 ± 48.64 a

Oven-dried 8.21 ± 2.79 a 16.08 ± 0.52 c 508.2 ± 38.80 ab

Freeze-dried 9.50 ± 1.66 a 20.07 ± 0.52 a 473.2 ± 24.94 b

Values are mean (n = 3) ± standard deviation and different superscripts letters within the same column are
significantly different at p < 0.05.

The phenolic content, expressed as GAE, of sun-, oven-, and freeze-dried extracts of ginger
is significantly (p < 0.05) higher than fresh extract by 1.79, 1.53, and 1.91-fold, respectively, with
freeze-dried extracts being the highest. The high level of phenolic content in freeze-dried samples
might be due to the formation of ice crystals within the plant matrix during freezing, which may cause
greater disruption of the cell wall structure, allowing for accelerated liberation of cellular components
and accessibility of the solvent [26]. The flavonoid content of dried ginger extracts was also increased
by the sun-, oven-, and freeze-drying. The values increased significantly (p < 0.05) by 6.06, 5.27,
and 4.90-fold, respectively. Phenols and flavonoids are natural polyphenolics that may render their
effect via anti-oxidative action in biological systems, acting as scavengers of singlet oxygen, removing
free radicals, activating antioxidant enzymes and inhibiting oxidases [3].

3.2. Antioxidant Activity of Ginger Extracts

In FRAP assay, the Fe (III) reduction is often used as a measurement of electron donating activity,
which is a significant reflection of the antioxidant activity. In an antioxidative action, reducing agents
break free radical chains by donating a hydrogen atom to stabilize it [27]. Table 2 shows that the
antioxidant activities of reducing power (FRAP) improved in dried ginger. The reductive ability of sun-,
oven-, and freeze-dried ginger extracts increased significantly by 3.95, 3.51, and 3.15-fold, respectively,
when compared with the fresh extract. In accordance to our results, sun-dried extracts might contain
higher amounts of reductone, which could react with free radicals to stabilize and break the oxidation
chain [28].
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Table 2. Ginger Halia Bara’s antioxidant activities of FRAP, ABTS•+ and DPPH•.

Drying FRAP
(mmol Fe (II)/g Dry Extract)

ABTS•+
(mmol TEAC/g Dry Extract)

DPPH
IC50 µg/mL

Fresh 1021 ± 29.7 d 829 ± 44.0 c 65.82 ± 6.83 a

Sun-dried 4033 ± 29.9 a 1712 ± 1.7 a 14.69 ± 2.34 c

Oven-dried 3584 ± 61.1 b 1428 ± 51.8 b 27.97 ± 1.92 b

Freeze-dried 3219 ± 72.5 c 1336 ± 72.8 b 28.59 ± 0.83 b

Values are mean (n = 3) ± standard deviation and different superscripts letters within the same column are
significantly different at p < 0.05. FRAP = Ferric-Reducing Antioxidant Power, ABTS•+ = radical cation
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and DPPH• = radical 1,1-diphenyl-2-picryl-hydrazyl.

The antioxidant activity of ginger with regards to their ability to scavenge free radicals was also
determined. The formation of free radicals and other reactive oxygen species (ROS) is one of the main
reasons for the occurrence of degenerative diseases, including inflammation and others. Table 2 shows
the improvement in the ability of ginger extracts to scavenge ABTS radical cation and DPPH free
radical in dried samples. The radical scavenging activity on ABTS radical cation also increased in
the same manner as FRAP, where sun-, oven-, and freeze-drying respectively produced a 2.07, 1.72,
and 1.61-fold increase. For DPPH radical, dried ginger extracts exhibited lower IC50, which indicates
they have better ability to scavenge DPPH•. The DPPH• inhibition of dried extracts increased by 78%,
58%, and 56%, respectively. The capacity of ginger extracts to scavenge ABTS•+ and DPPH• could be
related to the nature of ginger polyphenols and their hydrogen donor molecules, which act as potent
antioxidants [23].

