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Machining feature recognition 
based on deep neural networks 
to support tight integration 
with 3D CAD systems
Changmo Yeo1, Byung Chul Kim2, Sanguk Cheon3, Jinwon Lee1 & Duhwan Mun1*

Recently, studies applying deep learning technology to recognize the machining feature of three-
dimensional (3D) computer-aided design (CAD) models are increasing. Since the direct utilization of 
boundary representation (B-rep) models as input data for neural networks in terms of data structure 
is difficult, B-rep models are generally converted into a voxel, mesh, or point cloud model and used as 
inputs for neural networks for the application of 3D models to deep learning. However, the model’s 
resolution decreases during the format conversion of 3D models, causing the loss of some features 
or difficulties in identifying areas of the converted model corresponding to a specific face of the B-rep 
model. To solve these problems, this study proposes a method enabling tight integration of a 3D 
CAD system with a deep neural network using feature descriptors as inputs to neural networks for 
recognizing machining features. Feature descriptor denotes an explicit representation of the main 
property items of a face. We constructed 2236 data to train and evaluate the deep neural network. Of 
these, 1430 were used for training the deep neural network, and 358 were used for validation. And 448 
were used to evaluate the performance of the trained deep neural network. In addition, we conducted 
an experiment to recognize a total of 17 types (16 types of machining features and a non-feature) from 
the B-rep model, and the types for all 75 test cases were successfully recognized.

Due to structural changes in the manufacturing industry following the development of information technol-
ogy, the demand for online manufacturing support has increased worldwide. Following this trend, the online 
manufacturing support platform industry is growing. Online manufacturing support, as shown in Fig. 1, is an 
intermediary service that evaluates the manufacturability of three-dimensional (3D) computer-aided design 
(CAD) models uploaded online by customers (individuals or businesses) and selects manufacturers. Furthermore, 
it calculates estimates, requests for production to manufacturers, and manages the entire process of delivering 
products to customers1. Manufacturability evaluation means the process of determining manufacturing meth-
ods, level of difficulty in manufacturing, manufacturability, and manufacturing costs for a customer-supplied 
CAD model2. Automation of the manufacturability evaluation process is essential for providing smooth online 
manufacturing support services. This is because it minimizes human interference and enables quick response 
regarding numerous manufacturing requests.

For automated manufacturability evaluation, machining features, which are necessary for making the designed 
shape from stock, are essential. Machining features include machining tools and processing parameters to be 
used to manufacture products. Using these, the manufacturing errors and manufacturing time can be identified 
through machining simulation and the necessary manufacturing tools, materials, and time can be ultimately 
estimated. However, as designers and manufacturers are different in the intermediary service platform, machining 
feature information is not provided for product security reasons. Therefore, for manufacturability evaluation, we 
have no choice but to use boundary representation (B-rep) models that contain only product shape information, 
not including feature information. So, it is necessary to find machining features from the B-rep model, which is 
possible through machining feature recognition.
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Common methods for recognizing the machining features of machine processing are based on algorithms 
including graph-based, volume decomposition, and hint-based, and similarity-based methods. For algorithm-
based methods, however, the recognition rate for complicated shapes is low. Moreover, it is difficult to recognize 
when machining features intersect with each other, even if the shapes are not complicated. In addition, most 
algorithms have high complexity and long recognition time3–16. Recently, studies on the recognition of machin-
ing features using deep learning to compensate for the shortcomings of algorithm-based methods have been 
reported. When using deep learning, data should typically be represented in a lattice-structured form. Therefore, 
since the B-rep model cannot be used as it is, previous studies converted 3D shapes into voxel, projected images, 
point clouds, etc., for using the deep learning17–26.

However, in the course of the conversion, the following problems arise. First, the geometric information of 
the model may be significantly lost or changed. For example, local features with a size smaller than the resolu-
tion of the converted model are lost. Moreover, in the case of formats other than mesh, accurate representation 
of a curved surface is difficult. Second, the association between the information obtained through deep learning 
and topology elements of the original B-rep model is difficult to identify. When the areas where features exist (a 
set of voxels) are detected through deep learning, the corresponding set of faces of the B-rep model should be 
found. However, due to the loss or change of the model’s geometric information during the conversion, finding 
a set of faces corresponding to the detected area is difficult. This problem can be seen as a highly studied prob-
lem of persistent naming in the CAD field27,28. The above problem makes it difficult to integrate information 
obtained from deep learning and 3D CAD systems that have to deal with B-rep models when realizing online 
manufacturing support platforms.

To solve these problems, in this study, we propose a method to ensure tight integration29 with 3D CAD 
systems. The proposed method defines a feature descriptor for each face of the shape. It defines and trains deep 
neural network models that use feature descriptors as input and feature types as outputs, and then it uses them 
to recognize machining features to which each face belongs. Since the proposed method recognizes machining 
features for each face, the recognition results of deep neural networks can be directly related to the original 
B-rep model.

This study has the following academic contributions. First, we propose a deep learning-based machining 
feature recognition architecture that enables tight integration with 3D CAD systems. Second, we propose the 
concept and data structure of the feature descriptor and utilize it in the feature recognition process. Third, we 
develop a deep neural network that classifies machining feature types by receiving the input of the feature descrip-
tor. To the best of our knowledge, this study is the first to recognize machining features using deep learning to 
enable integration with 3D CAD systems.

