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Objective: To perform sample size calculations when using tree-based scan statistics in longitudinal 

observational databases.

Methods: Tree-based scan statistics enable data mining on epidemiologic datasets where thousands 

of disease outcomes are organized into hierarchical tree structures with automatic adjustment for 

multiple testing. We show how to evaluate the statistical power of the unconditional and conditional 

Poisson versions. The null hypothesis is that there is no increase in the risk for any of the outcomes. The 

alternative is that one or more outcomes have an excess risk. We varied the excess risk, total sample 

size, frequency of the underlying event rate, and the level of across-the-board health care utilization. We 

also quantified the reduction in statistical power resulting from specifying a risk window that was too 

long or too short.

Results: For 500,000 exposed people, we had at least 98 percent power to detect an excess risk of 1 

event per 10,000 exposed for all outcomes. In the presence of potential temporal confounding due to 

across-the-board elevations of health care utilization in the risk window, the conditional tree-based scan 

statistic controlled type I error well, while the unconditional version did not.

Discussion: Data mining analyses using tree-based scan statistics expand the pharmacovigilance 

toolbox, ensuring adequate monitoring of thousands of outcomes of interest while controlling for 

multiple hypothesis testing. These power evaluations enable investigators to design and optimize 

implementation of retrospective data mining analyses.
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Introduction

New methods are emerging that enable data 

mining for unsuspected drug and vaccine adverse 

reactions in large longitudinal databases, such as 

the United States Food and Drug Administration’s 

(FDA’s) Sentinel System,1 a distributed data network 

of administrative claims databases. Data mining is 

a technique for simultaneous monitoring of many 

exposure-outcome pairs without having to pre-

specify particular pairs of interest. Data mining 

analyses have traditionally been performed using 

spontaneous reporting databases, which lack 

denominator data. Moreover, spontaneous reports 

require suspicion by a health care worker or patient 

that an outcome is potentially the result of exposure 

to a given medical product, which means that 

these databases suffer from selective reporting of 

particular exposure-outcome pairs and persistent 

underreporting.2

The longitudinal nature of administrative claims 

data provides the ability to systematically evaluate 

thousands of outcomes as potential adverse 

reactions. Data mining analyses using longitudinal 

data can act as a wide-ranging safety net, ensuring 

that rate and count data are collected and analyzed 

routinely. Such general safety surveillance can 

fulfill the congressional mandate to provide 

access to safety data summaries utilizing its 

new pharmacovigilance infrastructure1 including 

identification of any new risks not previously 

identified, potential new risks, or known risks 

reported in unusual number.3

Here, we focus on one data mining method that 

leverages these longitudinal data: the tree-based 

scan statistic.4 Previously, it has been shown to 

perform well in postmarket medical product safety 

settings,5–7 and is planned to monitor nine-valent 

human papillomavirus vaccine exposure in the FDA’s 

Sentinel System.8 Additionally, the United States 

Centers for Disease Control and Prevention have 

indicated that they intend to use the method in 

their vaccine monitoring system, the Vaccine Safety 

Datalink.9,10 First, analytic datasets containing rate 

or count data for many disease outcome pairs are 

assembled using familiar epidemiologic designs 

Table 1. Example Branch of the Multi-Level Clinical Classifications Software Tree

TREE LEVEL TREE NODE TREE NODE NAME

1 06 Diseases of the nervous system and sense organs

2 06.04 Epilepsy; convulsions

3 06.04.02 Convulsions

4 06.04.02.00 Convulsions

5 / Leaf ICD-9-CM 780.3 Convulsions

5 / Leaf ICD-9-CM 780.31 Febrile convulsions not otherwise specified

5 / Leaf ICD-9-CM 780.32 Complex febrile convulsions

5 / Leaf ICD-9-CM 780.33 Post traumatic seizures

5 / Leaf ICD-9-CM 780.39 Other convulsions
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that control for confounding. Second, data for 

these outcomes are organized into a hierarchical 

tree. For example, febrile seizures can be combined 

with other similar outcomes under a more general 

heading, e.g., convulsions. Table 1 shows a very small 

part of an example tree. Then, the tree-based scan 

statistic is calculated for the entire analytic dataset 

using maximum likelihood estimation and Monte 

Carlo hypothesis testing to automatically control 

for multiplicity among the many outcomes being 

evaluated.

