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ABSTRACT

The Rev1-Polf pathway is believed to be the major
mechanism of translesion DNA synthesis and base
damage-induced mutagenesis in eukaryotes. While
it is widely believed that Rev1 plays a non-catalytic
function in translesion synthesis, the role of its
dCMP transferase activity remains uncertain. To de-
termine the relevance of its catalytic function in
translesion synthesis, we separated the Rev1
dCMP transferase activity from its non-catalytic
function in yeast. This was achieved by mutating
two conserved amino acid residues in the catalytic
domain of Rev1, i.e. D467A/E468A, where its catalyt-
ic function was abolished but its non-catalytic
function remained intact. In this mutant strain,
whereas translesion synthesis and mutagenesis of
UV radiation were fully functional, those of a
site-specific 1,N6-ethenoadenine were severely
deficient. Specifically, the predominant A!G muta-
tions resulting from C insertion opposite the lesion
were abolished. Therefore, translesion synthesis
and mutagenesis of 1,N6-ethenoadenine require
the catalytic function of the Rev1 dCMP transferase,
in contrast to those of UV lesions, which only require
the non-catalytic function of Rev1. These results
show that the catalytic function of the Rev1 dCMP
transferase is required in a lesion-specific manner
for translesion synthesis and base damage-induced
mutagenesis.

INTRODUCTION

Translesion synthesis is a major cellular mechanism in
response to unrepaired DNA lesions during replication.
It directly copies damaged sites of the template during
DNA synthesis. Thus, translesion synthesis allows DNA
replication to completion in the presence of DNA lesions
that block replicative polymerases. Translesion synthesis is
signaled by stalled replicative DNA polymerase at the
lesion site, leading to mono-ubiquitination of PCNA by
the Rad6–Rad18 ubiquitin-conjugating/ligation complex
(1). Subsequently, the modified PCNA recruits bypass
polymerases such as the Y family polymerases and DNA
polymerase z (Pol z) to the damaged template, replacing
the stalled replicative polymerase. Lastly, translesion syn-
thesis occurs by polymerase-catalyzed nucleotide insertion
opposite the lesion followed by extension synthesis from
opposite the lesion (2). When the correct nucleotide is
inserted opposite the lesion, translesion synthesis is
error-free; when a wrong base is inserted opposite the
lesion, translesion synthesis is error-prone. Error-prone
translesion synthesis constitutes the major mechanism of
base damage-induced mutagenesis in the yeast model
system (3–13). Accumulating evidence also supports the
notion that error-prone translesion synthesis is a major
mechanism of base damage-induced mutagenesis in
higher eukaryotes including mammals (14–18).

In the yeast Saccharomyces cerevisiae, the Rev1-Polz
pathway constitutes the major mechanism of translesion
synthesis. Polz is a B family polymerase and consists of the
catalytic subunit Rev3 and the non-catalytic subunit Rev7
(19). Saccharomyces cerevisiae contains two Y family
DNA polymerases: Rev1 and PolZ. Mammals contain

*To whom correspondence should be addressed. Tel: +1 859 323 5784; Fax: +1 859 323 1059; Email: zwang@uky.edu

5036–5046 Nucleic Acids Research, 2010, Vol. 38, No. 15 Published online 12 April 2010
doi:10.1093/nar/gkq225

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



two additional Y family members: Polk and Poli (20).
Whereas PolZ functions in translesion synthesis of
selected types of DNA lesions such as ultraviolet (UV)
lesions and benzo[a]pyrene DNA adducts (7,21,22),
Rev1 and Polz appear to be more generally required in
translesion synthesis, and is thus referred to as the
Rev1-polz pathway here (2).

Rev1 is unique in that it is a template-dependant dCMP
transferase, rather than a typical DNA polymerase (23–
26). In vitro, Rev1 is capable of catalyzing C insertion
opposite multiple types of DNA lesions such as AP site
(23), 1,N6-ethenoadenine, uracil, 8-oxoguanine, (+)-
trans-anti-BPDE-N2-dG, and (�)-trans-anti-BPDE-N2-
dG (25). Uniquely, Rev1 uses the Arg324 of the protein,
instead of the DNA template G, as the template for
choosing dCTP as the incoming base during catalysis
(27). Rev1 is required for translesion synthesis and muta-
genesis of UV lesions in yeast (5,13,15). However, C in-
sertion is not reflected among the translesion synthesis
products of a TT (6–4) UV photoproduct in yeast cells
(5). Indeed, the Rev1 dCMP transferase is inactive in
response to a template TT (6–4) UV photoproduct or a
TT UV dimer in vitro (25). Therefore, it was proposed that
Rev1 plays a non-catalytic function in the Rev1-Polz
pathway for translesion synthesis and mutagenesis of
UV radiation (5,13), although the precise nature of the
non-catalytic function is not known. One hypothesis pos-
tulates that Rev1 acts to recruit other Y family DNA
polymerases to lesion sites through protein–protein inter-
actions (28,29). It is now generally believed that Rev1
plays a ubiquitous non-catalytic function in translesion
synthesis. The role of the Rev1 dCMP transferase in
translesion synthesis, however, remains uncertain.

Previously, we found that Rev1 is capable of efficient C
insertion opposite 1,N6-ethenoadenine in vitro (25). This
lesion is produced by lipid peroxidation products or the
carcinogens vinyl chloride and urethane (30,31). Using the
yeast model system, we examined the role of the Rev1
dCMP transferase in the bypass of 1,N6-ethenoadenine
in vivo. In this report, we show that the dCMP transferase
of Rev1 is required for translesion synthesis and mutagen-
esis of 1,N6-ethenoadenine. Our results show that the cata-
lytic function of the Rev1 dCMP transferase is required in
a lesion-specific manner for translesion synthesis and base
damage-induced mutagenesis.