The structure of this study is as follows. Section “Related studies” presents the related research. Section “Sys-
tem construction and process” proposes a deep learning-based machining feature recognition method for tight 
integration with 3D CAD systems. Section “Machining feature recognition using deep learning technology” 
explains the recognition of machining features based on deep neural networks, a key element of the proposed 
architecture. Section “Implementation and experimentation” discusses the implementation and experimental 
results. Finally, the conclusions and future research directions are presented in “Conclusions”.

Related studies
Representative methods for recognizing machining features in B-rep type 3D CAD models include graph-based, 
convex decomposition, cell-based decomposition, hint-based, similarity-based, and artificial neural-network-
based methods.

Figure 1.   Research motivation.
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The graph-based method represents the adjacent relation between the faces and edges of the whole shape and 
features as a graph structure and then finds and recognizes sub-graphs of the features in the graph of the whole 
shape. Joshi and Chang3 used heuristics to solve feature intersection problems in machining feature recognition. 
Chuang and Henderson4 utilized the graph-based method using vertex and edge to search for patterns in machin-
ing features. Gavankar and Henderson5 proposed a method for separating the connections after showing that the 
graph connection between the protrusion and depression areas is doubly constructed. Graph-based methods have 
the advantage of being able to easily add new features to be recognized and apply to various domains. However, 
it is difficult to apply when the topology structure of features is variable or features intersect. In addition, since 
graph search takes exponential time, it is difficult to apply to complicated shapes.

In convex decomposition and cell-based decomposition methods, features are recognized from simple shapes 
after complicated shapes are decomposed into simple ones. The convex decomposition method decomposes 
the target shape using the convex hull and delta volume. Tang and Woo6 proposed alternating sum of volumes 
(ASV), which allows features to be recognized by decomposing shapes in the convex decomposition method. 
However, there is a problem in ASV when decomposition on a particular shape does not converge. Kim7 pro-
posed alternating sum of volumes with partitioning (ASVP) decomposition to solve ASP problems and used it 
to recognize features. The convex decomposition method can well recognize features even when they intersect, 
but since it cannot be applied to shapes with curved surfaces, fillets or rounds need to be removed and curved 
parts need to be converted to polyhedron in advance.

In cell-based decomposition, the shapes are decomposed into simple cells and the decomposed cells are 
recombined to form a maximum volume to find features. Sakurai and Dave8 proposed a method of decomposing 
the shapes into small cells with simple shapes and recombining these cells to form large volumes. Woo9 presented 
a method to perform cell-based decomposition faster than traditional cell-based decomposition. Cell-based 
decomposition methods can also be applied even when features intersect, and feature recognition is possible 
when secondary curved surfaces are included. However, it cannot be applied to complicated shapes because the 
process of recombining cells has high time complexity.

The hint-based method starts with minimal traces or hints for feature recognition, instead of finding complete 
feature patterns, and finds features through a geometric inference process for surrounding shapes. Vanden-
brande and Requisha10 developed an object-oriented feature finder (OOFF), an algorithm that explores hints 
from faces regarding slots, holes, and pockets. Regli11 developed an algorithm to explore hints using edges and 
vertices rather than faces. Han and Requicha12 developed incremental feature finder (IF2), which extends the 
functionality of OOFF. Disadvantageously, recognition rules need to be individually defined for each feature in 
hint-based methods.

The similarity-based method recognizes features by examining how similar two comparison shapes are. 
Hong et al.13 generated low- and high-resolution models from the B-rep model via multi-resolution modeling. 
They used the low-resolution model for comparing the whole shape, and the high-resolution model for compar-
ing detailed shapes. Ohbuchi and Furuya14 and Liu et al.15 proposed a method to compare the similarity of the 
shapes contained in images after generating images of the 3D model from multiple viewpoints. Sánchez-Cruz 
and Bribiesca16 compared similarities after converting 3D models to voxel formats. However, this method cannot 
consider the properties of faces or other properties that features have, such as adjacency relations.

Recently, methods have been proposed for recognizing features in 3D models using artificial neural 
networks17–21. Jian et al.22 proposed an improved novel bat algorithm (NBA) incorporating NBA, which was 
developed to complement existing neural networks with long learning time, using a graph-based method. Zhang 
et al.23 recognized 24 kinds of machining features by applying 3D convolutional neural networks. Shi et al.24 pro-
posed MsvNet, a deep learning technology based on multiple sectional view (MSV) representation, which was 
used to recognize machining features. Peddireddy et al.25 proposed a method to identify machining processes 
based on 3D convolutional neural networks and transfer learning. Zhang et al.26 constructed the PointwiseNet 
based on 3D point clouds and showed high performance by applying the constructed deep learning model to 
3D shape retrieval. However, in the artificial neural network-based method, tightly integrating the B-rep model 
with 3D CAD systems is difficult because the B-rep model cannot be directly used and it needs to be converted 
to other formats, such as a voxel. In particular, the accurate identification of the faces on the B-rep model is dif-
ficult, which corresponds to the detection of areas corresponding to features from a voxel.

