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Abstract

Beta-catenin (b-catenin) is a multifunction protein with a central role in physiological homeostasis. Its abnormal expression leads to various dis-
eases including cancer. In normal physiology, b-catenin either maintains integrity of epithelial tissues or controls transcription of various genes
on extracellular instigations. In epithelial tissues, b-catenin functions as a component of the cadherin protein complex and regulates epithelial
cell growth and intracellular adhesion. In Wnt signalling, b-catenin is a major transcriptional modulator and plays a crucial role in embryogene-
sis, stem cell renewal and organ regeneration. Aberrant expression of b-catenin can induce malignant pathways in normal cells and its abnormal
activity is also exploited by existing malignant programmes. It acts as an oncogene and modulates transcription of genes to drive cancer initia-
tion, progression, survival and relapse. Abnormal expression and function of b-catenin in cancer makes it a putative drug target. In the past dec-
ade, various attempts have been made to identify and characterize various pharmacological inhibitors of b-catenin. Many of these inhibitors are
currently being investigated for their anticancer activities in a variety of cancers. The first half of this review will focus on the role of b-catenin in
cancer initiation, maintenance, progression and relapse whereas the second half will briefly summarize the recent progress in development of
agents for the pharmacological modulation of b-catenin activity in cancer therapeutics.
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Introduction

Beta-catenin (b-catenin) is the mammalian homologue of the
drosophila armadillo gene [1]. It acts both as a transcriptional
co-regulator and an adaptor protein for intracellular adhesion [1–3].
b-catenin is essential for the establishment and maintenance of epi-
thelial layers and provides a mechanical linkage between intracellu-
lar junctions and cytoskeletal proteins [4, 5]. Wnt signalling is the
chief regulator of b-catenin [6, 7]. Binding of the Wnt ligand to friz-
zled receptors hyper-phosphorylates and thus activates the dishev-
elled protein (dsh) [8]. Hyper-phosphorylation of dsh results in the
displacement of GSK-3b from the b-catenin degradation complex
and prevents GSK-3b-mediated phosphorylation of b-catenin [8].

This complex comprises adenomatous polyposis coli (APC), axin
and GSK-3b [8]. In the absence of Wnt signal, GSK-3b and casein
kinase 1 (CK1) phosphorylate b-catenin [8, 9]. Phosphorylation of
b-catenin leads to its ubiquitination and proteasomal degradation
through the F-box/WD repeat-containing protein 1A (FBXW1A)/
S-phase kinase-associated protein (SKP) complex [8]. When not
degraded via the proteolytic pathway, b-catenin accumulates in the
perinuclear region and forms a cytoplasmic pool of free signalling
molecules [8, 9]. Here, the stable b-catenin interacts with the lym-
phoid enhancer factor/T cell factor (LEF/TCF) and is translocated
into the nucleus as a complex of b-catenin/LEF/TCF to stimulate
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target gene transcription by displacement of groucho-HDAC
co-repressors [8, 10].

Various extracellular signals regulate the localization of b-catenin
either on the membrane or in the cytoplasm [11]. Activation of recep-
tor tyrosine kinases (RTKs) or cytoplasmic tyrosine kinases (Fer, Fyn,
Yes and Src), phosphorylate b-catenin at specific tyrosine residues
Y654 and Y142 [12]. Y654 phosphorylation leads to the inhibition of
the catenin/E-cadherin interaction, leading to the dissociation of the
complex and subsequent degradation of E-cadherin and b-catenin
[13]. Dissociation of the E-cadherin–b-catenin complex leads to the
loss of epithelial apico-basal polarity [14]. At the same time presence
of other signals decide cellular response to this change [11]. Extracel-
lular signals mediated through growth factors such as platelet-derived
growth factor (PDGF), epidermal growth factor (EGF), insulin and
insulin-like growth factor I (IGF-I) activate PI3K-AKT-MAPK or PKC
pathways [15–19]. Activation of these pathways promotes nuclear
accumulation of b-catenin by inhibition of GSK3b and supports epi-
thelial to mesenchymal transition (EMT). [15–19]. These pathways
also play a critical role in transforming epithelial tumours into an inva-
sive forms and help in the progression of various fibrotic diseases
[19]. b-catenin accumulation within the nucleus or cytoplasm has
been found in more than half of all cancer cases and is related to
increased tumourigenicity [20–25]. Cytoplasmic b-catenin is a hall-
mark of colon cancer [1]. It can induce tumourigenic traits in normal
cells, and further supports cancer cell proliferation and survival [19,
24]. High-level cytoplasmic expression, and nuclear localization of
beta-catenin, is characteristic of stem-like cell populations in cancers
that are resistant to chemotherapeutics and capable of initiating new
tumours [29, 30]. b-catenin also helps in creating a suitable niche for
cancer progression by modulating cancer microenvironment [18, 26–
30].Various studies have shown that inhibition of b-catenin activity
leads to suppression of several cancer hallmarks and is thus per-
ceived as a putative drug target [31].