MATERIALS AND METHODS

Materials

Purified human PolZ, Poli and Polk in near homogeneity
were those preparations described previously (32–34). T4
DNA ligase, the T4 gene 32 protein and T4 polynucleotide
kinase were obtained from Enzymax (Lexington, KY,
USA). Yeast lytic enzyme (70 000U/g) was purchased
from MP Biomedicals (Irvine, CA, USA). The Wizard
PCR Preps DNA Purification Resin was from Promega
(Wisconsin, WI, USA). The 29-mer DNA template, 50-CC
ATCGCTACCTACCATCCGAATTCGCCC-30, con-
tained a 1,N6-ethenoadenine at the underlined A, and
was used for in vitro translesion synthesis assays. It was

synthesized via automated DNA phosphoramidite
methods by Operon (Alameda, CA, USA). The 22-mer
damaged oligonucleotide, 50-GTAAGCTAGATCCTCT
AGAGCG-30, contained a site-specific 1,N6-
ethenoadenine at the underlined A. This oligonucleotide
and the 51-mer uracil-containing scaffold, 50-CTGUG
CCCUCCAUGCGCUCUGGAGGAUCUAGCTUACG
AAAAAUCAGTCAAG-30, were used for construction
of site-specifically damaged plasmid DNA. These two
oligonucleotides were synthesized via automated DNA
phosphoramidite methods by Integrated DNA
Technologies (Coralville, IA, USA). Yeast Rev1 protein
and the D467A/E468A mutant Rev1 protein were purified
by Enzymax according to our previously described
method (35).

Yeast strains

Yeast strains used were the wild-type BY4741 (MATa his3
leu2 met15 ura3) and its isogenic mutants BY4741�rad30
(rad30 deletion), BY4741�rev1 (rev1 deletion),
BY4741�rev3 (rev3 deletion); the wild-type CL1265-7C
(MAT� arg4-17 leu2-3,112 his3D trp1 ura3-52) and its
isogenic strains CL1265-7C�rev1 (rev1 deletion),
CL1265-7C�rev1/REV1 (rev1 deletion mutant containing
the wild-type REV1 gene on the plasmid vector pEAT),
and CL1265-7C�rev1/REV1mt (rev1 deletion mutant ex-
pressing the Rev1D467A/E468A mutant protein from the
plasmid pEAT). BY4741 was purchased from ATCC
(Manassas, VA, USA). BY4741�rad30 (lacking PolZ)
was purchased from Research Genetics (Huntsville, AL,
USA). BY4741�rev1 and BY4741�rev3 (lacking Polz)
were constructed previously (36,37). CL1265-7C was
provided by Christopher Lawrence of the University of
Rochester (11). CL1265-7C�rev1 was constructed previ-
ously (13). CL1265-7C�rev1/REV1 and CL1265-
7C�rev1/REV1mt were obtained by transforming the ex-
pression plasmid construct pEAT-REV1 and
pEAT-REV1mt, respectively, into the CL1265-7C�rev1
strain. The expression vector pEAT contained the 2 mm
origin for multi-copy plasmid replication in yeast, the
TRP1 gene for plasmid selection, and the ADH1
promoter for constitutive expression of the REV1 or
REV1mt gene.

In vitro translesion synthesis

In vitro translesion synthesis assays were performed
at 30�C for 10min as described before (32–34).
The reaction (10 ml) contained 50 mM of dNTPs (dATP,
dCTP, dTTP and dGTP individually or together as
indicated), 50 fmol of the 29-mer DNA template with a
site-specific 1,N6-ethenoadenine and a 20-mer 32P-labeled
primer annealed right before the lesion, and a purified
DNA polymerase. The reaction products were separated
on a 20% polyacrylamide gel containing 8M urea and
visualized by autoradiography. Primer extension was
quantitated by scanning densitometry of the autoradio-
gram using the SigmaGel Software (Sigma, St Louis,
MO, USA) for analysis.
Kinetic analysis of nucleotide insertion opposite 1,N6-

ethenoadenine was performed as previously described
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(33,38), using 50 fmol of the primed DNA template,
0.33 ng (4 fmol) of human PolZ or 0.4 ng (5 fmol) of
human Poli, and increasing concentrations of dATP,
dCTP, dTTP or dGTP. Kinetic analysis yielded Vmax

and Km values for the incorporation of the correct and
the incorrect nucleotides. The misincorporation error
rate was calculated from the equation: finc= (Vmax/
Km)incorrect/(Vmax/Km)correct.

Construction of the rev1D467A/E468A mutant gene

The rev1D467A/E468A mutant gene was constructed by
site-directed mutagenesis using a PCR method (39).
Briefly, two PCR amplifications were performed using
the wild-type REV1 gene as the template. While one
PCR reaction yielded a 360-bp DNA fragment using the
primers ACGGATAAGGATACCTACATTATCTTTC
(yREV1nd3F) and CAAACAGCTgCAgCAATAGATA
TAGGTAAAATCAAATTGAATATG; the other
reaction produced a 460-bp DNA fragment using the
primers CCTATATCTATTGcTGcAGCTGTTTGTGT
GAGGATAATCC and GTAAGACTTCTTTGGGATC
GTACAG (yREV1R20). The two mutated bases are
shown in lower case. The mutations result in D467!A
and E468!A double substitutions in protein sequence
and a new PstI restriction site in DNA sequence. The
two DNA fragments were purified and mixed for PCR
amplification using the primers yREV1nd3F and
yREV1R20, yielding an 800-bp DNA fragment, which
was cloned into the NcoI/HindIII sites of pUC19M1.
The insert sequence (648 bp) that contains the
rev1D467A/E468A mutations were confirmed by DNA
sequencing. The 30 fragment (1.2 kb) of the REV1 gene
was ligated at the 30 end of the rev1D467A/E468A DNA
fragment (HindIII/SalI sites). Lastly, the 50 fragment
(1.2 kb) of the REV1 gene flanked by BglII and NcoI
was assembled into the rev1D467A/E468A DNA
fragment, yielding the rev1D467A/E468A mutant gene.

The dCMP transferase assay

Assays of dCMP transferase were performed as we previ-
ously described (25). Briefly, a standard reaction mixture
(10ml) contained 25mM KH2PO4 (pH 7.0), 5mM MgCl2,
5mM dithiothreitol, 100 mg/ml bovine serum albumin,
10% glycerol, 50 mM of dNTPs (dATP, dCTP, dTTP
and dGTP), 50 fmol of a DNA template containing a 50
32P-labeled primer, and purified yeast Rev1 protein. After
incubation at 30�C for 10min, reactions were terminated
with 7 ml of a stop solution (20mM EDTA, 95%
formamide, 0.05% bromophenol blue and 0.05% xylene
cyanol). Reaction products were separated on a 15% poly-
acrylamide gel containing 8M urea and visualized by
autoradiography.