System construction and process
In this study, the target range of machining methods is limited to tuning, milling, and drilling as shown in Fig. 2a. 
Sixteen machining features of Fig. 2b are to be recognized. The machining features to recognize are classified 
as five features of hole-related type, three features of slot-related type, two features of pocket-related type, two 
features of island-related type, two features of fillet-related type, and two features of chamfer-related type.

The proposed method using deep learning-based machining feature recognition is shown in Fig. 3, comprising 
online and offline processes. The online process generates feature descriptors for each face of the B-rep model 
loaded into a 3D CAD system, inputs them into deep neural networks, and then classifies feature types of the face. 
Then, the recognized type is returned to the 3D CAD system. The offline process generates feature descriptors, 
builds a training dataset composed of them, and then trains the deep neural networks for feature recognition.

Previous feature recognition studies identified whether the associative pattern for the face and edge that make 
up the B-rep model is similar to a particular feature type pattern. Here, the associative patterns between many 
faces and edges are used for comparison. However, in this study, we defined a base face for each feature type and 
recognized the target face as the feature’s base face by identifying whether the target face’s attributes are similar 
to the particular feature’s base face. Here, as shown in Fig. 4, the feature descriptor explicitly represents and stores 
the main attributes of the face. Therefore, in this study, the machining feature recognition determines whether 
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each face corresponds to a base face for each type of machining feature. Use of feature descriptors is effectively 
applicable even if interference between features makes it difficult or ambiguous to match faces or edges. Moreover, 
it is possible to extend the recognizable types of features by extending the descriptor.

The biggest challenge encountered when developing deep neural networks that directly use B-rep models 
as inputs to recognize machining features is the hierarchical complexity of B-rep models and the variability of 
data size. Thus, previous studies used neural networks after converting B-rep models into fixed-sized voxels or 
multiple images. Converted voxels or images with low resolution may not properly represent curves or surfaces. 

Figure 2.   Machining feature types to be recognized from a B-rep model.

Figure 3.   Proposed method for recognizing machining features.
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Furthermore, it may result in the loss of features (e.g., hole, pocket, fillet, or chamfer). Even if feature areas in a 
converted voxel or image are detected, the recognition of features in the B-rep model is challenging because of 
the resolution differences between the B-rep model and converted voxel or image. Additionally, the lack of train-
ing datasets about segmented 3D models for each area of feature makes it difficult to conduct relevant research.

In the proposed method of machining feature recognition, input data of deep neural networks is the feature 
descriptor generated on each face of the B-rep model. Therefore, the proposed method is analogous to directly 
using the B-rep model information without conversion. Furthermore, this method can fix the input data format 
and size of deep neural networks because feature descriptors generated according to predefined structure for 
each face rather than those for a set of faces are used in feature recognition. The proposed method enables tight 
integration between a 3D CAD system and a deep learning model for machining feature recognition due to these 
characteristics, as shown in Fig. 5.

Machining feature recognition using deep learning technology
Feature descriptor.  Base face of a machining feature.  This study introduces the concept of a base face on 
machining features. The existing studies3–26 recognized most of the machining features from the relationship 
between the faces and the geometrical characteristics of each face. Referring to existing studies, we selected the 
base face for each feature in this study. Then, we devised a method to express the relationship between the faces 
constituting the feature and geometrical characteristics in terms of a descriptor based on this base face. The base 
face of a feature can be used as a reference for recognizing the features, even if the topology or geometry that 
makes up the feature partly changes. In other words, among the many faces that make up a feature, the base face 
best represents the feature characteristics. Figure 2 shows the base face for each type of feature covered in this 
study. For a hole, the base face depends on the number of faces that make up the hole. A simple hole or taper 
hole is a rotational shape, each with a cylinder and cone. A cylinder (cone) can be represented as either one 
cylindrical (conical) face or two half-cylindrical (half-conical) faces. This study assumes that a cylinder (cone) 
is represented by two half-cylindrical (half-conical) faces. The base face of a countersink hole or counterdrilled 
hole is the conical face. The base face of a counterbore hole is the planar face between the two cylindrical faces. 

Figure 4.   Generation of a feature descriptor from a 3D CAD system.

Figure 5.   Tight integration between a 3D CAD system and deep learning model.
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For a slot, the base face, depending on the existence of the bottom face, is either the bottom or side face. For a 
pocket and an island, the base face is the bottom face of the pocket. For a fillet and chamfer, the cylindrical face 
or planar face is the base face.

Feature descriptor definition.  The faces of the B-rep model have information about the faces themselves, infor-
mation about the edges that make up the boundaries of the faces, information about the vertices that make up 
the edges, and relation information for the adjacent faces. The feature descriptor uses the type of face (e.g., planar 
face, cylindrical face, toroidal face, etc.), the normal vector, and loop type (inner or outer loop) for face informa-
tion. Edges have the edge type (e.g., linear or curved type) and length. Vertices have coordinates information. 
Relation information for the adjacent face has the angle with the adjacent face, the convexity type, and the conti-
nuity type. Convexity is divided into concave or convex depending on the angle between the two adjacent faces. 
If the angle between the two adjacent faces is less than 180°, it is called concave, and if not, convex. Continuity 
is divided into C0, G1, C1, G2, and C2 according to the tangency and curvature between the two adjacent faces. 
Other continuities except C0 continuity have a tangent condition.