In the analyses described herein, the hierarchical 

tree is predefined based on clinical knowledge and 

used to structure data, and the main results are the 

expected statistical power. The null hypothesis is that 

there is no elevated risk for any of the thousands 

of outcomes. Conceptually, this use of the tree is 

very different from the tree structures created by 

classification and regression trees (CART), another 

data-mining method. In those analyses, the trees are 

the results of the analyses and that work is aimed at 

tree generation itself.

The advantage of employing a pre-defined 

hierarchical tree structure to arrange the analytic 

dataset is that it allows one to “borrow strength” 

when a clinical concept may be coded in multiple 

ways. Therefore, it is unnecessary for the investigator 

to specify which set of codes is used to identify a 

particular clinical concept. Additionally, a clinical 

concept can be experienced somewhat differently 

by certain individuals in a population, and the 

tree allows biologically-related reactions to be 

aggregated.

Nelson et al. have published a comprehensive review 

paper that describes other data mining techniques 

in longitudinal data,11 including logistic regression 

approaches,12,13 and disproportionality analyses.14–20 

The former approaches execute multiple logistic 

regression analyses and then use post hoc 

techniques to adjust for multiple hypothesis testing. 

Thus, while the maximum likelihood estimation 

is similar, the multiplicity control is different and 

there is not a way to leverage the tree structure to 

account for variable ways that clinical concept is 

coded. Disproportionality approaches were originally 

designed for spontaneous reporting data and then 

extended to make use of newly available longitudinal 

data. They use shrinkage estimators to informally 

control for multiplicity rather than through formal 

hypothesis testing, and also do not make use of the 

tree structure. Nelson et al.’s paper does not formally 

compare methods. Brown et al. compared Poisson 

tree-based scan statistics to disproportionality 

analyses and found reasonable concordance with 

the two approaches.6 In other words, when the 

methods are applied to the same empirical dataset, 

both techniques showed similar detection capability 

although no formal power studies were performed 

for this comparison.

The tree-based scan statistic is hypothesis-

generating, in that it produces an early 

warning with respect to potential associations. 

Because thousands of outcomes are evaluated 

simultaneously, confounding control is design-

based using familiar epidemiologic techniques 

such as confounder adjustment of expected 

counts, restriction, stratification, or matching. As 

with any other data mining method, statistically 

significant “alerts” generated using the tree-based 

scan statistic must be carefully evaluated using 

other pharmacoepidemiologic methods where 

confounding control is more specifically tailored to 

the exposure-outcome pair of concern. In addition to 

generating statistically significant alerts, the method 

will also produce estimates of relative risk and 

attributable risk.

Moore et al. have expressed concern regarding the 

potential for missed safety signals in automated 

data.21 Here, we demonstrate how to assess the 



statistical power of the tree-based scan statistic 

allowing regulators to understand its statistical 

power for different sample sizes and outcome 

frequencies. Our work is part of a larger literature 

that studies the statistical power of other types of 

scan statistics.22–30 These sample size calculations 

should be used in the same way that sample size 

calculations are used for traditional epidemiologic 

studies: to allow the investigator to decide whether 

to proceed with a study or to wait for more sample 

size to accrue based on the desired ability to detect 

particular effect sizes of interest.

Statistical power varies with the effect size, the 

sample size, and the frequency of the underlying 

outcome rate. We simulated data using a new 

user cohort design, which compared an exposed 

population to an unexposed population. We created 

known alternative hypotheses that generated 

clusters of excess risk in the tree structure. We then 

used the tree-based scan statistic to analyze these 

data.

Based on these preparatory-to-surveillance power 

simulations, regulators can properly frame the 

aforementioned mandatory safety data summaries 

at eighteen months postmarket, clearly spelling 

out what level of risk was detectable. Further, such 

simulations allow regulators to make key process 

decisions related to the timing of retrospective data-

mining analyses.

Methods

Tree-Based Scan Statistics for Cohort Data

The tree-based scan statistic detects elevated 

frequencies of outcomes in electronic health 

data that have been grouped into hierarchical 

tree structures. In our case, the tree structure is 

derived from the Agency for Healthcare Research 

And Quality’s Multi-Level Clinical Classifications 

Software (MLCCS) (http://www.hcup-us.ahrq.gov/

toolssoftware/ccs/ccs.jsp). The MLCCS groups 

outcomes into clinically meaningful categories 

and arranges them into four grouping levels. The 

broadest grouping identifies eighteen body systems 

and the narrowest grouping may contain multiple 

ICD-9-CM codes, forming a “branch.” Each individual 

ICD-9-CM code is a “leaf.” Any particular location on 

the tree – be it at the leaf or branch level – is referred 

to as a node. Table 1 shows an example branch.