Role of b-catenin in cancer

Accumulating evidence indicates that b-catenin has a central role in
the malignant transformation of normal cells [32–36]. Herencia et al.

while studying hepatocyte differentiation in mesenchymal stem cells
have found that the activation of Wnt signalling and b-catenin nuclear
localization results in a tumoural phenotype [32]. They reported an
increase in the expression of liver cancer-related proteins in cells with
high b-catenin nuclear localization [32]. Heiser et al. observed rapid
formation of lipogenic liver tumours in mice on AKT and b-catenin
co-activation [33]. In pancreatic cells and lung epithelial cells, activa-
tion of b-catenin has also been reported to be sufficient for induction
of oncogenic transformation [34, 35]. A recent study demonstrated
that Wnt/b-catenin pathway activation in cerebellar progenitor cell
prevents terminal differentiation of these cells and maintain them in a
stem cell like state [36]. This study further suggested that medullo-
blastoma can also originate from cells other than granule progenitors.
Wnt/b-catenin pathway is also a major regulator of cancer initiating
cell (CIC) genesis [36]. Oncogenic mutants of b-catenin have also
been reported and the prevention of their degradation results in intra-
cellular accumulation. These mutants can induce tumour formation in
transgenic animals [37, 38]. The importance of b-catenin in abnormal
cell proliferation attained prominence after the discovery of b-catenin
oncogenic mutations in APC wild-type colon cancers [3, 39]. Mutant
b-catenin protein is not degraded by APC, thus leading to its accumu-
lation in the cytoplasm resulting in uncontrolled cellular proliferation
[39]. The frequency of oncogenic mutations in b-catenin is low but
has been reported in a variety of human cancers [40]. Several studies
have shown (reviewed elsewhere) that b-catenin is a key modulator
of cancer cell proliferation and survival [4, 41]. Initial key studies car-
ried out by Tetsu et al. and Shtutman et al. in colon cancers revealed
that b-catenin activates transcription from the cyclin D1 (CCND1)
promoter, and consensus TCF/LEF-binding sites are necessary for
this activity [42, 43]. b-catenin/TCF/LEF transcription activity also
regulates expression of c-Myc, TP63 isoform DN (DNp63), microph-
thalmia-associated transcription factor (MITF), limb bud and heart
development homolog (LBH), survivin and c-Jun in various cancer
models [44–49]. c-MYC and c-JUN act as oncogenes in their active
state, while DNp63, CCND1, MITF, LBH perform various functions to
support cell growth and survival [44–48]. A list of b-catenin target
genes in various cancers is briefly summarized in Table 1. b-catenin
has also been found to support tumour growth by promoting
angiogenesis in cancers [49]. It regulates expression of vascular

Table 1 Major b-catenin target genes in cancer

S.NO. Gene Name Function

1 MYCBP [113], JAG1 [114], MSL1 [111], PPARdelta [110], Cell transformation

2 CCND1 [42, 43], c-myc [44], DNp63 [45], MITF [46], LBH [47], survivin [48] and
c-Jun [49], fra-1(Fosl1) [49], FGF18 [107], Hath1 [108], MET [109], FGF9 [112]