In a previous study30, we proposed feature descriptors to recognize machining features based on similarity 
comparison. The proposed feature descriptors, as shown in Table 1, include a type of base face, information on 
the relation of the base face with adjacent faces, parallel information of adjacent faces, and distance between 
parallel adjacent faces. Methods for using feature descriptors in the previous study30 are as follows. First, a fea-
ture descriptor Df of the base face is defined for each feature type. Only the minimum information necessary 
for distinguishing features is stored in Df. Moreover, in the feature recognition phase, feature descriptor Di is 
generated for each face Fi that makes up the B-rep model. The similarity of feature descriptor Di is compared 
with Df for each feature type. If the calculated similarity value is higher than the predefined threshold value, Fi 
is determined as the base face of the feature.

In this study, as shown in Table 2, a new feature descriptor suitable for applying deep learning technology 
was constructed by referring to the feature descriptor proposed in the previous study30. There are ten types of 
faces: Bezier, BSpline, Rectangular Trimmed, Conical, Cylindrical, Planar, Spherical, Toroidal, Linear Extrusion, 
and Revolution. If any face is not of analytic type, we mark it as Unknown. The curvature of the target face is 
represented as positive (if the target face is convex in the normal direction), negative (if the target face is concave 
in the normal direction), or flat (if the target face is flat).

The width of a target face has two types of information, face- and edge-machining types, which mark whether 
the target face is longer (marked as Longer) or shorter (marked as Shorter) based on the predefined threshold. The 
width of the target face is the distance between two adjacent planes that are parallel to each other. If there are no 
adjacent faces parallel to each other, the minimum distance is calculated between adjacent faces that are not in 

Table 1.   The feature descriptor used in a previous study30.

Item description Notation

Base face type Face type

Number of adjacent faces in an outer loop (Face type|convexity): number

Number of adjacent faces with G1 or higher continuity in an outer 
loop (Face type|convexity): number

Number of perpendicular adjacent faces in an outer loop (Face type|convexity): number

Number of adjacent faces in an inner loop (Face type|convexity): number

Number of adjacent faces with G1 or higher continuity in an inner 
loop (Face type|convexity): number

Number of perpendicular adjacent faces in an inner loop (Face type|convexity): number

Number of pairs of parallel adjacent faces Number

Distance between a pair of parallel adjacent faces Length (If the number of pairs of parallel adjacent faces is two or 
more, the shortest distance is chosen.)

Table 2.   Definition of feature descriptor’s items for deep learning.

Feature descriptor’s item Notation

Target face type Face type

Curvature of target face Curvature

Width of target face (for face-machining) Result of comparison

Width of target face (for edge-machining) Result of comparison

Adjacent faces in an outer loop Face type|Convexity: number

Adjacent faces with C0 continuity in an outer loop Face type|Convexity: number

Perpendicular adjacent faces in an outer loop Face type|Convexity: number

Location and convexity of inner loops Location|Convexity: number
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contact. In the face-machining type, the threshold means the maximum diameter used in machining. This item 
has been defined for identification between features of face-machining type (holes, slots, pockets, and islands). 
Among the features of face-machining types, only the width of the slot has a value smaller than the threshold31. 
If the width of the target face is less than the threshold, the target face is more likely to be determined to be a 
slot. In the edge-machining type, the threshold has been defined to identify the edge-machining type features 
(fillets and chamfers) from the face-machining type features. The threshold for edge-machining is inputted by 
the user, considering the following conditions. Since the width of the edge-machining is generally shorter than 
the width of the face-machining, the threshold of edge-machining should be smaller than the threshold of the 
face-machining. If the width of the target face is smaller than the threshold of the edge-machining type, the 
target face is more likely to be determined as an edge-machining type feature.

The adjacent face information in an outer loop shows the number of adjacent face type and convexity pairs 
for adjacent faces of the target face. Convexity is marked as Concave, Convex, and Unknown. If two faces have a 
tangent relation, the convexity is generally not considered. However, even in this case, convexity can be calculated 
using the cross product of the normal vectors on both the faces and direction vector of the edge shared by both 
sides32. If convexity is not calculated, it is marked as Unknown. Moreover, the adjacent face information in an 
outer loop also includes the number of adjacent face type and convexity pairs that have a C0 continuity relation 
and a perpendicular relation with the target face.

Finally, the number of location and convexity pairs represents the location of the inner loop in the target face 
and the convexity relation between the target face and inner loop. If the inner loop is a decomposition shape, 
such as a hole and pocket, it is marked as Convex. On the other hand, if the inner loop is a composition shape, 
such as an island, it is marked as Concave. If the inner loop’s center and the target face’s center are the same, it is 
marked as Center; otherwise, it is marked as Anywhere.