We curated the full MLCCS tree by excluding ICD-

9-CM outcome codes that 1) are unlikely to be 

caused by medical product exposures such as 

well care visits and pregnancy; 2) are unlikely to 

manifest within a few weeks after exposure, such 

as cancer; and 3) are common and of a less serious 

or unspecific nature, such as fever or diarrhea. 

Following the curation of the original thirteen 

thousand unique ICD-9-CM codes, we evaluated 

6,162 ICD-9-CM codes which all represent individual 

leaves on the tree. Overall, there are 6,861 nodes on 

the tree. The curated tree is available upon request.

The null hypothesis being tested is that, for all nodes 

on the tree, an outcome is expected to occur in 

proportion to the underlying expected count that 

defined that node, as generated from a Poisson 

distribution. The alternative hypothesis is that one 

or more particular nodes on the tree have outcomes 

occurring with higher probability than the specified 

expected counts on those nodes.

A log-likelihood ratio was calculated for every 

node on the tree. The maximum among these 

log-likelihood ratios from the real data set is the 

test statistic for the entire analytic dataset. This 

maximum is compared with the maximum log-

likelihood ratios that were calculated in the same 

way from simulated datasets generated under the 

null hypothesis. If the test statistic from the real 

dataset is among the 5 percent highest of all the 

maxima, the null hypothesis is rejected. The fact 

http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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aThese data are based on 183-day lookback period, with an “exposed” risk window of 1-28 days following vaccination.

that it is the maxima over the whole tree is what 

adjusts for the multiple testing. This hypothesis 

testing method allows one to detect whether any 

node on the tree had clusters of excess outcomes 

that were statistically significant while adjusting for 

multiple testing inherent to evaluating more than six 

thousand nodes.31 Specific details of this procedure 

are included in the eAppendix.

Tree-based scan statistics can be used 

unconditionally or one can condition on the total 

number of observed outcomes in the dataset. 

Mathematical expressions for both versions can 

be found in the eAppendix. Conditioning is a 

mechanism to control for situations when there is an 

across-the-board increase in health care utilization 

during a particular time period that is unrelated 

to the exposure of interest. This situation might 

occur commonly in vaccine safety surveillance 

when the cohort has follow-up tests or visits in 

the days immediately following their well-care visit 

when a vaccine was administered. The conditional 

tree-based scan statistic attenuates this health 

care utilization unrelated to the exposure by 

standardizing all diagnoses by the frequency with 

which they appear in the dataset.

Simulated Datasets

To create the simulated datasets, we required 

background rates, and chose the exposure of 

interest to be quadrivalent human papillomavirus 

vaccine (Gardasil, Merck and Co. Inc.), identified 

by CPT code 90649. The choice of exposure is 

incidental to the power evaluations, but we chose 

this example to motivate how one might use these 

power evaluations in decision-making.

We extracted background rates for all the 

outcomes in the curated MLCCS tree from Florida 

Medicaid data using a cohort of 9-26 year olds 

from June 2006 to June 2009. All persons were 

minimally enrolled for 183 days in the health plan 

to ascertain chronic medical conditions and then 

began contributed time to the background rates. 

Contributed time was censored for any of the 

following criteria: 1) the last date of the study period, 

2) disenrollment, 3) when the first incident outcome 

occurred with incidence criteria defined next, 4) or 

when a subsequent identical vaccination occurred. 

Vaccinated individuals only contributed unexposed 

time post-vaccination in days after the designated 

risk window. Never-vaccinated individuals were 

allowed to contribute time after the 183 day run-in 

period. Key metrics to describe the source data for 

Table 2. Key Metrics of the Source Dataa used to Capture the Background Rates of Outcomes of 

Interest

KEY METRICS

Total person-years followed 1,807,325

Total events 256,117

Total persons 24,369

Total exposed person-years 1,664

Total expected events 164.1

Total observed events in exposed time 379



the background rates are listed in Table 2. These 

background rates are used to calculate age-adjusted 

expected counts that are used by the Poisson-based 

tree-based scan statistic for comparison with the 

simulated observed counts in the risk window.