Cell growth, Proliferation and survival

3 MMP2 [51], MMP9 [51], MMP-7 [52], MMP26 [54], VEGF [48], TIAM1[112],
TWIST1 [115], SNAI2 [57], ZEB1[116], S100A4 [58], uPAR [49]

Migration, Invasion, EMT

4 CD44 [104], VEGF [48], BMP4 [106], Ephb [105], GREM1 [110], EDN1[103] Progression, Angiogenesis
and Niche establishment

5 CD44 [104], HTERT [117], NANOG [117], OCT4 [118] Cancer stem cells
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endothelial growth factor (VEGF) [49]. Collectively, these studies indi-
cate that b-catenin has an important role in maintaining malignancies
by supporting cell proliferation and survival.

Metastasis is an important cancer hallmark and it is often sup-
ported by abnormal b-catenin expression or localization [50]. b-cate-
nin supports the metastatic programme by increasing the migratory
and invasive capabilities of cancer cells [18, 42]. It regulates expres-
sion of various invasion-related genes like matrix metalloproteinases
(MMP2, MMP7, MMP9, MMP26) [51–54]. b-catenin also regulates
EMT, which can endow cells with higher invasive, metastatic and sur-
vival potential [26]. EMT-like state in cancers is promoted by activa-
tion of Snail1 (Snail), Snail2 (Slug), ZEB1, CBF-A/KAP-1 complex,
Twist, LEF-1, Ets-1, FOXC2 and Goosecoid transcription factors (TFs)
[26]. These TFs work downstream of various growth factor (EGF,
TGF-b and IGF1) signalling pathways initiated by changes in cancer
microenvironment [55]. Snail and slug transcription factors help in
the formation of b-catenin/LEF-1 transcription complex and promote
expression of transforming growth factor 3-beta (TGFb3) to induce
EMT [56]. b-catenin/LEF1 also regulates expression of Snail, LEF1
and other EMT markers at the transcriptional level [57]. b-catenin
regulates expression of metastasis-associated gene S100A4 and
Tenascin C (TNC) [58, 59]. TNC is an extracellular matrix (ECM) pro-
tein [60]. It supports the growth and proliferation of metastasis-initi-
ating cancer cells and acts as an important ECM component of the
metastatic niche [60]. Nuclear localization of b-catenin has been pos-
tulated as a potential marker for local lymph node or distant metasta-
sis in variety of cancers including oesophageal, breast, colorectal,
prostate, lung and cervical cancer [61–65]. Apart from the increased
expression or nuclear localization a decrease in the b-catenin expres-
sion has been observed in melanoma, prostate, thyroid and gastric
cancers [66–69]. Decreased b-catenin level in these cancers was
associated with their increased metastatic potential [66–69]. This
probably indicates that breakdown of normal b-catenin functions can
also govern cancer progression and requires further investigation.
Cancer cells are associated with various normal stromal cells called
cancer-associated cells [70]. Fibroblasts, macrophages, regulatory T
cells, mesenchymal stem cells (MSCs) and endothelial cells are the
common members of the cancer stroma [70]. These cells in the
cancer microenvironment support cancer growth and progression. In

oesophageal cancers, tumour-associated fibroblasts are responsible
for higher expression and nuclear localization of b-catenin in adjacent
cancer cells [71]. A recent study indicated that nuclear overexpres-
sion of b-catenin in tumour-associated fibroblasts is a good prognos-
tic indicator in breast cancers [72]. The study also reported that the
ectopic expression of b-catenin in fibroblast increases proliferation
and invasion of co-cultured cancer cells [72]. Fibroblasts in co-culture
have also been shown to increase expression of b-catenin in breast
cancer cells [73]. It also increases proliferation of CD44+/CD24low/-
(CSC) subpopulation to a fivefold higher level than that of the normal
breast cancer cells [73]. These studies underscore the importance of
b-catenin in regulating tumour microenvironment. However, the low
b-catenin expression associated with metastasis needs further inves-
tigation. Collectively, b-catenin activity is modulated by extracellular
changes and in response it modulates cancer microenvironment to
promote tumour growth, invasion and metastasis [18, 55].