Sun-dried ginger possessed the highest antioxidant activity as reflected in its FRAP, ABTS•+

scavenging activity and DPPH• inhibition, followed by oven- and freeze-dried ginger. The high level of
antioxidant activity in sun-dried extracts might be due to plants experiencing developmental changes and
stress-induced responses due to sunlight [29]. Plants might sense the moisture loss and UVB-exposure
as stress, and thus, synthesis of antioxidant compounds is induced to repair the damaged tissue and
as a defense reaction from the injury [30]. In addition, a number of researchers have shown the strong
links to sun exposure and vitamin D in reducing cancer risks and other oxidative effects, as reviewed by
Holick [31]. In accordance with the previous literature, Chinese cabbage withered under sunlight for 2
days (UVB exposure) showed an increase in phenolic contents (i.e., hydroxycinnamic acids) in plants.
Here, with regard to the biochemical processes in the plant, environmental stressors such as moisture loss
and/or natural radiation from sunlight activated the protective secondary metabolite pathways [30] that
result in the biosynthesis of phenolic antioxidants. This might explain why sun-drying might enhance
the phytochemical content and potential bioactivity of ginger.

3.3. Anti-Inflammatory Activity of Ginger Extracts

3.3.1. Cell Viability

Murine macrophage cell lines RAW 264.7 are the major cellular component and effector cells in
response to inflammatory stimuli. The effects of fresh and dried ginger extracts in RAW 264.7 cells were
measured by MTT assay. The cells were incubated in the presence of various concentrations of ginger
extract (3.91–250 µg/mL). Figure 1 shows that the cell viability was not affected by treatment with up
to 250 µg/mL. However, cell incubated with freeze-dried extracts at 3.91 µg/mL showed a significant
decrease in cell viability compared to untreated control (p < 0.05). There were no significant differences
in cell viability up to 250 µg/mL. Concentrations of 25, 50 and 100 µg/mL ginger extract (fresh and
dried) were selected to determine the anti-inflammatory activity of ginger against NO inhibition.
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in RAW 264.7 cells, cells were treated with concentrations of 25, 50 and 100 µg/mL of different extracts 
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Figure 1. Effects of ginger extracts on viability of RAW 264.7 cells. The control (untreated cells)
was taken as 100% viability. Values are mean ± SD from three independent experiments. * means
statistically different at p < 0.05 between the different concentrations of the same extract when compared
to the control.

3.3.2. NO Production in LPS-Stimulated Cells

Figure 2 shows the NO production in LPS-stimulated RAW 264.7 macrophages. In the present
study, bacterial lipopolysaccharide (LPS) was applied to stimulate the RAW 264.7 cells, thus generating
the NO as a pro-inflammation mediator. It was observed that the production of NO (100%) was
markedly induced after cells were treated with 1 µg/mL LPS for 24 h, as compared to the unstimulated
control (2.73%). In examining the ability of ginger extracts to suppress NO production in RAW 264.7
cells, cells were treated with concentrations of 25, 50 and 100 µg/mL of different extracts for all dried
samples and the fresh sample. A concentration-dependent decrease in NO production was observed
with ginger extracts in the presence of LPS (Figure 2). A decrease in NO production indicates that
ginger extracts may help in treating chronic inflammatory diseases by reducing the NO levels.
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Figure 2. Effect of ginger extracts on the nitric oxide (NO) production in lipopolysaccharide
(LPS)-stimulated RAW 264.7 macrophages. Values are mean ± SD from three independent experiments.
Different letters indicate significant differences (p < 0.05) between the drying treatments within a
same concentration.
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3.3.3. NO-Inhibitory Activity of Ginger Extracts