Outcome events were defined by ICD-9-CM codes 

and visit location/setting. An incident outcome was 

defined as the chronologically first third-level MLCCS 

outcome observed in the inpatient or emergency 

department setting, which was not observed 

during the prior 183 days in either the emergency 

department, inpatient or outpatient setting. This 

means that, even if it was a never before seen ICD-

9-CM code, it was not counted if a different ICD-9-

CM code belonging to the same third level MLCCS 

group, i.e. the same branch, was observed during 

the prior 183 days. For example, as shown in Table 1, 

a febrile seizure (ICD-9-CM 780.31) and a complex 

febrile seizure (ICD-9-CM 780.32) are part of the 

same branch at the third-level node on the MLCCS 

tree (06.04.02). Therefore, in order for a 780.31 code 

to be incident, none of those branch-level outcomes 

could have occurred in the previous 183 days.

Alternative Hypotheses

To understand the statistical power to detect various 

effect sizes, we pre-defined effect sizes of interest 

ranging from 5 excess event per million doses to 

500 excess events per million doses. We chose four 

different outcomes that have varying incidence 

rates and created known alternative hypotheses 

by injecting the risk at the leaf level (i.e., ICD-9-CM 

code) on the tree. The choices of outcomes also 

were incidental, but were required to be differing 

orders of magnitude in their base frequency in the 

dataset. We used Monte Carlo simulation to create 

multiple alternative datasets under both the null and 

known alternative hypotheses. The incidence rates 

and the known alternative hypotheses were inputs 

to stochastic Poisson processes. That is, these values 

allow us to calculate expected counts that serve as 

the parameter of interest for Poisson random draws. 

Using the maximum log-likelihood ratio as the test 

statistic, we computed the percentage of time an 

alert is raised when the type I error was set to 0.05. 

This output was the statistical power.

All analyses were performed using the power 

evaluation feature in the free TreeScan tool (www.

treescan.org, v1.1.3), which calculates pure power 

of the analytic dataset. That is, when performing a 

power evaluation, we do not know which particular 

nodes give rise to the alert, only that an alert was 

generated. The probability of signaling on the 

particular node with the injected elevated risk is 

slightly lower than the pure power since there is 

an allowance for false positive alerts (i.e., 0.05). For 

actual analyses of real data (i.e., those that do not 

use the power evaluation feature), it always possible 

to determine which nodes individually alert.

We also explored the effect on statistical power 

of composite alternative hypotheses of risk. A 

composite alternative hypothesis is one in which 

the elevated risk is assigned to an outcome that is 

defined over a grouping of ICD-9-CM codes rather 

than being assigned to a singular ICD-9-CM code. 

Such a scenario is more likely to occur when multiple 

ICD-9-CM codes could be assigned for the same 

clinical concept. We used both optic neuritis and 

thrombocytopenia as examples. To illustrate, optic 

neuritis may be coded as 377.30 or 377.39, and in 

our source data, the latter was coded 10 times more 

frequently. When we created a simple injected risk 

scenario, then the risk was only elevated at one node 

on the tree, i.e., at the most frequently coded ICD-

9-CM code. In contrast, when we created a complex 

injected risk scenario, then the risk was elevated at 

all nodes on the tree associated with the concept. 

Thrombocytopenia can be coded with eight different 

ICD-9-CM codes. We held effect sizes constant and 

performed the same statistical power analyses.

http://www.treescan.org
http://www.treescan.org
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We also created artificial elevations in the occurrence 

of all outcomes uniformly throughout the tree on all 

nodes, representing an across-the-board increase 

in health care utilization during the risk window. 

We used these known alternative hypotheses to 

evaluate the conditional tree-based scan statistic 

that is designed to control for such utilization. For 

this comparison, we held effect sizes constant 

and compared the probability of rejecting the null 

hypothesis of the conditional and unconditional tree-

based scan statistics.