Abnormal activity of b-catenin is further associated with cancer
drug resistance and cancer stem cell state [29, 30]. It thus associated
with poor patient outcome and disease relapse [29, 30, 74–77]. b-
catenin is essential for the self-renewal of normal as well as cancer
stem cells. Zhao et al. explored the role of b-catenin in haematopoiet-
ic malignancies [74]. They found that b-catenin plays an essential role
in AML and CML development and also helps in cancer stem cell
renewal [74]. Various other studies have postulated that angiogene-
sis, presence of highly resistant cancer stem cells (CSCs), EMT,
deregulation of cell cycle and apoptosis are central wheels in mecha-
nisms of cancer aggressiveness and chemoresistance [78, 79]. Cur-
rent knowledgebase suggests that Wnt/b-catenin signalling has a role
in all these five aspects associated with the process of carcinogene-
sis. It plays an essential role in cancer initiation, maintenance, pro-
gression, survival and relapse [18, 26, 32, 57, 74–76]. Owing to its
place at the heart of malignant programmes, b-catenin is increasingly
perceived as a putative drug target (Fig. 1).

Beta-catenin inhibitors

Inhibition of b-catenin using small molecule inhibitors or siRNA abro-
gates tumour growth [80, 81]. In the year 2002, Kim et al. for the first

Fig. 1 Role of b-catenin in Tumourigene-

sis. Beta-catenin supports: (A) transforma-
tion of normal cells to cancerous one. (B)
Cancer cell proliferation, renewal, differen-

tiation, niche establishment, angiogenesis

and EMT. (C) Invasion and Intravasion.
(D) Extravasion. (E) tissue invasion and

organ homing to establish micrometasta-

sis. CSC, Cancer stem cell; EMT, Epithelial

to mesenchymal transition; ECM, Extracel-
lular matrix.
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time demonstrated that specific inhibition of the oncogenic form of b-
catenin is sufficient to reverse the transformed properties of human
cancer cells [82]. In their study, they found that b-catenin is a neces-
sary oncogene and the pharmacological inhibition of oncogenic b-
catenin is likely to be an effective strategy for reversing the malignant
properties of advanced human tumours [82]. To date, many b-catenin
signalling pathway inhibitors are under investigation with the potential
aim of disrupting b-catenin activity and its interaction with the tran-
scription factors. Lepourcelet et al. made initial attempts to screen
and identify compounds capable of disrupting TCF/b-catenin com-
plexes [83]. They screened chemical libraries of small molecules
using a high-throughput assay system and found two potent inhibi-
tors (PKF115-584 and PKF222-815) capable of disrupting TCF/b-cate-
nin complexes and antagonize cellular effects of b-catenin-dependent
activities [83]. They also identified other b-catenin inhibitors
(PKF118-310, CGP049090 and PKF118-744) capable of inhibiting
b-catenin activity [83]. Furthermore, Wnt/b-catenin signalling inhibi-
tor PKF118–310 effectively inhibited proliferation of prostate cancer
cells (IC50 � 1 lM) [84]. Minke et al. and Gandhirajan et al. inves-
tigated the effects of CGP049090 (IC50 � 1 lM) and PFK115-584
(IC50 � 1 lM) in acute myeloid leukaemia (AML) and chronic lym-
phocytic leukaemia (CLL) cells respectively [85, 86].They found that
both compounds led to a substantial decrease in the expression of b-
catenin/LEF1 target genes (e.g. c-myc, cyclin D1 and survivin).
Down-regulation of these survival-related genes resulted in the induc-
tion of cell death in AML cell lines and cells derived from AML
patients [86]. These inhibitors also induced cell death in CLL cell lines
and patient samples [87]. PKF118-310 was also found to be effective
against human osteosarcoma cells. Here, inhibition of b-catenin
resulted in suppression of MMP9 enzymatic activity and thus reduced
cancer cell invasion and migration [87]. Apart from its anti-invasive
effects, PKF118-310 also induced cell death and G2/M phase arrest in
osteosarcoma cells by decreasing expression of cyclin D1, c-Myc and
survivin [87]. Hallett et al. found that PKF118-310 (IC50 � 1 lM)
was effective against breast cancer initiating cells (BTIC) where it
inhibited tumour growth and proliferation [88]. Administration of
PKF118-310 to tumour-bearing mice halted tumour growth in vivo
and viable tumour cells harvested from PKF118-310 treated mice
were unable to induce the growth of secondary tumours after trans-
plantation [88]. Emami et al. identified a novel inhibitor (ICG-001;
IC50 � 3 lM) of beta-catenin/CREB-binding protein transcription
activity. ICG-001 induced apoptosis in transformed cells selectively
and also reduced in vitro and in vivo growth of colon carcinoma cells
[89]. In another attempt to identify novel inhibitors of the Wnt/b-cate-
nin pathway, Ewan et al. screened a chemical library against a tran-
scription factor reporter cell line in which the activity of the pathway
was induced at the level of dishevelled (dsh) protein [90]. They identi-
fied a potent inhibitor CCT036477 (IC50 � 5 lM), capable of inhibit-
ing TCF/b-catenin-mediated transcription and inducing cancer cell
death [90]. Chen et al. identified nine potent b-catenin inhibitors
(IC50 � 2.5 lM) [91]. They screened over 200 thousand com-
pounds in vitro to identify less toxic and highly selective inhibitors
against the Wnt/b-catenin signalling pathway [91]. Based on the
results using cellular systems, five compounds were found to inhibit
Wnt response (IWR) and four compounds were found to inhibit Wnt

