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Sequence alignment lies at heart of the bioinformatics. The Smith-Waterman algorithm is one of the key sequence search algorithms
and has gained popularity due to improved implementations and rapidly increasing compute power. Recently, the Smith-Waterman
algorithm has been successfully mapped onto the emerging general-purpose graphics processing units (GPUs). In this paper, we
focused on how to improve the mapping, especially for short query sequences, by better usage of shared memory. We performed and
evaluated the proposed method on two different platforms (Tesla C1060 and Tesla K20) and compared it with two classic methods
in CUDASW++. Further, the performance on different numbers of threads and blocks has been analyzed. The results showed that
the proposed method significantly improves Smith-Waterman algorithm on CUDA-enabled GPUs in proper allocation of block

and thread numbers.

1. Introduction

Sequence alignment is one of the most important method-
ologies in the field of computational biology [1]. It describes
the way of arrangement of DNA/RNA or protein sequences,
in order to identify the regions of similarity among them
and to infer structural, functional, and evolutionary rela-
tionship between the sequences. Sequence alignment enables
researchers to compare the sequences of genes or proteins
with unknown functions to sequences of well-studied genes
or proteins. When a new sequence is found, the structure
and function can be easily predicted by performing sequence
alignment because a sequence sharing common ancestor
would exhibit similar structure or function.

The most widely used sequence alignment algorithm may
be the Smith-Waterman algorithm that was first proposed
by Smith and Waterman in 1981 [2] and optimized by
Gotoh in 1982 [3]. It performs local sequence alignment,
which is designed especially for dissimilar sequences that are
suspected to contain regions of similarity or similar sequence
motifs within their larger sequence context. To determine
similar regions between two nucleotide or protein sequences,

the Smith-Waterman algorithm, instead of looking at the
total sequence, compares segments of all possible lengths
and optimizes the similarity measure. The Smith-Waterman
finds the alignment in a more quantitative way by giving
scores for matches and mismatches for every possible pair
of residues. The scores are predefined in scoring matrices,
such as PAM (point accepted mutation) [4] and BLOSUM
(blocks substitution matrix) [5]. In general, a positive score
is assigned for a match, a negative score for a mismatch, and
a negative score for a gap penalty.

Although the Smith-Waterman algorithm is one of the
most advanced and sensitive pairwise sequence comparison
algorithms currently available, it is theoretically about 50
times slower than other popular heuristic-based algorithms,
such as FASTA [6, 7] and BLAST (Basic Local Alignment
Search Tool) [8, 9]. The Smith-Waterman algorithm is slow
because it imposes no constraints on the alignment; that
is, no sequences will be filtered out if the final alignment
score is not above a predefined threshold. However, the
Smith-Waterman algorithm is still widely used because of
its high sensitivity of sequence alignment even though it
has higher time complexity of algorithm. To enable the
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Smith-Waterman algorithm to produce exact results in a
reasonably shorter time, much research has been focusing on
using various high-performance architectures to accelerate
the processing speed of the algorithm [10-27]. In particular,
it becomes a recent trend to use the emerging accelerators
and many-core architectures, such as field-programmable
gate arrays (FPGAs) [10-12], cell/BEs [13-17], and general-
purpose graphics processing units (GPUs), to run the Smith-
Waterman algorithm [18-26].

FPGAs allow customers to configure large resources of
logic gates and RAM blocks to implement complex digi-
tal computations after manufacturing. Since an FPGA can
be configured to execute the Smith-Waterman algorithm,
it can be regarded as special-purpose hardware for the
Smith-Waterman, resulting in high execution speed. Note
the FPGA-based implementation of the Smith-Waterman
is more hardware centric. Cell/BEs are multicore microar-
chitecture that combines a general-purpose power archi-
tecture core with streamlined coprocessing elements. The
primary feature of cell/BEs is to greatly accelerate multi-
media and vector processing applications by introducing
the streaming SIMD extensions 2 (SSE2) technology. SIMD
instructions can greatly increase performance when exactly
the same operations are to be performed on multiple data
objects. The SIMD instructions on cell/BEs are used by
several research projects to parallelize the Smith-Waterman
algorithm.