Figure 3 shows that as the concentration increased from 25 to 50 and up to 100 µg/mL,
the NO-inhibitory activity of dried extracts increased significantly to 14.75, 29.36, and 45.13% for
sun-dried, 9.51, 20.84, and 40.71% for oven-dried, and 4.17, 16.60 and 29.16% for freeze-dried extracts,
compared to 1.66, 4.31 and 18.23% for the fresh extracts. There is no significant difference (p > 0.05) in
NO-inhibitory activity among the different drying treatments, except for the fresh ginger, especially at
100 µg/mL.
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Results of this study showed that all the ginger extracts for both fresh and dried ginger of Halia
Bara had the ability to inhibit NO production in stimulated cells, and thus can be used as natural
anti-inflammatory agents. Inhibition of nitric oxide production in vitro has been demonstrated for
other ginger extracts and a considerable number of compounds isolated from them. A study done by
Dugasani et al. [4] found that ginger extract at 6 µM caused 45–80% inhibition of NO production in
LPS-stimulated RAW 264.7 cells. At concentrations of 10, 30 and 100 µg/mL, the NO-inhibitory activity
of red ginger extracts increased in a dose-dependent manner from 5.3% to 74.6% [32]. Tsai et al. [7] and
Li et al. [33] reported that ginger extract at 139 µg/mL and 7.79 µg/mL caused a 50% NO inhibition,
which corresponded to their IC50 values. As a comparison, the present study found a 50% inhibition
(IC50 values) of sun-dried extracts at 110 µg/mL, followed by oven-dried extracts at 122 µg/mL and
freeze-dried at 162 µg/mL. Fresh extracts had the highest IC50 values with 241 µg/mL.

Ginger extracts were found to be non-cytotoxic to RAW 264.7 cells (Figure 1); the result implies
that ginger extracts inhibited nitric oxide without causing cell death. Dried Halia Bara demonstrated
the best anti-inflammatory action with strong NO-inhibitory activity. This justifies the use of dried
ginger in traditional systems of medicine for the treatment of various diseases related to oxidative
stress and inflammation.

In general, the drying process is a remarkable postharvest treatment for ginger as it provides
enhanced antioxidant and anti-inflammatory properties through inhibition of NO production in
LPS-stimulated RAW 264.7 cells. The drying process could cause the breakdown of several cellular
constituents; nevertheless, it promotes the release of bound phenolic compounds from the food
matrix [18] and induces the formation of new compounds with enhanced antioxidant properties [26]. In
accordance to our study, the new compounds might be attributed to the formation of shogaols during
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drying, which have been reported to have more potent antioxidant properties and anti-inflammatory
ability in dried ginger than in fresh ginger [4]. In addition, Roshanak et al. [18] reported that the low
moisture content of dried samples causes the inactivation of destructive enzymes, and consequently,
retains the maximum content of antioxidant compounds. The lower antioxidant activity observed in
fresh ginger is possibly due to the presence of oxidative enzymes such as polyphenol oxidase (PPO),
which cause the degradation of polyphenol compounds [18], and/or high moisture content, which
prevents the complete release of essential volatile components of ginger [9].

The lower values of antioxidant properties and NO-inhibitory activity in oven-dried samples
compared to the sun-dried could be attributed to the high temperature (60 ◦C) of oven heating. Oven
heating has been reported to lead to the thermal degradation of phytochemical compounds and loss of
antioxidant enzymes activity [26]. Pandey and Rizvi [34] also reported that high temperatures lead to
oxidation reactions resulting in the deterioration of the quality of foods, particularly in browning and
organoleptic properties. Although the freeze-dried extracts have the highest level of phenolic content
(Table 1), they did not render to high antioxidant properties. It has been reported that antioxidant
activity is dependent not only on its concentration but also on the structure and interactions between all
antioxidants in the extracts. Consequently, samples with similar concentrations of phenolic compounds
might differ significantly in their antioxidant properties [35].

4. Conclusions

The sun-drying process produced ginger extracts that showed remarkable results when compared
with the oven- and freeze-drying methods. The sun-dried ginger extracts had significantly higher
phenolic and flavonoids content and displayed the highest antioxidant activities of reductive ability
of FRAP, the scavenging activity of ABTS•+ and DPPH• inhibition. Although there no significant
difference was found among the three drying methods of ginger extracts in terms of anti-inflammatory
properties of NO-inhibitory activity, the sun-dried extracts had the lowest concentration required for
50% of NO inhibition (IC50 values) in LPS-stimulated RAW 264.7 cells. The sun exposure and vitamin
D are plausible effects of the enhanced bioactivities of dried ginger. All dried ginger extracts showed
significant improvement in their antioxidant and anti-inflammatory properties compared to fresh
ginger extracts.
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