Retrovirology

Oral presentation

Open Access

Development of a live topical microbicide for women

Qiang Xu*1, Laurel Lagenaur¹, Xiaowen Liu¹, Yang Liu¹, Rosa Yu¹, Kim Wells¹, Daniel Tsai¹, Yvonne Sweeney², Srinivas Rao³, Dean Hamer⁴, Dorothy Patton², Thomas Parks¹ and Peter Lee¹

Address: ¹Osel, Inc., 4008 Burton Dr., Santa Clara, California, 95054, USA, ²Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, 98195, USA, ³Laboratory Animal Medicine, National Institutes of Health, Bethesda, Maryland, 20892, USA and ⁴National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA

Email: Qiang Xu* - qxu@oselinc.com

from 2006 International Meeting of The Institute of Human Virology Baltimore, USA. 17–21 November, 2006

Published: 21 December 2006

Retrovirology 2006, 3(Suppl 1):S37 doi:10.1186/1742-4690-3-S1-S37

© 2006 Xu et al; licensee BioMed Central Ltd.

Background

Osel is developing a live microbicide, employing H2O2-producing Lactobacillus jensenii 1153, a natural component of human vaginal microflora, as a delivery vehicle.

Materials and methods

An expression cassette harboring native regulatory elements was optimized to secrete high levels of modified cyanovirin-N (P51G) (CV-N). The expression cassette was stably integrated into the bacterial chromosome.

Results

The CV-N-producing L. jensenii retained important characteristics of the native bacterial phenotype and secreted high levels of full-length CV-N that completely inhibited the infectivity of CCR5-tropic HIVBaL in vitro, with an IC50 near 1 nM. We further demonstrated that this strain was capable of association with epithelial cells in the vaginal lumen of CD-1 mice, and expressed CV-N in vivo in this model and when cultured in cervicovaginal lavage fluid of pigtailed macaques. We are evaluating potential regulatory issues, bacterial formulations, vaginal colonization, in situ CV-N expression, and host immunological responses in non-human primate models.

Conclusion

This work represents a major step towards the development of a simple, cost-effective, female-controlled preventative against heterosexual transmission of HIV.

Acknowledgements

Supported by NIH grants U19 Al60615 and U01 Al066708.

^{*} Corresponding author