UV sensitivity and UV mutagenesis assays

Wild-type yeast CL1265-7C and its isogenic strains
CL1265-7C�rev1, CL1265-7C�rev1/REV1 and CL1265-
7C�rev1/REV1mt were grown at 30�C in minimum
medium containing supplemented arginine. Cells were ap-
propriately diluted and plated onto plates of minimum
medium containing supplemented arginine. The

uncovered plates were irradiated with short wave UV
light at the indicated doses. Surviving colonies were
scored after 3–4 days of incubation at 30�C. UV survival
was calculated by dividing surviving colonies after UV
treatment by those without UV treatment.

UV mutagenesis was measured at the chromosomal
arg4-17 locus essentially as described (11). Briefly, 4
OD600 cells (4 � 107) were collected by centrifugation in
a microcentrifuge at 5000 r.p.m. for 20 s. After washing
twice in 1ml of sterile water, cells were resuspended in
110 ml of sterile water. While 100 ml of cells were plated
onto plates of minimum medium lacking arginine for mu-
tagenesis assay, 10 ml of cells were appropriately diluted
and plated onto plates of minimum medium supplemented
with arginine for measurement of UV survival. The un-
covered plates were irradiated with short wave UV light at
20 J/m2. After incubation at 30�C for 2–4 days, colonies
were counted.

Construction of plasmid containing a site-specific
1,N6-ethenoadenine DNA adduct

Plasmid containing a site-specific 1,N6-ethenoadenine
DNA adduct was constructed by Enzymax using a
previously described method (36). Briefly, a 20-mer
DNA oligonucleotide, 50-GTGCCCTCCATGGAAAAA
TC-30, was annealed to the single-stranded phagemid
pELUf1 vector at its unique NcoI restriction site within
the URA3 gene. The phagemid was then linearized by di-
gestion with the NcoI restriction endonuclease. The linear
pELUf1, the 51–mer DNA scaffold, and the
50-phosphorylated 22-mer oligonucleotide containing the
lesion were annealed together, in which the mid-region of
the scaffold is complementary to the damaged oligo-
nucleotide, while its ends are complementary to the
single-stranded pELUf1 ends. The damaged oligonucleo-
tide was ligated into the pELUf1 vector by T4 DNA ligase
at 16�C for 20 h, and the DNA was precipitated in
ethanol. Finally, the complementary strand of pELUf1
was synthesized with T4 DNA polymerase in the
presence of T4 gene 32 protein and 0.5mM each of
dATP, dCTP, dGTP and dUTP, using the scaffold as
the primer. The resulting construct was a double-stranded
plasmid containing a site-specific 1,N6-ethenoadenine. The
undamaged strand contained U in place of T. Formation
of double-stranded plasmid pELUf1-ethenoA was con-
firmed by electrophoresis on a 1% agarose gel.

Translesion synthesis in yeast cells

In vivo translesion synthesis assays were performed as we
previously described (7,36). Briefly, yeast cells of various
strains were transformed by site-specifically damaged
pELUf-ethenoA plasmid (2 mg) using the lithium acetate
method (40). Then, cells were collected by centrifugation
(20 s at 5000 r.p.m.) in a microcentrifuge, resuspended in
400 ml of sterile water, and plated onto two YNB minimal
agar (0.17% yeast nitrogen base, 0.49% ammonium
sulfate, 2% glucose and 2% agar) plates lacking leucine
but supplemented with 5mM 5-fluoroorotic acid (5-FOA),
150 mM methionine and 380 mM uracil. Cells containing
replicated pELUf1-ethenoA were able to grow into
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colonies on the 5-FOA plates, whereas cells transformed
by the empty vector pELUf1 (a minor fraction of contam-
inant in the pELUf1-ethenoA preparation) remained
URA3 wild-type and thus were unable to grow on the
5-FOA plates. Yeast colonies were counted after incuba-
tion at 30�C for 3–4 days. In each experiment with each
strain, transformation efficiency was determined by a par-
allel transformation using the undamaged and
double-stranded pELUf1. Translesion synthesis was
calculated as transformants per microgram of the
damaged plasmid per 106 transformable cells with the
undamaged plasmid (i.e. transformants per microgram
of the damaged plasmid� 106/transformation efficiency
expressed as transformants per microgram of the undam-
aged plasmid). Relative translesion synthesis was obtained
by comparing translesion synthesis in various mutant
strains to that in the wild-type strain. To minimize
inter-experimental variations and to ensure reproducibil-
ity, transformations with all strains were performed
side-by-side on the same day using the same batch of
pELUf-ethenoA plasmid preparation, and multiple inde-
pendent transformations were performed for each strain.

Yeast colonies on the 5-FOA plates were further pro-
cessed to determine the specificity of translesion synthesis.
Individual colonies were resuspended each in 10 ml of a
solution containing 1mg/ml yeast lytic enzyme in sterile
water, followed by incubation at 37�C for 1.5–2 h. An
aliquot of 1 ml was used for PCR amplification of a
670-bp plasmid region containing the original lesion site,
using the primers 50-CCCGCAGAGTACTGCAATTTG
AC and 50-GAGCGGATAACAATTTCACACAGG.
After heating the PCR reaction mixture (20 ml) at 94�C
for 4min, 35 cycles of amplification were performed ac-
cording to the following conditions: 30 s denaturation at
94�C, 30 s annealing at 65�C and 45 s extension at 72�C.
After the last cycle, the reaction was continued for seven
more minutes at 72�C. An aliquot of 2 ml PCR products
was separated by electrophoresis on a 1% agarose gel
containing 0.5mg/ml ethidium bromide. Then, two
aliquots of 5 ml PCR products each were used for DNA
digestions with BamHI and HindIII restriction endonucle-
ases, respectively. PCR products that were sensitive to
BamHI cleavage are indicative of C insertion opposite
the 1,N6-ethenoadenine DNA adduct; while those sensi-
tive to HindIII cleavage are indicative of A insertion
opposite the lesion. All translesion synthesis products
analyzed in this study were either sensitive to BamHI or
HindIII cleavage.