Mis-Specification of the Risk Window

In the scenarios described above, the risk window 

was perfectly specified, meaning that the true 

risk window was coincident with the observed 

risk window. Data-mining does not involve pre-

specification of hypotheses of interest, and therefore 

there is a universal risk window applied to the 

6000+ outcomes. Consequently, we considered 

circumstances when the specified risk window is 

either too short or too long, and the consequent 

effects on statistical power. Appropriate risk 

window specification has been considered in detail 

elsewhere.32

First, we considered the circumstance when the 

true risk window was longer, but encompassed the 

observed risk window. For example, the true risk 

window could occur 1-28 days post-vaccination 

whereas the observed risk window could occur 1-14 

days post-vaccination. That is, exposed outcomes 

in the 15-28 days following vaccination would be 

missed. Losses in sensitivity underestimate the true 

attributable risk but do not bias the true relative 

risk when assuming a Poisson likelihood, i.e. the risk 

is constant over the relevant time period. It has the 

same effect as reducing the overall sample size. That 

is, specifying a too-short risk window simply means 

that one needs more vaccinees to attain the same 

statistical power.

Then, we considered the circumstance when 

specifying a too-long risk window, i.e. when the 

true risk window was shorter and contained within 

the observed risk window. In these circumstances, 

the true relative risk is diluted or washed out, but 

the attributable risk remains unbiased. Therefore, in 

these scenarios, we calculated the observed effect 

size and created the known alternative hypotheses 

accordingly.

Result

Simple and Complex Injected Risk

Figure 1 shows the statistical power to detect various 

attributable risks. We vary the total sample size 

among four outcomes of interest with underlying 

event rates that vary by orders of magnitude. In the 

population of interest, syncope (ICD-9-CM 780.2) 

occurs most frequently at 95.6 events per 1 million 

doses whereas optic neuritis occurs least frequently 

at 0.30 events per 1 million doses.

When using a fixed risk difference measure, it is 

more difficult to detect the identical risk difference in 

a more frequently occurring event because it takes 

many such events to provide adequate separation of 

the treatment and comparator group population. To 

illustrate, five excess events in the treatment group 

amounts to statistical noise in a commonly occurring 

outcome such as a headache. With rare events, 

separation between the two groups is observable 

even with few events, thereby generating higher 

statistical power to rule out the same attributable 

risk. For example, five excess cases are quite 

meaningful for some autoimmune diseases that are 

only expected to occur once in a million exposed. 

As expected, it is easier to detect the same risk 

differences with larger sample sizes.

In administrative data, clinical concepts may be 

coded uniquely (i.e., a singular ICD-9-CM code), or 

as a collection of codes. In Figure 1, we included 



Note: This figure accounts for different background event rates, sample sizes, and coding algorithms (i.e., singular or multiple ICD-9-CM codes 
of interest). All simulations were performed with 99,999 iterations under the null hypothesis that observed counts for all nodes on the tree were 
expected to occur proportionately to the underlying expected counts; and with 10,000 iterations under the known alternative hypothesis using 
the unconditional tree-based scan statistic. Critical values were set at a signaling threshold of p=0.05.

Figure 1. Statistical Power to Detect Various Attributable Risks
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aAll simulations were performed with 99,999 iterations under the null hypothesis that observed counts for all nodes on the tree were expected to 
occur proportionately to the underlying expected counts with a sample size of 500,000 vaccinees. Allowable type I error set to 0.05.

examples of injected risk when the risk is spread 

among a collection of related ICD-9-CM codes 

(e.g., thrombocytopenia) to observe differences 

between singular injections of risk. The expansion 

of the outcome definition to encompass several 

codes increases the expected counts for the clinical 

concept. The higher expected counts are equivalent 

to testing a different outcome with a higher 

underlying frequency. In other words, when we hold 

the attributable risk constant, the total expected 

counts - regardless of whether it was derived using 

a singular ICD-9-CM code or a collection of codes - 

corresponds to the statistical power.

Adjusting for Across-the-Board Elevations in Health 

Care Utilization

Table 3 demonstrates the ability of the conditional 

versus unconditional tree-based scan statistic to 

properly control for across-the-board elevations in 

health care utilization that happen to occur in the 

risk window but are unrelated to the exposure. We 

compare actual type I error observed to allowable 

type I error (i.e., 0.05). The unconditional tree-

based scan statistic inflates type I error when 

general utilization is increased by as little as 3 

percent. Utilization increases of this magnitude are 

not unusual in administrative data and have been 

observed by the authors in other analyses as well 

as in the source data as seen in Table 2. However, 

the conditional tree-based scan statistic continues 

to hold type I error to the allowable level even when 

across-the-board health care utilization increases by 

500 percent.