Table 3 shows the feature descriptor created in the base face of an Opened island according to the structure of 
the feature descriptor defined in this study. As shown in the table, the descriptor used in this study differs from 
those in the previous study30 in terms of the descriptor item. When feature descriptors are created, the values 
for all the items that make up the descriptor are recorded.

Deep neural network for feature recognition.  Feature descriptor encoding.  We used the integer en-
coding technique to apply feature descriptors in deep learning models. Integer encoding is a natural language 
processing technique, wherein the data format is converted from natural language to integer. In this section, we 
describe how to encode with the contents of Table 3 to aid understanding. We also describe the encoding method 
by dividing feature descriptor items into face, outer loop, and inner loop information.

For the type, curvature, and width items of the target face corresponding to the face information, different 
integer values were assigned according to the value of each descriptor item, as shown in Table 4. Table 5 shows 
an encoding example of the feature descriptor items regarding the target face information. As shown in the table, 
the descriptor’s items regarding a target face represent four integer values.

Outer loop information and descriptor item values are normalized in ratio form, as shown in Fig. 6, and 
then encoded as integers. The descriptor item values regarding the outer loop represent the number of adjacent 
faces corresponding to a specific type in the defined feature descriptor. Thus, the more adjacent faces, the larger 
the value of the descriptor’s item naturally attains. To prevent this issue, we have normalized the number of all 

Table 3.   Feature descriptor values of the Opened island.

Feature type Feature descriptor’s item Item’s value

Opened island

Target face type Planar

Curvature of target face Flat

Width of target face (for face-machining) Longer

Width of target face (for edge-machining) Longer

Adjacent faces in an outer loop
Planar|Concave: 3
Planar|Convex: 1
Cylindrical|Concave: 2

Adjacent faces with C0 continuity in an outer loop
Planar|Concave: 3
Planar|Convex: 1
Cylindrical|Concave: 2

Perpendicular adjacent faces in an outer loop Planar|Concave: 3
Cylindrical|Concave: 2

Location and convexity of inner loops Anywhere|Concave: 2
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adjacent faces that compose the outer loop by calculating the ratio of the adjacent faces of a specific type, as 
shown in Fig. 6b.

It is necessary to note here that the items of adjacent faces with C0 continuity in an outer loop and perpen-
dicular adjacent faces in an outer loop calculate only the ratio of adjacent faces with concave convexity. If two 
faces in contact with each other are perpendicular, convexity must be concave. Additionally, if two faces in 
contact with each other are in a C0 continuity relation, convexity can be either convex or concave. However, 

Table 4.   Identifiers of descriptor item values regarding a target face.

ID

Item

Target face type Curvature of target face Width of target face (face-machining and edge-machining)

0 Unknown Flat –

1 Bezier Positive Longer

2 BSpline Negative Shorter

3 Rectangular trimmed – –

4 Conical – –

5 Cylindrical – –

6 Planar – –

7 Spherical – –

8 Toroidal – –

9 Linear Extrusion – –

10 Revolution – –

Table 5.   Encoding of descriptor items regarding a target face.

Feature descriptor’s item Item’s value Encoding value

Target face type Planar 6

Curvature of target face Flat 0

Width of target face (for face-machining) Longer 1

Width of target face (for edge-machining) Longer 1

Figure 6.   Encoding process of descriptor items regarding outer loop of a target face.
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most machining features have concave convexity because machining features are made into shapes by removing 
volumes from the stock. Thus, in these items, the ratio of adjacent faces of Concave convexity is calculated. An 
additional point to note is to calculate the ratio of the number of faces to the total number of adjacent faces. For 
example, for perpendicular adjacent faces in an outer loop shown in Fig. 6b, the ratio becomes 50% because the 
number of Planar face types is 3 and the total number of adjacent faces is 6.

When the normalization of the feature descriptor’s item values associated with outer loop information is 
completed, the normalized values are encoded, as shown in Fig. 6c. In the encoding process, the normalized value 
was rounded to the nearest tenth and then multiplied by 0.1 to ensure that the resulting value was represented 
as an integer value between 0 and 10. Encoding values were separately represented according to the type of faces 
(11 types) and the descriptor items (5 types) considering convexity, as shown in Fig. 6c. This process will result 
in 55 (11 × 5) descriptor values corresponding to the outer loop.

Features that utilize inner loop information in the machining feature classification include Islands and Coun-
terbore holes. Counterbore holes typically have an inner loop in the form of “Center|Convex.” The Islands must 
have an inner loop in the form of “Anywhere|Concave.” Accordingly, the inner loop-related descriptor items were 
subdivided into “Anywhere|Concave” and “Center|Convex.” In the encoding process of an inner loop-related 
descriptor item, as shown in Table 6, if an inner loop corresponding to the above item was present, it was recorded 
as 1 and as 0 if it was not present. Table 6 shows two inner loops of “Anywhere|Concave” and no inner loops of 
“Center|Convex” inside a target face. Thus, it was recorded as 1 and 0.

After feature descriptor encoding, a feature descriptor (Fig. 7a) is encoded into a total of 61 integer arrays 
(Fig. 7b) to have 4 values in face information, 55 values in outer loop information, and 2 values in inner loop 
information. This feature descriptor has the same size regardless of the type of faces that makes up the B-rep 
model, making it easy to use as input for deep neural networks.