RESULTS

Translesion synthesis of the 1,N6
-ethenoadenine DNA

adducts by Y family DNA polymerases in vitro

The 1,N6-ethenoadenine is an important type of exocyclic
DNA adduct. To understand molecular mechanisms of
bypass and mutagenesis of this lesion, we examined its
translesion synthesis in vitro by the human Y family
DNA polymerases REV1, PolZ, Poli and Polk.
Translesion synthesis was performed with the purified
polymerases on a 29-mer DNA template containing a

32P-labeled 20-mer primer annealed right before the
lesion (Figure 1A). As shown in Figure 1B (lane 1),
human PolZ efficiently bypassed 1,N6-ethenoadenine.
To identify the base incorporated opposite the lesion, we
performed translesion synthesis assays with only one
deoxyribonucleoside triphosphate: dATP, dCTP, dGTP
or dTTP individually. As shown in Figure 1B (lanes
2–5), human PolZ preferred A insertion opposite the
lesion, although the other three nucleotides were also
inserted. To more accurately compare the efficiency of nu-
cleotide insertion, we performed kinetic analysis using
increasing concentrations of a single dNTP. From these
assays, the kinetic parameters Vmax and Km were obtained
(Table 1). While the efficiency of nucleotide insertion is
indicated by the Vmax/Km value, the accuracy of nucleotide
insertion is indicated by the finc value, i.e. (Vmax/
Km)incorrect/(Vmax/Km)correct. These kinetic measurements
show that human PolZ is error-prone in catalyzing
translesion synthesis of 1,N6-ethenoadenine in vitro, with
nucleotide insertion efficiency in the order of
A>T>C�G (Table 1).
Human Poli was capable of efficient translesion synthe-

sis opposite 1,N6-ethenoadenine in vitro (Figure 1B, lane
11). However, DNA synthesis was aborted after nucleo-
tide insertion opposite the lesion. As shown in Figure 1B
(lanes 12–15), the correct T was preferentially inserted
opposite the lesion. Less frequently, C was also inserted.
A or G insertion was not detected. Kinetic analysis indi-
cates that the correct T was preferred over C insertion by
�6-fold (Table 1). These results show that Poli performs

Figure 1. Translesion synthesis of 1,N6-ethenoadenine DNA adducts
by human PolZ, Polk, and Poli. (A) The DNA template for translesion
synthesis. A 20-mer primer was labeled with 32P at its 50-end (*) and
annealed right before a template 1,N6-ethenoadenine. (B) Translesion
synthesis reactions were performed with purified human PolZ (lanes
1–5), Polk (lanes 6–10), and Poli (lanes 11–15) as indicated in the
presence of a single deoxyribonucleoside triphosphate dATP (A),
dCTP (C), dTTP (T) or dGTP (G), or all four dNTPs (N4). Reaction
products were separated by electrophoresis on denaturing polyacryl-
amide gel and visualized by autoradiography. Quantitation of
extended primers is shown at the bottom of the gel. DNA size
markers in nucleotides are indicated on the left.
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efficient and error-free translesion synthesis in response to
1,N6-ethenoadenine in vitro.
Polk was unable to perform effective translesion synthe-

sis across from 1,N6-ethenoadenine. Only when excessive
Polk was used in the reaction, limited translesion synthesis
was observed with nucleotide insertion in the order of
T>G>C�A (Figure 1B, lanes 6–10). Based on the
results of Figure 1B, we estimated that Polk was �48-
and �44-fold less efficient than PolZ and Poli, respective-
ly, in catalyzing translesion synthesis using the 1,N6-
ethenoadenine DNA template.
Our results of in vitro translesion synthesis opposite

1,N6-ethenoadenine by human REV1 were reported pre-
viously (25). Together, these results reveal the intrinsic
biochemical activities of the human Y family DNA poly-
merases in response to 1,N6-ethenoadenine. That is, at the
site of a template 1,N6-ethenoadenine DNA adduct, Poli
is capable of efficient error-free translesion synthesis; PolZ
and REV1 are capable of efficient error-prone translesion
synthesis by preferentially inserting A and C, respectively;
and Polk is incapable of effective translesion synthesis.

The Rev1-Polf pathway is the major mechanism for
translesion synthesis of the 1,N6-ethenoadenine
DNA adducts in yeast cells

While in vitro biochemistry is highly informative in
elucidating the intrinsic activities of potential bypass
DNA polymerases in response to 1,N6-ethenoadenine
DNA adduct, whether any or all of these polymerases
play a role in translesion synthesis and mutagenesis
in vivo can only be determined by genetic analysis in
cells. Additionally, we are particularly interested in
determining whether REV1 plays a catalytic function by
employing its dCMP transferase activity in translesion
synthesis and mutagenesis of 1,N6-ethenoadenine in cells.
Therefore, we examined in vivo translesion synthesis and
mutagenesis of this lesion in yeast cells with the help of a
genetic system we established (7,36).
Using a 22-mer oligonucleotide containing a

site-specific 1,N6-ethenoadenine adduct, a site-specifically
damaged plasmid was constructed by ligating the oligo-
nucleotide into a single-stranded plasmid and subsequent-
ly converting it into the double-stranded form by in vitro
synthesis of the complementary strand using dUTP
instead of dTTP. Then, an in vivo genetic assay (7,36)

was used to examine translesion synthesis of the
site-specific 1,N6-ethenoadenine adduct in yeast cells. In
this assay, the site-specifically damaged plasmid was trans-
formed into cells, in which the complementary strand was
degraded as a result of extensive DNA strand cleavage at
sites of uracil by the sequential actions of a uracil-DNA
glycosylase and an AP endonuclease, converting the
plasmid DNA back into the single-stranded form (36).
Thus, this assay specifically reflects translesion synthesis
without interference from DNA repair and template
switching mechanisms (36), both of which require
double-stranded DNA. The transformation efficiency
was determined by using undamaged and double-stranded
plasmids in the same experiment. After normalizing for
transformation efficiency, the translesion synthesis effi-
ciency in various strains relative to that in the wild-type
was calculated. Lastly, the site of translesion synthesis in
each colony was recovered by PCR within a 670-bp DNA
fragment of the replicated plasmid. The specificity of
translesion synthesis was determined by digestions with
the BamHI and HindIII restriction endonucleases. PCR
products that were sensitive to BamHI cleavage are indi-
cative of C insertion opposite the lesion; while those sen-
sitive to HindIII cleavage are indicative of A insertion.