Figure 2 is a comparison of the statistical power 

of the conditional versus unconditional tree-based 

scan statistic in the absence of general health care 

utilization increases in the risk window. We compare 

small sample sizes to illustrate situations when the 

conditional tree-based scan statistic performs less 

well than the unconditional tree-based scan statistic. 

Under these circumstances, the conditional tree-

based scan statistic detects the attributable risk less 

often than the unconditional statistic because the 

small sample size intensifies the “attenuation effect” 

that occurs when conditioning on the total number 

of cases. For example, observe the situation of a 

1000 vaccine sample size with a true attributable 

risk of 5 excess cases per 1000 vaccinees (5000 

events per million doses in Figure 2). In this dataset, 

the caseload is almost entirely due to the risk 

(5 observed cases that are all excess cases of 

syncope). Therefore, the conditional tree-based scan 

statistic mistakes part of the “signal” for noise and 

subsequently has reduced statistical power to detect 

it properly. Compare the 89 percent statistical power 

in the unconditional analysis to the 79 percent power 

in the conditional. Particular situations that warrant 

concern include the very early uptake period or low 

exposure prevalence medical products.

Figure 3 is a comparison of the statistical power 

of the conditional tree-based scan statistic’s 

Table 3. Type I Error in the Conditional and Unconditional Tree-Based Scan Statistic under 

Conditions of Across-the-board Elevations in Health care Utilizationa

GENERAL INCREASES IN HEALTH CARE UTILIZATION APPLIED TO DATASET

0% 1% 2% 3% 5% 8% 10% 20% 50% 200% 500%

Unconditional 0.05 0.06 0.06 0.08 0.24 0.82 0.98 1.00 1.00 1.00 1.00

Conditional 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05



performance with varying levels of attributable risk 

and varying levels of general increased utilization 

unrelated to the health outcome of interest. As 

before, when using fixed attributable risks, it is easier 

to detect signals against very rare background rates. 

However, the statistical power of the conditional 

tree-based scan statistic is lower for the same fixed 

risk difference because of the attenuation effect due. 

For example, the statistical power of the conditional 

tree-based scan statistic to detect an excess risk 

of 100 excess events per million doses in an event 

that occurs with the frequency of syncope in a 

500,000 vaccinee population is 97 percent when 

there is no background elevation in overall health 

care utilization. If overall health care utilization is 

50 percent higher for reasons unrelated to the 

exposure, the statistical power to detect the same 

risk difference drops to 59 percent.

Figure 2. Statistical Power to Detect Various Attributable Risks with Various Sample Sizes Using Both 

the Unconditional Versus Conditional Tree-Based Scan Statistic in the Absence of Overall Increases 

in Health Care Utilization

Note: All simulations were performed with 99,999 iterations under the null hypothesis that observed counts for all nodes on the tree were expect-
ed to occur proportionately to the underlying expected counts; and with 10,000 iterations under the known alternative hypothesis. Critical values 
were set at a signaling threshold of p=0.05.
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Note: All simulations were performed assuming a sample size of 500,000 vaccinees with 99,999 iterations under the null hypothesis that ob-
served counts for all nodes on the tree were expected to occur proportionately to the underlying expected counts; and with 10,000 iterations 
under the known alternative hypothesis using a conditional tree-based scan statistic. Critical values were set at a signaling threshold of p=0.05.

Figure 3. Statistical Power to Detect Various Attributable Risks, Accounting for Different Background 

Event Rates and Different Levels of Overall Increases in Health Care Utilization



Risk Window Mis-Specification

Figure 4 demonstrates the effect on statistical power 

when a too-long risk window has been specified. 

The ratio defined in the figure represents the ratio of 

the too-long observed risk window to the true risk 

window contained within it. The losses in statistical 

power occur because of the “washing out” of the 

signal. For example, compare the circumstance when 

the specified window is twice as long as the true 

risk interval (i.e., the ratio is 2) and we are interested 

in the statistical power to detect 100 events per 

million doses for an outcome that occurs with the 

frequency of syncope. In Figure 1, the statistical 

power is 98 percent as compared to 29 percent in 

Figure 4. The too-short risk window does not result 

in loss of statistical power as a consequence of 

bias. Rather, a too-short risk window is equivalent 

to having a smaller sample size. Therefore, one can 

refer to Figure 1 and treat a loss of risk window days 

as a loss of vaccinees.