production (IWP) [91]. Huang el al. identified a novel inhibitor
(XAV939) which antagonized Wnt/b-catenin pathway by inhibiting
tankyrase [92]. Tankyrase is an axin inhibitor, thus XAV939 increases
axin levels in cells [92]. Axin stabilization further leads to b-catenin
degradation and Wnt/b-catenin pathway inhibition [92]. Song et al.
employed a high-throughput screen to identify inhibitors of Wnt/
b-catenin signalling [93]. They found a special class of compounds
(acyl hydrazones; IC50 � 2 lM) with iron chelating activity [93].
They demonstrated that their inhibitory effect on the Wnt/b-catenin
signalling pathway is linked to iron chelation [93]. These results fur-
ther supported the initial finding of Brookes et al. that iron can induce
Wnt/b-catenin signalling [93, 94]. Recently, Coombs et al. used a
cell-based assay system as well as transgenic MMTV-Wnt1 and
MMTV-PyMT mice models to screen Wnt/b-catenin inhibitors [95].
They found a compound N-((8-hydroxy-7-quinolinyl) (4-methylphe-
nyl)methyl)benzamide (HQBA) with IC50 ranging between <1 nM and
50 lM in various cellular models [95]. In mice models, it effectively
reduced tumour mass [95]. HQBA was found to be safe at higher
doses (60–90 mg/kg) and interestingly its anticancer effects were
also caused by iron chelation [95]. In various other attempts to iden-
tify b-catenin inhibitors, many potent compounds capable of inhibit-
ing b-catenin activity as well as its molecular interactions were
identified. Some of these inhibitors are listed in Table 2.

Furthermore, inhibition of b-catenin can also be employed against
cancer stem cells and chemo-resistant cancer cells. The Rosen
laboratory evaluated radiation resistance in CSCs isolated from p53-
null mouse mammary tumours [96]. Using the inhibitor perifosine,

Table 2 Small molecular inhibitors of b-catenin signaling

S.no. Inhibitor Target Reference

1 PKF118-310, CGP049090,
PKF115-584, PKF222-815
and PKF118-744

b-catenin–TCF
interaction

[83]

2 ICG001 b-catenin–CBP
interaction

[89]

3 CCT036477 b-catenin–TCF
interaction

[90]

4 XAV939 Tankyrase [92]

5 Acyl hydrazones, HQBA Iron chelators [93, 95]

6 Molecules with 2,3,
6-trisubstituted
pyrido[2,3,-b] pyrazine
core skeletons

b-catenin [119]

7 Carnosic acid b-catenin/BCL9 [120]

8 CCT031374 b-catenin [121]

9 iCRT-3,5,14, NC043 b-catenin–TCF
interaction

[122, 123]