To examine roles of the Rev1-Polz pathway and PolZ in
bypassing the 1,N6-ethenoadenine adduct, we performed
in vivo translesion synthesis assays in yeast rev3 (lacking
Polz), rev1 and rad30 (lacking PolZ) deletion mutant cells.
As shown in Figure 2, translesion synthesis was not
affected in the absence of PolZ. In contrast, translesion
synthesis was reduced to 14 and 15% of the wild-
type level in rev1 and rev3 mutant cells, respectively

Figure 2. Relative frequencies of translesion synthesis (TLS) in various
yeast strains. Using the plasmid pELUf1-ethenoA containing a
site-specific 1,N6-ethenoadenine DNA adduct, in vivo translesion syn-
thesis assays were performed as described in ‘Materials and Methods’
section. Relative TLS was obtained by comparing translesion synthesis
in various mutant strains to that in the wild-type cells. Slightly different
transformation efficiencies as determined with the undamaged pELUf1
were taken into account in calculating the relative efficiencies. Standard
deviations are shown as error bars. The genetic background of all
strains was isogenic to the BY4741 strain. WT, wild-type; rad30�,
lacking PolZ; rev1�, lacking Rev1; rev3�, lacking Polz.

Table 1. Kinetic measurement of nucleotide insertion by human PolZ
and Poli opposite a template 1,N6-ethenoadenine

dNTP Vmax

(fmol/min)
Km (mM) Vmax/Km finc

a

PolZ dATP 2.39±0.09 4.91±0.68 0.49 3.5
dGTP 2.33±0.15 24.7±4.31 0.094 0.67
dCTP 1.94±0.14 17.1±5.12 0.11 0.79
dTTP 2.19±0.12 15.9±3.44 0.14 1

Poli dCTP 2.31±0.04 25.6±2.00 0.090 0.18
dTTP 2.16±0.07 4.30±0.60 0.50 1

afinc= (Vmax/Km)incorrect/(Vmax/Km)correct.
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(Figure 2). These results show that the Rev1-Polz pathway
is the major mechanism for translesion synthesis of the
1,N6-ethenoadenine DNA adduct in yeast cells.

The 1,N6-ethenoadenine DNA adducts are extremely
mutagenic

Following in vivo translesion synthesis assays using
site-specifically damaged plasmid pELUf1-ethenoA, indi-
vidual yeast colonies containing replicated plasmid were
analyzed to determine the fidelity of translesion synthesis
across from the 1,N6-ethenoadenine DNA adduct. In
wild-type cells, 100% of the replicated plasmid contained
mutations at the lesion site (Table 2). The vast majority
resulted from C insertion opposite the lesion, yielding
A!G transition mutation (Table 2). A small fraction of
the replicated plasmid resulted from A insertion opposite
the lesion, yielding A!T transversion mutation (Table 2).
Neither the mutation frequency nor the specificity of
translesion synthesis was affected by deleting the RAD30
gene that codes for PolZ (Table 2). In contrast, mutation
frequency was greatly reduced in rev1 and rev3 mutant
cells (Table 2). Furthermore, C insertion opposite the
lesion was abolished. All residual translesion synthesis
products in both mutant strains resulted from A insertion
opposite the lesion (Table 2). These results show that the
1,N6-ethenoadenine adduct is extremely mutagenic in
yeast cells, resulting in predominantly A!G transition
mutation and less frequently A!T transversion
mutation; and that mutagenesis, specifically the predom-
inant A!G transition mutation, requires the function of
both Rev1 and Polz.

Separation of the Rev1 dCMP transferase activity from
its non-catalytic function in translesion synthesis

In vitro, the Rev1 dCMP transferase is catalytically active
in response to a template 1,N6-ethenoadenine adduct, in-
serting a C opposite the lesion (25). In vivo, C was pre-
dominantly inserted opposite this lesion during translesion
synthesis (Table 2). Thus, we asked whether Rev1 acts
catalytically in cells by inserting C opposite 1,N6-
ethenoadenine DNA adduct. Our approach was to first
separate the Rev1 dCMP transferase from its

non-catalytic function in translesion synthesis; and then
determine if inactivating the dCMP transferase activity
alone (while leaving the non-catalytic function intact)
affects translesion synthesis.
In order to separate the dCMP transferase activity of

Rev1 from its non-catalytic function, we mutated two
conserved amino acid residues in the catalytic domain,
i.e. D467A/E468A. Whereas the dCMP transferase was
readily detected with the wild-type Rev1 protein in vitro
(Figure 3B, lanes 2, 3, 5 and 6), this activity was not de-
tectable with the purified mutant Rev1 (Rev1D467A/
E468A) (Figure 3B, lanes 8, 9, 11 and 12). To determine
whether the mutant Rev1D467A/E468A retains its
non-catalytic function in translesion synthesis, we trans-
formed the mutant rev1 gene on a plasmid vector into the
rev1 deletion mutant strain and assayed for translesion
synthesis and mutagenesis following UV radiation. Loss
of translesion synthesis in yeast cells as in the case of rev1
deletion mutant cells results in moderate UV sensitivity
(10,13). Thus, cellular UV sensitivity was measured as
an indication for the translesion synthesis function of
various yeast strains. As shown in Figure 4, UV sensitivity
of the rev1 deletion mutant strain was complemented by
the mutant rev1D467A/E468A gene on a plasmid vector,
as efficient as complementation by the wild-type REV1

Figure 3. In vitro assays for the dCMP transferase of Rev1 and the
Rev1D467A/E468A mutant protein. (A) Purified mutant Rev1D467A/
E468A protein, which was visualized by staining the 10% polyacryl-
amide gel with Coomassie blue. The full-length mutant Rev1 is
indicated by the arrowhead. (B) Standard translesion synthesis assays
were performed with purified wild-type (lanes 1–6) or mutant
Rev1D467A/E468A (lanes 7–12) protein using either a G template or
an AP template as indicated. The AP site in the template sequence is
indicated by the X. The 17-mer DNA band is indicative of the dCMP
transferase activity.