Sensitivity Analyses: Pruning the Tree

Alerts at the most aggregated nodes on the 

tree are typically not actionable because they 

are so general. For example, an alert raised for 

quadrivalent human papillomavirus vaccine and 

“diseases of the circulatory system” is unlikely to 

be useful information. However, hypothesis testing 

is performed at these nodes. We tested whether 

“pruning the tree” to eliminate hypothesis testing at 

the top two levels of aggregated nodes would result 

in an increase in statistical power. The results were 

unaffected by this pruning because of the relatively 

small number of nodes there, i.e. 18 nodes at the root 

level as compared to 6000+ nodes at the leaf level.

Discussion

We performed numerous simulations to examine 

the statistical power of both the unconditional and 

conditional Poisson tree-based scan statistic for 

cohort-type data. In studies with small sample sizes, 

the unconditional tree-based scan statistic had 

slightly higher statistical power to detect attributable 

risk than the conditional tree-based scan statistic. 

However, the unconditional tree-based scan statistic 

inflated type I error even in the presence of low 

general increases in health care utilization following 

exposure. The conditional tree-based scan statistic 

controlled type I error well when faced with general 

increases in health care utilization following exposure 

but experienced slightly decreased power as a 

consequence of the increasing noise. We observed 

reductions in statistical power resulting from 

specifying a too-long risk window, and reductions in 

sample size from specifying a too-short risk window.

To give our statistical power study context, we 

considered an example problem of quadrivalent 

human papillomary virus vaccine, which is 

administered to 9-26 year olds. We further developed 

background rates based on their “unexposed time” 

when we considered exposed time to occur in the 

first 28 days following vaccination. These background 

rates were used to compute expected counts for 

various sample sizes. The statistical power concepts 

and trends demonstrated with this example should 

apply to all problems regardless of the source data 

or the particular tree being utilized. We focus here 

on demonstrating the process to perform statistical 

power calculations using the power evaluation 

feature within the TreeScan software.

We also use these tables to prepare for future 

vaccine safety monitoring (e.g., nine-valent human 

papillomary virus vaccine) in a population that 

is represented by the source data and by using 

the same tree.8 First, we estimate the number of 

vaccinated individuals expected at eighteen months. 

If the expected sample size of vaccinated individuals 

is small (as it is in Figure 2) and the overall health 

care utilization following exposure is not expected 

to be elevated, then an unconditional analysis is 



Volume 5 (2017) Issue Number 1

Generating Evidence & Methods
to improve patient outcomes

eGEMs

Generating Evidence & Methods
to improve patient outcomes

eGEMs

Note: Ratio is the length of the observed/assumed risk window to the length of the true risk window. All simulations were performed assuming a 
sample size of 500,000 vaccinees with 99,999 iterations under the null hypothesis that observed counts for all nodes on the tree were expected 
to occur proportionately to the underlying expected counts; and with 10,000 iterations under the known alternative hypothesis using an uncondi-
tional tree-based scan statistic. Critical values were set at a signaling threshold of p=0.05.

Figure 4. Statistical Power to Detect Various Attributable Risks When Mis-Specifying the Risk Window



preferred to a conditional analysis. However, if the 

expected number of vaccinated individuals is larger, 

or if overall health care utilization is expected to be 

elevated in the “designated risk window” for reasons 

unrelated to the exposure, then the conditional 

tree-based scan statistic is preferred because it 

minimizes false positive alerting. One could estimate 

this increased level of utilization in the source 

data. For example, in Table 2, comparing the total 

observed events in exposed time (i.e., 379 events) 

to the total expected events (i.e., 164.1 events) yields 

a 2.2x elevation in overall health care utilization. 

These source data have greater overall health care 

utilization in the time period immediately following 

vaccination, which is expected due to follow-up 

visits that occur closely after well-visits for reasons 

unrelated to vaccination. Then, an investigator could 

use Figure 3 to get a sense of the statistical power 

available for various underlying event frequencies.