Development of the deep neural network for feature recognition.  In this study, we have developed a deep neural 
network of standard feed-forward fully connected method for feature recognition. Deep neural network means 
an artificial neural network comprising one input layer, one output layer, and n hidden layers33–36.

To determine the optimal number of layers and node size of deep neural networks, training was performed 
by changing the number of hidden layers and node size according to the procedure given in Fig. 8a. We first 
fixed the node size of the input and output layers as 61 and 17, respectively. As the activation functions of the 
hidden and output layers, we used the ReLU and Softmax, respectively. As the loss function and optimization 
function of the neural network, we used Cross entropy loss and Adam optimizer, respectively. Then, we created 
the first hidden layer and trained while reducing the node size by an increment of 5 from 60, as shown in Fig. 8b, 
and selected the node size when the validation accuracy was the highest. When the number of nodes in the first 
hidden layer was determined, a new hidden layer was added to similarly select the optimal node size. With this 

Table 6.   Encoding of descriptor items regarding inner loops of a target face.

Feature descriptor’s item Item’s value Encoding value

Location and convexity of inner loops
Anywhere|Concave: 2 1

Center|Convex: 0 0

Figure 7.   Integer encoding result of a feature descriptor.
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procedure, we repeated the generation of hidden layers until the validation accuracy did not increase. Repeated 
experiments found that the validation accuracy no longer increased in the sixth hidden layer. Accordingly, the 
deep neural network herein comprises five hidden layers, with node sizes of 35, 50, 35, 50, and 30.

To enhance the completion level of the deep neural network constructed in this study, we trained by applying 
dropout37 and batch normalization38 techniques. Table 7 shows the validation accuracy when the dropout layer 
and batch normalization layer are placed behind the nth hidden layer. As shown in Table 7, we can confirm that 
the validation accuracy is less when optimization techniques are applied than that when they are not applied. 
Based on Table 7, we confirmed that dropout and batch normalization techniques are not suitable for deep 
neural networks configured in this study. Through training experiments for the optimal configuration of neural 
networks, we finally developed the deep neural network configured as shown in Fig. 9.

Figure 8.   Experiment design to select an optimal configuration of a deep neural network.

Table 7.   Validation accuracy when optimization techniques are applied to the deep neural network.

Techniques

Hidden layer

Validation accuracy1st 2nd 3rd 4th 5th

Dropout

O – – – – 0.9469

– O – – – 0.9525

– – O – – 0.9609

– – – O – 0.9553

– – – – O 0.9497

Batch normalization

O – – – – 0.9441

– O – – – 0.9525

– – O – – 0.9358

– – – O – 0.9469

– – – – O 0.9358

None – – – – – 0.9721
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To construct training data for feature descriptors, we generated about 170,000 B-rep models through para-
metric modeling techniques using CATIA V539 and Microsoft Excel40, as shown in Fig. 10. All B-rep models 
generated had one or more machining features, and the base face of each feature was given a different color. 
The reason for assigning different colors to the base face in the modeling process is to easily identify whether 
it corresponds to the base face having a feature on a particular face when creating a descriptor from the B-rep 
model. Since machining feature recognition aims to evaluate manufacturability, in this study, it is important 

Figure 9.   Configuration of the deep neural network for machining feature recognition.

Figure 10.   Parametric modeling to construct large numbers of B-rep models.
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to distinguish between machinable features and unmachinable features. Therefore, the generated dataset also 
contains unrealistic B-rep models.

In the 170,000 B-rep models generated, many of them had different shapes but the same descriptors as shown 
in Fig. 11. We eliminated the duplicate data to prevent overfitting in the neural network’s training process.

The training dataset for developing the deep neural network for machining feature recognition comprises 2236 
feature descriptors, as shown in Fig. 12. This training dataset can be downloaded from the EIF lab homepage41. 
The composition of the training dataset is described in Fig. 12a. The training dataset contains feature descrip-
tors for Simple hole (72), Countersink hole (52), Counterbore hole (54), Counterdrilled hole (120), Taper hole 
(108), Closed slot (254), Opened slot (154), Floorless slot (314), Closed pocket (86), Opened pocket (294), 
Closed island (66), Opened island (290), Inner fillet (114), Outer fillet (38), Inner chamfer (30), Outer chamfer 
(16), and Non-feature (174).

Figure 11.   Different feature shapes having the same descriptor.

Figure 12.   Overall information of the training dataset.
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In the course of developing a deep neural network for the machining feature recognition, as shown in Fig. 12b, 
the entire dataset was divided by a ratio of 8:2, and 1788 feature descriptors were used as a training set. There 
is no set optimal division ratio between the training and test sets. Most of the existing studies randomly divide 
the training and test sets by a 7:3 or 8:2 ratio42–45. So, in this study, we randomly divided the entire dataset into 
training and test set by a ratio of 8:2. In the training set, the real training set and the validation set were randomly 
divided by a ratio of 8:2. As a result, the entire dataset was randomly divided into the real training set, validation 
set, and test set by a ratio of 64:16:20. For the training of deep neural networks, we set Batch size to 8 and Epoch 
to 1000. In the course of the training, deep neural networks showed a training accuracy of 0.9517, a training loss 
of 0.0946, a validation accuracy of 0.9609, and a validation loss of 0.1018, as shown in Fig. 13.