Table 2. Specificity of translesion synthesis opposite

1,N6-ethenoadenine in various yeast strains

Straina Clones analyzedb Base incorporation

C A

Wild-type 79 76 (96%) 3 (4%)
rad30� 80 75 (94%) 5 (6%)
rev1� 9c – 9 (100%)
rev3� 9c – 9 (100%)

arad30�, lacking PolZ and rev3�, lacking Polz. The genetic back-
ground of all strains was isogenic to the BY4741 strain.
bNumber of independent clones analyzed following in vivo translesion
synthesis assays using the pELUf1-ethenoA plasmids containing a
site-specific 1,N6-ethenoadenine.
cOnly nine colonies of translesion synthesis were detected in transform-
ations with this strain.
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gene on the same vector. Thus, the mutant Rev1D467A/
E468A has lost its dCMP transferase activity, but retained
its non-catalytic activity for translesion synthesis. These
results show that the Rev1 dCMP transferase activity is
separable from its non-catalytic function in translesion
synthesis.

Translesion synthesis and mutagenesis of UV lesions
require a non-catalytic function of Rev1 but are
independent of its dCMP transferase activity

The Rev1-Polz translesion synthesis pathway is the major
mechanism of UV-induced mutagenesis in yeast
(10,11,13). The UV sensitivity results (Figure 4) suggest
that translesion synthesis of UV lesions is not affected
by the D467A/E468A mutations in Rev1 protein. To
provide further evidence supporting this conclusion, we
assayed for UV mutagenesis at the arg4-17 genetic locus
of various yeast strains. As expected, mutagenesis induced
by UV radiation at 20 J/m2 was reduced by �253-fold in
the rev1 deletion mutant strain as compared to that of the
wild-type strain (Table 3). This deficiency in UV mutagen-
esis was fully complemented by either the wild-type REV1
gene or the mutant rev1D467A/E468A gene (Table 2).
Thus, the mutant Rev1D467A/E468A protein is fully
functional in translesion synthesis and mutagenesis fol-
lowing UV radiation. These results show that translesion
synthesis and mutagenesis of UV lesions require a

non-catalytic function of Rev1 but are independent of its
dCMP transferase activity.

Translesion synthesis and mutagenesis of 1,N6-
ethenoadenine DNA adducts require the dCMP
transferase activity of Rev1

The mutant Rev1D467A/E468A lacks the dCMP transfer-
ase activity, but retains its non-catalytic function for
translesion synthesis (see ‘Results’ section above). This
allowed us to determine whether C insertion opposite
1,N6-ethenoadenine DNA adduct by the Rev1 dCMP
transferase as we observed in vitro (25) is biologically
relevant for translesion synthesis and mutagenesis in
cells. Using site-specifically damaged plasmids
pELUf1-ethenoA containing a single 1,N6-ethenoadenine
adduct, we performed in vivo translesion synthesis
assays with various yeast strains. In rev1 deletion mutant
cells, translesion synthesis was greatly reduced, leaving a
residual activity of �16% of the wild-type level (Figure 5).
This deficiency in translesion synthesis was complemented
by the wild-type REV1 gene carried on a plasmid vector,
but could not be complemented by the rev1D467A/E468A
mutant gene (Figure 5). That is, cells containing the
Rev1D467A/E468A mutant protein instead of the
wild-type Rev1 remain as deficient as the rev1 deletion
mutant cells for translesion synthesis of 1,N6-
ethenoadenine adduct (Figure 5).

Products of translesion synthesis were analyzed to
determine the in vivo specificity of nucleotide insertion
opposite 1,N6-ethenoadenine adduct. As we observed
before (Table 2), C was predominantly inserted opposite
this lesion, which was abolished in rev1 deletion mutant
cells (Table 4). Transformation of the wild-type REV1
gene on a plasmid vector into the mutant cells restored
the specificity of translesion synthesis with predominant C
insertion opposite the lesion (Table 4). In contrast, the
yeast rev1 deletion mutant strain containing the
rev1D467A/E468A mutant gene on the same plasmid
vector showed no C insertion opposite the lesion.
Instead, 100% of the residual translesion synthesis prod-
ucts contained A insertion opposite the lesion, as in the
case of the rev1 deletion mutant strain (Table 4). These
results show that translesion synthesis and mutagenesis of
1,N6-ethenoadenine DNA adducts require the dCMP
transferase activity of Rev1.

Figure 4. UV sensitivity of various yeast strains. Yeast cells were
grown in minimum medium. After appropriate dilution, cells were
plated onto minimum medium plates. The uncovered plates were
irradiated with UV light at the indicated doses. Surviving colonies
were counted after incubation at 30�C for 3–4 days. Survival rates
are expressed relative to those of non-irradiated cells. Results are
averages of triplicate experiments with the standard deviations shown
as error bars. The genetic background of all strains was isogenic to the
CL1265-7C strain. Strains rev1�/REV1 and rev1�/REV1mt are rev1
deletion mutant (rev1�) cells containing the wild-type REV1 gene and
the mutant rev1D467A/E468A gene, respectively, on a plasmid under
the ADH1 promoter control.

Table 3. UV-induced mutagenesis in various yeast strains

Straina UV survival
(% at 20 J/m2)

Mutants/108

viable cells

Wild-type 50±2 2279±147
rev1� 7 <9 b

rev1D/REV1 52±1 2472±271
rev1D/REV1mt 44±5 3357±349

arev1D/REV1, rev1 deletion mutant expressing wild-type Rev1 protein
from the plasmid pEAT-REV1; rev1D/REV1mt, rev1 deletion mutant
expressing the mutant Rev1D467A/E468A protein from the plasmid
pEAT-Rev1D467A/E468A. The genetic background of all strains was
isogenic to the CL1265-7C strain.
bLimit of detection. No mutant colonies were detected.
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DISCUSSION

The 1,N6-ethenoadenine lesion is an exocyclic DNA
adduct induced by the carcinogens vinyl chloride and
urethane. It is also formed spontaneously in cells from
lipid peroxidation products (30,31). In mammalian cells,
1,N6-ethenoadenine DNA adducts are mutagenic
(31,41,42), which induce mainly A!G transitions in
simian kidney cells (42). In another study with human
cells, it was reported that slightly more A!T than

