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ABSTRACT We report here the complete genome sequence of a Bacillus cereus iso-
late identified in a soil sample from Namibia. This isolate is closely related to the B.
anthracis clade. While the plasmids (500 and 12 kb) carry no detectable B. anthracis
virulence gene, the large plasmid shares a 50-kb continuous region similar to plas-
mid pXO1.

B acillus anthracis is the etiological cause of anthrax, a lethal disease of animals and
humans (1) that can also be used as a bioweapon (2). In recent years, several B. cer-

eus strains causing an anthrax-like disease that are phylogenetically close to B. anthra-
cis and harbor large plasmids with sequences similar to those of B. anthracis plasmids
have been characterized (3–5). Despite uncertainty about the environmental source of
these clinical cases, B. cereus is a known ubiquitous soil bacterium. This study reports
the entire chromosome and plasmid sequence of B. cereus CTMA-1571, isolated from a
soil sample from northern Namibia, a region with a history of recurrent anthrax out-
breaks in animals (6). For the isolation, 10 g of soil was ground for 1 min and homoge-
nized in 50ml of phosphate-buffered saline solution. After incubation under shaking
for 1 h at 56°C, 0.1ml of the solution was streaked onto a sheep blood Columbia agar
plate and incubated overnight at 37°C. One of several dull-gray and opaque beta-he-
molytic colonies presumably belonging to the species B. cereus was selected for further
molecular characterization. This colony was grown overnight in 20ml Luria-Bertani
broth with shaking at 37°C. DNA was isolated using the phenol-chloroform protocol
(7).

A short-read library was prepared using a Nextera XT DNA library preparation kit
(Illumina, San Diego, CA, USA) and sequenced on a MiSeq platform (Illumina) with
paired-end (2� 250-bp) reads. A total of 2� 1,531,288 reads were generated. A long-
read library was prepared using 2D genomic DNA by ligation protocol with the SQK-
LSK208 2D ligation sequencing kit (Oxford Nanopore Technologies) and sequenced for
42 h on a MinION device, generating 68,046 reads with an average read length of
3,752 bp. All reads were quality checked by FastQC v.0.11.9 (http://www.bioinformatics
.babraham.ac.uk/projects/fastqc/) and assembled de novo using SPAdes v.3.14.1
(http://cab.spbu.ru/software/spades/) (8). Terminal overlaps were aligned using AliView
v.1.26 (9) and trimmed to yield circular chromosomal and plasmid sequences. The ge-
nome was rotated using the fixstart program in Circlator v.1.5.5 (10). BUSCO v.4.1.1 (11)
was used to confirm the quality and completeness of the genome assembly. A single
nucleotide polymorphism (SNP)-based phylogenomic tree, which was based on B.
anthracis, B. thuringiensis, the closest-related B. cereus isolate, and CTMA-1571 isolates,
was built using kSNP v.3.1 (12) and a k-mer size of 19. The phylogenomic tree was
visualized using the ggtree R package (Fig. 1) (13). All software used default parameters
unless otherwise specified. The sequences were assembled in 3 contigs. The complete
genome has a total size of 5,695,148 bp, with coverages of 121� and 46� (for the
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Illumina and MinION data, respectively), and consists of 1 chromosome (5,182,254 bp
with a G1C contents of 35.49%) and two plasmids (500,306 bp and 12,588 bp with
G1C content of 32.86%, and 29.52%, respectively). Prokaryotic Genome Annotation
Pipeline v.4.13 (October 2020) (14) identified a total of 5,613 coding DNA sequences,
32 rRNA sequences, and 108 tRNA sequences.

Data availability. The whole-genome sequence comprising the chromosome
and both plasmids was deposited at DDBJ/ENA/GenBank under accession numbers
CP053656 through CP053658. The raw sequence reads were deposited in the NCBI
Sequence Read Archive under accession numbers SRX8842584 and SRX8842585.
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