After the training of the deep neural networks, we validated the performance of the trained model with 448 
feature descriptors that were not used in training. A confusion matrix was calculated, as shown in Fig. 14. The 
confusion matrix is primarily used to evaluate the performance of classification models and represents per-
formance measures including accuracy, precision, and recall. As a result of validation, the trained deep neural 
network showed an accuracy of 0.9308, a mean precision of 0.9224, and a mean recall of 0.9108.

Implementation and experimentation
Implementation.  According to the proposed method for machining feature recognition, a prototype sys-
tem was developed, as shown in Fig. 15. We implemented a module SW for feature recognition based on the 
deep neural network in Python language on the Windows 10 operating system. The PyQt library was utilized 
to configure the module’s GUI. The deep neural network was implemented using TensorFlow-based Keras 
and Scikit-learn libraries. In the 3D CAD system30 for feature recognition developed in the previous study, we 
integrated the developed recognition module SW using the python embedding method, as shown in Fig. 15. 
For module development and recognition experiments, computers with Intel Core i7 CPU, 64 GB RAM, and 
NVIDIA GeForce GTX 760 graphics card were used.

Experimentation.  The training dataset comprises descriptors that are generated from B-rep models by 
parametric modeling. These B-rep models have relatively simple shapes compared to the actual 3D models 
applied in the manufacturing field. Therefore, this experimentation tested the machining feature recognition of 
the complicated 3D models used in the field.

We prepared 15 B-rep models for the recognition experiment, as shown in Fig. 16, referring to the study30,46–48 
on machining feature recognition. These 3D models are parts manufactured by turning, milling, and drilling, 
which possess 57 machining features and 18 non-features. Accordingly, the experiment was conducted for 75 
test cases. Seventy-five test cases are the generated descriptors according to the procedure explained in “Feature 
descriptor encoding”. Nos. 15, 25, 38, and 52 of the test cases were recognition failures in the previous study30.

Table 8 shows the results of the recognition experiment of machining features on the test cases. The probability 
of columns 3 and 6 in Table 8 means the highest value among the possibility of feature labels. The possibility 
represents the likelihood that a particular feature label is correct. The results of the recognition experiment show 
that the feature type, which is true, was recognized as the first priority for all 75 test cases.

Experimental results show that the deep neural network in this study calculated probabilities of over 90% on 
68 of the 75 test cases. The remaining 7 test cases calculated the probability of the late 70% are Closed pockets 
(Nos. 3, 35, and 49), Open pockets (Nos. 4, 8, and 42), and Opened slots (No. 43). Nos. 3, 35, and 49 correspond-
ing to Closed pockets have the same feature descriptor. Nos. 4, 8, and 42 corresponding to Opened pockets have 
the same feature descriptor.

To analyze features with probability of over 70%, we represented the descriptors of the two features (4 Opened 
pocket and 43 Opened slot), which exhibited the lowest probability, in the graph, as shown in Table 9. The graph’s 
horizontal axis represents the index of the feature descriptor encoded by an integer, and the vertical axis repre-
sents the value at each index. Column 1 of this table represents all descriptors corresponding to a particular type 
in the training data. Column 2 (column 3) represents a feature descriptor after the selection of a feature with 
probability of 90% or more (70% or more) from the experimental results.

The feature descriptor graphs in row 2 show that sections A, B, C, and D are important for determining 
the recognition target face as the Opened pocket. We can confirm that all graphs for the training data and the 

Figure 13.   Learning curve of the developed deep neural network.
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recognized faces completely correspond to each other in Section A. From the relative size of sections B, C, and 
D, the 1 Opened pocket tends to be more similar to the training data than the 4 Opened pocket. The graphs 
of the training data and the 1 Opened pocket are flat at sections B, C, and D, while the 4 Opened pocket has 
a relatively significant difference in the values of the sections. Consequently, the 4 Opened Pocket seemingly 
outputs a relatively low probability.

The feature descriptor graphs in row 3 show that sections E, F, G, and H are important for determining the 
recognition target face as the Opened slot. We can confirm that all graphs for the training data and the recognized 
faces completely correspond to each other in Section E. Sections F, G, and H show that the recognized face graphs 
tend to be similar to those in the training data. However, we can see that the values of sections F and H of the 43 
Opened slot are located in different indexes. Consequently, the 43 Opened slot seems to output a relatively low 
probability, although it tends to be similar to that of the training data.

Conclusions
We proposed a method of machining feature recognition based on the deep neural network using feature descrip-
tors to ensure tight integration with 3D CAD systems. The proposed method supports 16 types of machining 
feature recognition. To recognize the machining features, the proposed method generates feature descriptors from 
the B-rep model’s face and recognizes feature types by inputting the descriptors into the deep neural network, 
and it returns the recognized feature types to the 3D CAD system.