A!G mutations and least frequently A!C mutations
were induced (41). To understand the molecular mecha-
nisms of translesion synthesis and mutagenesis of this
important DNA base damage, we determined the intrinsic
biochemical activities of the human Y family DNA poly-
merases in response to a template 1,N6-ethenoadenine
in vitro. Furthermore, we identified the major mechanism
of in vivo translesion synthesis and mutagenesis of a
site-specific 1,N6-ethenoadenine DNA adduct in the
yeast model system, and examined the roles of Polz,
PolZ and Rev1 in these cellular processes.
In response to a template 1,N6-ethenoadenine DNA

adduct in vitro, human Poli is capable of efficient
error-free translesion synthesis. Human REV1 (25) and
PolZ are capable of efficient error-prone translesion syn-
thesis by preferentially inserting C and A, respectively. In
contrast, human Polk is incapable of effective translesion
synthesis. These results illustrate again that there are no
uniformed rules to predict the behavior of the various
bypass polymerases in response to different types of
DNA lesions. Such intrinsic biochemical activities of the
polymerases for translesion synthesis need to be experi-
mentally determined. Translesion synthesis can be
error-free or error-prone, depending on the specific
bypass polymerase and the specific type of DNA lesion.
Our results are generally in good agreement with those of
Levine et al. (43) who reported in vitro translesion synthe-
sis of 1,N6-ethenoadenine by human PolZ and Polk in a
different sequence context. A notable difference is the
preferred nucleotide insertion by human PolZ opposite
the lesion. Whereas A was preferred by 3.5-fold over T
in our studies, T was preferred by 2-fold in the studies of
Levine et al. (43). This difference likely resulted from the
different sequence contexts used in these two studies. In
addition to A insertion opposite the lesion, our sequence
context, 30-CXTC-50, may promote A incorporation via
base paring with the 50 T by looping out the lesion on
the template (X). In contrast, the sequence context of
Levine et al. (43), 30-AXCT-50, may promote T incorpor-
ation via base paring with the 30 A by �1 slippage of the
primer end, followed by template-primer realignment to
copy the next template base C 50 of the lesion.
In vitro biochemistry is highly informative in elucidating

the intrinsic activities of potential bypass DNA polymer-
ases in response to a DNA lesion. However, due to the
presence of multiple bypass polymerases in cells, not every
bypass polymerase is equally utilized for in vivo translesion
synthesis. A polymerase with intrinsic bypass capability
may not be utilized at all in cells for translesion synthesis
of the same lesion. This underscores the importance of
performing genetic analysis of translesion synthesis in
cells. When such genetic analysis is combined with
in vitro biochemistry, precise mechanism of translesion
synthesis and mutagenesis can often be elucidated.
Human REV1 efficiently inserts a C opposite a template

1,N6-ethenoadenine in vitro (25). This raised the possibility
that A!G mutations induced by 1,N6-ethenoadenine
might result from REV1-catalyzed C insertion opposite
the lesion during translesion synthesis. Using the eukary-
otic model system S. cerevisiae, we have demonstrated
that this hypothesis in indeed correct.

Figure 5. Relative frequencies of translesion synthesis (TLS) in yeast
strains expressing the mutant Rev1D467A/E468A protein. Using the
plasmid pELUf1-ethenoA containing a site-specific 1,N6-ethenoadenine,
in vivo translesion synthesis assays were performed as described in
‘Materials and Methods’ section. Relative TLS was obtained by
comparing translesion synthesis in various mutant strains to that in
the wild-type cells. Slightly different transformation efficiencies as
determined with the undamaged pELUf1 were taken into account in
calculating the relative efficiencies. Standard deviations are shown as
error bars. The genetic background of all strains was isogenic to the
CL1265-7C strain. WT, wild-type; rev1�, rev1 deletion mutant; rev1�/
REV1 and rev1�/REV1mt, rev1 deletion mutant cells containing the
wild-type REV1 gene and the mutant rev1D467A/E468A gene, respect-
ively, on a plasmid under the ADH1 promoter control.

Table 4. Specificity of translesion synthesis opposite 1,

N6-ethenoadenine in cells expressing the mutant Rev1D467A/

E468A protein

Straina Clones analyzedb Base incorporation

C A

Wild-type 64 54 (84%) 10 (16%)
rev1D 27 – 27 (100%)
rev1D/REV1 69 65 (94%) 4 (6%)
rev1D/REV1mt 21 – 21 (100%)

arev1D/REV1, rev1 deletion mutant expressing wild-type Rev1 protein
from the plasmid pEAT-REV1; rev1D/REV1mt, rev1 deletion mutant
expressing the mutant Rev1D467A/E468A protein from the plasmid
pEAT-REV1D467A/E468A. The genetic background of all strains
was isogenic to the CL1265-7C strain.
bNumber of independent clones analyzed following in vivo translesion
synthesis assays using the pELUf1-ethenoA plasmids containing a
site-specific 1,N6-ethenoadenine.

Nucleic Acids Research, 2010, Vol. 38, No. 15 5043



In yeast cells, 1,N6-ethenoadenine induces A!G tran-
sition mutations as the major event and A!T tansversion
mutations as a minor event. Such a mutagenesis specificity
is similar to that in the mammalian system (42). In the
absence of the Rev1-Polz translesion synthesis pathway,
as in the rev3 or rev1 deletion mutant cells, replication of
the damaged plasmid was dramatically reduced and the
predominant A!G transition mutations were abolished.
Thus, mutations induced by 1,N6-ethenoadenine DNA
adducts result from replication of the damaged site via
translesion synthesis by the Rev1-Polz pathway. In a
unique strain where the Rev1 protein had been mutated
(Rev1D467A/E468A) inactivating its dCMP transferase
but retaining its non-catalytic function in lesion bypass,
translesion synthesis of 1,N6-ethenoadenine DNA adducts
was dramatically reduced and A!G transition mutations
were abolished, just like the rev1 deletion mutant strain.
Therefore, the Rev1 dCMP transferase activity is exclu-
sively responsible for inserting C opposite the lesion as the
major mechanism of translesion synthesis and mutagen-
esis of 1,N6-ethenoadenine DNA adducts in yeast cells.
Since Rev1 is unable to perform extension synthesis
from opposite 1,N6-ethenoadenine (25), another bypass
polymerase is needed to complete translesion synthesis.
Without an extension polymerase, translesion synthesis
and A!G transition mutations would not occur. This
was indeed the case in rev3 deletion mutant cells
that lack Polz function, suggesting that Polz acts as the
extension polymerase following C insertion by
Rev1 during translesion synthesis and mutagenesis of
1,N6-ethenoadenine DNA adducts. Therefore, 1,N6-
ethenoadenine DNA adducts are predominantly replica-
ted in yeast cells by Rev1-catalyzed C insertion followed
by Polz-catalyzed extension, a two-polymerase two-step
mechanism of translesion synthesis (Figure 6).
In addition to the major A!G mutagenesis mechanism