10 Ibuprofin, aspirin Cox2 Inhibitors [124]
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they were able to block AKT and b-catenin activation and sensitize the
cells to radiation [81]. Another study has shown that b-catenin is a
target of selenium and its inhibition is associated with increased
chemosensitivity to cytotoxic drugs in various human cancers [96].
However, there are only limited reports detailing the toxicological,
pharmacokinetic and pharmacodynamic data for these inhibitors. Col-
lectively, the studies carried out using small molecule inhibitors of b-
catenin targeted to inhibit cancer progression look promising. These
small molecule inhibitors reduce cancer growth, induce apoptosis,
decrease invasion and migration of cancer cells.

Plant-derived beta-catenin modulators

Various plant-derived compounds with anticancer activities are also
known to inhibit or modulate the Wnt/b-catenin signalling pathway.
Tetrandrine (TET), a bis-benzylisoquinoline alkaloid purified from the
root of Stephania tetrandra exhibited significant anticancer activity by
inhibiting b-catenin/Tcf transcriptional activity (IC50 range, 1.25–
5.7 lM) [97]. Curcumin, a plant-derived natural phenol from the pop-
ular Indian spice turmeric shows excellent tumour inhibition property
without significant toxicity [98]. Curcumin and its derivative
CHC007100 inhibit b-catenin/Tcf signalling by 58–63% and 70–78%,
at 20 and 100 lM doses respectively [98]. Another plant-derived fla-
vonoid quercetin also leads to the decrease in beta-catenin/Tcf tran-
scriptional activity [99]. Quercetin acts at a very high dose (IC50,
100 lM) and further investigation is required for data related to its
safety and efficacy. Plant flavanoid silymarin, from Silybum maria-
num, inhibits melanoma cell migration (IC50 � 20 lM) by inhibiting
b-catenin nuclear localization [100]. Carnosol, from the herb rose-
mary, prevents APC-associated intestinal tumourigenesis in a mouse
model of colonic tumourigenesis. Its dietary administration (0.1%)
reduced tumour growth by 46 per cent without any toxicity. It sup-
pressed tumour growth via its ability to enhance E-cadherin-mediated
adhesion and inhibition of b-catenin tyrosine phosphorylation [101].
Cardamonin a natural compound derived from Aplinia katsumadai
inhibits 65–70 per cent of b-catenin activity at a dose � 10 lM, with-
out compromising cell viability [102]. These studies indicate that vari-
ous plant-derived chemicals (phytochemicals) and their various
analogues can also modulate b-catenin functions and thus could be
tested against various cancers with abnormal b-catenin activity.
These phytochemicals and their derivatives further require thorough
investigation for their safety and efficacy.

Conclusions and perspectives

The potential of the pharmacological modulation of b-catenin in can-
cer therapeutics is paramount. This may possibly provide an attrac-
tive option of targeting various aspects of the carcinogenic process
i.e. initiation, progression and chemoresistance in conjunction with
the traditional chemotherapy. However, the long-term effects of the
pharmacological manipulation of b-catenin remain still unclear. The
overall regulation of b-catenin involves multiple signalling pathways
and therefore pharmacological modulation could be counterbalanced
through the activation of compensatory signalling pathways. The pos-
sibility of adverse side effects of b-catenin inhibition cannot be ruled
out at this juncture and more detailed studies will be required to
address this key issue. To date, use of various small molecule inhibi-
tors of b-catenin targeting cancer have provided some encouraging
results. Further efforts can be directed towards evaluating the efficacy
of the existing inhibitors in variety of cancer types, stages and
especially against cancer initiating cells/cancer stem cells and chemo-
resistant cancers. As it is evident that microenvironmental regulation
of the b-catenin activity plays a central role in the malignant trans-
formation and induction of metastasis; these inhibitors can also be
used in combination with inhibitors of cancer survival pathways and
modulators of tumour microenvironment. Some of the phytochem-
icals that seem to modulate b-catenin activity can also be used as
lead compounds for developing b-catenin-targeted therapeutics.
Targeting Wnt–b-catenin activity could open new avenues for novel
and tailor-made cancer therapeutic approaches.
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