Figure 14.   Confusion matrix of the developed deep neural network.
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We defined new feature descriptors suitable for the application of deep learning technology, referring to the 
descriptors proposed in a previous study30. Moreover, we used the integer encoding technique to apply the feature 
descriptor to the deep learning model. Since this technique can create feature descriptors having the same struc-
ture and size for each face composing the B-rep model, it can be easily used as input for the deep neural network.

The standard feed-forward fully connected method was applied to develop the deep neural network for 
machining feature recognition. The deep neural network has five hidden layers in addition to input and output 
layers. As the activation functions of the hidden and output layers, we used the ReLU and Softmax, respectively. 
In addition, as loss and optimization functions of the neural network, we used Cross entropy loss and Adam 
optimizer, respectively.

The training dataset used in the development of the deep neural network has a total of 2236 feature descrip-
tors. We used 1788 training data for the learning of the deep neural network. We then tested the performance 
of the model with 448 feature descriptors that were not used for training. Consequently, the trained deep neural 
network showed an accuracy of 0.9308, a mean precision of 0.9224, and a mean recall of 0.9108.

In the experiment, we prepared 75 test cases for 15 B-rep models, referring to existing machining feature 
recognition studies30,46–48. In the recognition experiment for the test cases, 68 cases recognized true feature types 
with over 90% probability as the first priority, while the remaining seven cases recognized true feature types with 
over 70% probability as the first priority.

It is not easy to prove that the data for training is sufficient. So, for most DNN training, researchers generate 
as much different data as possible and ensure that the resulting data distribution is uniform. After creating 3D 
CAD models in this study, we generated the various data by transshaping the models through the parametric 
modeling method. The generated data distribution was made uniform by adjusting the case that transshapes 
for each 3D CAD model type. After training the proposed deep neural network with the generated dataset, we 
experimented with recognizing features with the proposed deep neural network for 75 test cases of Fig. 16. 
Through this experiment, we confirmed that the deep neural network trained well.

In the future, we will further subdivide the items that constitute the feature descriptor to expand recognizable 
machining feature types. We will also improve the probability of three feature types (Closed pockets, Opened 
pockets, and Opened slots) that show relatively low probability of over 70%. According to the subdivision of the 
items constituting the feature descriptors, we will increase the number of training data because the number of 
training data (2236) in this study may be insufficient. Finally, we plan to conduct a study to recognize machin-
ing features by applying a deep learning model, such as a convolutional neural network or a recurrent neural 
network, with higher performance than the deep neural network used in this study.

Figure 15.   Prototype system development through integration of a 3D CAD system with machining feature 
recognition based on the deep neural network.
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Figure 16.   Test cases used in an experiment.
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Table 8.   Machining feature recognition result for the test case.

No. Feature Probability No. Feature Probability

1 Opened pocket 99.9858 39 Simple hole 99.8326

2 Opened slot 99.1164 40 Opened pocket 99.9794

3 Closed pocket 78.1835 41 Opened pocket 99.9362

4 Opened pocket 77.4747 42 Opened pocket 77.4747

5 Opened pocket 99.9794 43 Opened slot 77.8519

6 Opened slot 99.4024 44 Closed pocket 97.2565

7 Opened pocket 99.9794 45 Inner fillet 100.0000

8 Opened pocket 77.4747 46 Inner fillet 100.0000

9 Opened pocket 98.8221 47 Inner fillet 99.5128

10 Opened pocket 99.9794 48 Closed pocket 99.4155

11 Opened pocket 99.9794 49 Closed pocket 78.1835

12 Simple hole 99.9977 50 Opened pocket 99.9893

13 Opened slot 99.3274 51 Counterbore hole 99.9996

14 Simple hole 99.9977 52 Simple hole 97.9496

15 Closed pocket 99.4155 53 Simple hole 99.9627

16 Counterbore hole 99.9996 54 Simple hole 99.9254

17 Opened pocket 99.9794 55 Counterbore hole 99.9526

18 Simple hole 99.9977 56 Inner chamfer 99.7046

19 Opened pocket 99.9794 57 Outer chamfer 99.2645

20 Inner fillet 100.0000 a Non-feature 99.9615

21 Opened pocket 94.2895 b Non-feature 99.9615

22 Simple hole 99.9977 c Non-feature 99.9615

23 Counterbore hole 99.9996 d Non-feature 99.9615

24 Opened pocket 99.9333 e Non-feature 99.9615

25 Closed pocket 98.9804 f Non-feature 99.9615

26 Simple hole 99.9977 g Non-feature 99.9615

27 Opened pocket 99.9794 h Non-feature 99.9615

28 Opened slot 95.4172 i Non-feature 99.9615

29 Simple hole 99.9848 j Non-feature 99.9188

30 Opened pocket 94.2895 k Non-feature 99.9615

31 Opened pocket 99.0065 l Non-feature 99.7054

32 Simple hole 99.9977 m Non-feature 98.3473

33 Opened slot 99.4024 n Non-feature 99.9921

34 Opened pocket 99.9858 o Non-feature 94.0457

35 Closed pocket 78.1835 p Non-feature 99.9995

36 Opened pocket 99.9858 q Non-feature 99.9962

37 Simple hole 99.9627 r Non-feature 99.9998

38 Closed pocket 99.4155
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