catalyzed by the Rev1-Polz pathway, a very minor mech-
anism of translesion synthesis was also observed, in which
A was inserted opposite the 1,N6-ethenoadenine DNA
adduct, resulting in A!T transversion mutation. Since
A!T mutations were still observed in the absence of
either Rev1 or Polz (Table 2), A insertion opposite the
lesion is likely catalyzed by another polymerase. Human
PolZ is capable of efficient translesion synthesis by prefer-
entially inserting A opposite 1,N6-ethenoadenine in vitro
(Figure 1B and Table 1). However, both translesion syn-
thesis and mutagenesis of 1,N6-ethenoadenine are not sig-
nificantly affected in mutant cells (rad30) lacking this
polymerase. Therefore, PolZ unlikely plays a role in
translesion synthesis and mutagenesis of 1,N6-
ethenoadenine in yeast. We speculate that a replicative
polymerase such as Pol� could be responsible for A inser-
tion in the minor translesion synthesis pathway of 1,N6-
ethenoadenine DNA adducts.
Although REV1 is a member of the Y family DNA

polymerases, its role in translesion synthesis and mutagen-
esis is widely believed to be non-catalytic, i.e. its dCMP
transferase activity is not required for biological function.
REV1 interacts with other Y family DNA polymerases
(28). Thus, it was postulated that REV1 functions
non-catalytically by recruiting other Y family bypass

polymerases for translesion synthesis (28). Regardless of
how REV1 fulfils its non-catalytic function in translesion
synthesis, a key mechanistic question is whether this
protein functions catalytically in translesion synthesis at
all. In this study, we have now resolved this question.

By mutating two conserved amino acid residues in the
catalytic domain of yeast Rev1, i.e. D467A/E468A, we
were able to separate the catalytic function from its
non-catalytic function. This mutant Rev1 has lost the
dCMP transferase activity as demonstrated by in vitro bio-
chemistry. Its non-catalytic function, however, remains
intact, as demonstrated by the fact that this mutant
Rev1 protein is fully functional in translesion synthesis
and mutagenesis of UV radiation in vivo. Based on the
mutation spectra and the fact that REV1 is unable to
catalyze C insertion opposite the major UV lesions
in vitro, it was concluded that Rev1 functions
non-catalytically in translesion synthesis and mutagenesis
of UV radiation (5,25). Our results with the rev1D467A/
E468A mutant cells provided direct and unequivocal
evidence for this conclusion. Our in vitro biochemical
and in vivo genetic results together show that the catalytic
function of Rev1 is separable from its non-catalytic
function in translesion synthesis.

Using the rev1D467A/E468A mutant cells in which
the Rev1 catalytic function is inactivated whereas its
non-catalytic function remains intact, we found that the

Figure 6. A mechanistic model for translesion synthesis of the 1,N6-
ethenoadenine DNA adduct in yeast cells. The replication complex
(represented by the filled blue oval) is blocked by the lesion, signaling
translesion synthesis. Translesion synthesis is mediated predominantly
by C insertion opposite the lesion catalyzed by the Rev1 dCMP trans-
ferase. Extension synthesis by Polz completes the lesion bypass. This
major mechanism of translesion synthesis results in A!G transition
mutations.
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dCMP transferase activity is required for translesion syn-
thesis and mutagenesis of 1,N6-ethenoadenine DNA
adducts. In fact, this catalytic function of Rev1 is respon-
sible for the predominant mechanism of translesion syn-
thesis and mutagenesis of this lesion in yeast
cells. Therefore, the catalytic function of the Rev1
dCMP transferase is required in a lesion-specific manner
for translesion synthesis and base damage-induced muta-
genesis. We have shown here that 1,N6-ethenoadenine is
clearly one such DNA lesion whose replication and muta-
genesis depend on the catalytic function of Rev1. AP site
is probably another lesion that belongs to this category of
translesion synthesis. Several pieces of evidence from
multiple laboratories support the involvement of the
Rev1 dCMP transferase in the bypass and mutagenesis
of AP sites (5,36,44). Definitive prove of this conclusion
about AP site bypass could be performed now using the
yeast rev1D467A/E468A mutant strain.

Replication of DNA containing the 1,N6-ethenoadenine
lesion is heavily dependent on the Rev1-Polz translesion
synthesis pathway. In the absence of this pathway as in
rev3 or rev1 deletion mutant cells, the efficiency of
replicating the 1,N6-ethenoadenine site is reduced by
�7-fold. Thus, 1,N6-ethenoadenine is a strong blocker to
normal DNA replication. A strong blocking effect was
also observed by Tolentino et al. (45) in human cell
extracts for replicating plasmids containing a site-specific
1,N6-ethenoadenine. Remarkably, all replicated products
in yeast cells contain mutations at the lesion site, i.e.
T insertion opposite the lesion was never recovered
(Tables 2 and 4). The mutation frequency is 100%.
Every time this lesion is replicated, a mutation is
produced at the lesion site. Thus, the 1,N6-ethenoadenine
DNA adducts are extremely mutagenic. In mammals, the
mutagenecity of this lesion may be somewhat reduced by
Poli-catalyzed error-free translesion synthesis as suggested
by our in vitro results (Figure 1 and Table 1). Whether this
hypothesis is correct will have to wait for genetic analysis
in mammalian mutant cells lacking Poli. The 1,N6-
ethenoadenine DNA adducts can be formed spontaneous-
ly in cells from lipid peroxidation products (30,31). Under
excessive oxidative stress conditions, such as chronic
inflammation in colitis, hepatitis and pancreatitis, higher
levels of 1,N6-ethenoadenine are produced (46). These
conditions are associated with increased risk of cancer
(47). The extreme mutagenic property of 1,N6-etheno-
adenine raises the possibility that this lesion might play
an important role in carcinogenesis associated with a
chronic inflammation disease.
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