Our preparatory-to-surveillance simulation 

demonstrates what magnitudes of risk can be 

ruled out or detected based on expected sample 

size at the time of performance of a TreeScan 

analysis. Regulators can use these simulations to 

contextualize what type of safety information can 

reasonably be available at the congressionally 

mandated eighteen month/10000 user postlicensure 

review. Further, if multiple TreeScan analyses are 

likely to be performed over the course of a medical 

product’s lifetime, these simulations can be used 

to optimize analyses and limit potential reuse of 

observational data.33

Data mining analyses using tree-based scan statistics 

expand the safety net of pharmacovigilance, 

ensuring adequate monitoring of thousands 

of outcomes of interest while controlling for 

multiple hypothesis testing. They are an important 

complement to the existing armamentarium of 

knowledge generation about the effects of medical 

products, and we have shown how to estimate 

statistical power for such analyses.
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APPENDIX

Unconditional Tree-based Scan Statistic for Cohort Data

All outcomes are first classified into a hierarchical tree structure described in the main paper. For each leaf 

i of the tree (i.e., finest granularity) which represents a unique outcome of interest, we note the observed 

number ci of outcomes in the risk window and the expected number ni of outcomes based on the 

background rate and sample size.

The next step is to define nodes on the tree. Each node G defines either an outcome (if at the leaf level) or 

a cluster of related outcomes (if at the branch level). The sums of the observed and expected number of 

outcomes in this node are denoted as cG and nG respectively. Again, note that a single leaf is one potential 

node, but a node could also be a branch of the tree.

The log likelihood ratio is derived from a Poisson-based maximum likelihood estimator and is:

LLR(G)=[nG – cG + cG ln ( cG )] I(cG > nG)nG

where:

I() is the indication function, which is 1 when there are more observed outcomes than would be expected by 

chance. It is included to ensure that we are looking for an excess risk of the having the adverse event rather 

than a protective decreased risk.

Log likelihood ratios are computed for computational convenience, and results from them are identical to 

results based on likelihood ratios). The order in which the nodes are evaluated does not impact the results. 

The node G with the maximum LLR is the most likely cluster of unexplained outcomes in the risk window and 

its log likelihood ratio is the test statistic:

T = max LLR(G)
G

The distribution of T is not known analytically, so inference is conducted using Monte Carlo hypothesis 

testing (Dwass, 1957). First, a user-defined number of random data sets (e.g., 99,999) are generated under 

the null hypothesis that the observed number of outcomes in the risk window should be proportional to the 

expected number of outcomes for that same period. T is calculated for the 99,999 random data sets and the 

1 real data set.

If the T in the real data is among the 5% highest of all the maxima from the real and 99,999 random data 

sets generated under the null hypothesis, then that node constitutes a signal at the alpha=0.05 statistical 

significance level. The Monte Carlo based p-value is calculated as p=R/(99999 + 1), where R is the rank of the 

T in the real data set in relation to the T in the random data sets. That way the method formally adjusts the 

p-values for the multiple testing generated by the many overlapping groupings of outcomes. This means 

that, when the null hypothesis is true, there is a 95% probability that all p-values are greater than 0.05, or in 

other words, that there is not a single exposure-outcome pair or grouping with p≤0.05.
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Conditional Tree-based Scan Statistic for Cohort Data

When using the unconditional tree-based scan statistic described above, the null hypothesis is that any 

outcome is equally likely to occur in proportion to underlying background rate of the event as given by the 

expected counts. In the conditional version, the null hypothesis is based on the relative magnitude of the 

expected counts rather than the expected counts themselves, and the analysis is conditioned on the total 

number of outcomes in the whole tree. Thus, the statistical model is a multinomial distribution. Full derivation 

of the equations is in the paper by Kulldorff, 2003.

Thus, we calculate the total number of outcomes in the risk window C = ∑i ci and the total number of 

expected outcomes N = ∑i ni, summed over all the leaves on the tree.

LLR(G)=[cG ln ( cG )+ (C – cG)ln( C – cG )] I ( cG > C – cG )nG N – nG nG N – nG

I() is the indication function, which is 1 when there are more observed outcomes than would be expected by 

chance. It is included to ensure that we are looking for an excess risk of the having the adverse event rather 

than a protective decreased risk.

Again, log likelihood ratios are used for computational convenience as opposed to likelihood ratios. The 

order in which the nodes are evaluated does not impact the results. The node G with the maximum LLR 

is the most likely cluster of unexplained outcomes in the risk window and its log likelihood ratio is the test 

statistic:

T = max LLR(G)
G

The other difference occurs in the Monte Carlo simulation step. Now, every random data set has to have 

the same C and N, so that the total number of observed outcomes and the total number of expected 

outcomes are the same in both the real and all the random data sets. The rest of the procedure is the same 

as described above.
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