Modern general-purpose GPUs are not only powerful
graphics engines but also highly parallel programmable
processors. Today’s GPUs use hundreds of parallel processor
cores executing tens of thousands of parallel threads to
rapidly solve large problems, now available in many PCs,
laptops, workstations, and supercomputers. Because of the
availability and the popularity, GPUs have been used to
implement the Smith-Waterman algorithm, where CUD-
ASW++ is the leading research that provides the fast, publicly
available solution to the exact Smith-Waterman algorithm on
commodity hardware [18-20]. CUDASW++ 3.0 is the latest
version, which couples CPU and GPU SIMD instructions and
carries out concurrent CPU and GPU computations [20].

This study aimed at how to improve CUDASW ++, espe-
cially for short query sequences. Since we observed that the
shared memory in each streaming multiprocessor is not fully
utilized in CUDASW++, the execution flow of the Smith-
Waterman algorithm was rearranged to fully utilize the shared
memory for reducing the amount of slow global memory
access. This paper is organized as follows. Section 2 intro-
duces CUDASW++ and CUDA-Enabled GPUs. Section 3
presents our method to map the Smith-Waterman database
search algorithm onto a CUDA-Enabled GPU for short query
sequences. Section 4 demonstrates the experimental results
and analyse the performance. Finally, conclusions are given
in Section 5.

2. Related Work

CUDASW++ is one of the key projects for implement-
ing the Smith-Waterman sequence database search algo-
rithm on general-purpose GPUs, where the source code of
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CUDASW++ is publicly available [18-20]. Liu et al. have
proposed three versions of CUDASW++ so far, to map the
Smith-Waterman database search algorithm onto nVIDIA
GPUs. CUDASW++ 1.0 completes all the Smith-Waterman
computations on GPUs by fully exploiting the aggregate
power of multiple G200 (and higher) GPUs [18].

CUDASW++ 2.0 aims at optimizing the performance of
CUDASW++ 1.0 based on the SIMT abstraction of CUDA-
enabled GPUs [19]. Two optimization approaches have been
implemented in CUDASW++ 2.0. In the first approach,
the authors defined a length threshold to partition the
database into two parts. For those sequences of length shorter
than the threshold, CUDASW++ 2.0 adopts the intertask
parallelization method for their alignments with the query
sequence. For the other sequences, the system uses the
intratask parallelization method. The intertask parallelization
method uses one thread to align one subject sequence with
the query sequence. It means that multiple subject sequences
are aligned with the query sequence concurrently, without
interthread communication. On the other hand, the intratask
parallelization method uses all the threads in a block to align
one subject sequence with the query sequence. Since the
intratask parallelization method imposed communication
and synchronization among threads, it has better perfor-
mance than the intertask method only for the sequences of
lengths larger than the predefined threshold. According to the
statistics, over 99% of the subject sequences will be aligned by
the interthread parallelization method. Our work focuses on
improving the inter-task parallelization method due to this
observation.

The second approach proposed in CUDASW++ 2.0 is
the column-major parallelization method. Similar to the
intratask method, all the threads in a block work together to
align one subject sequence with the query sequence. How-
ever, the column-major method aims to exploit more thread
parallelism by speculative computation. That is, threads start
the computation of H scores before the dependent data, F
scores, are available. The speculative computation assumes
the speculative H scores will be larger than or equal to F
scores. Since it is speculative computation, the lazy-F loop is
used to verify whether the assumption is correct for each H
score or not. If any answer is false, all the H scores on the same
column have to be recalculated. According to the evaluation
results reported, the column-major method outperforms the
first approach only for few cases. In practice, CUDASW++
adopts the first approach to perform the alignment.

CUDASW++ 3.0 is written in CUDA C++ and PTX
assembly languages, targeting GPUs based on the Kepler
architecture. It conducts concurrent CPU and GPU com-
putations to accelerate the Smith-Waterman algorithm [20].
According to the compute powers of the CPU and the GPU
used in the system, CUDASW++ 3.0 dynamically distributes
all sequence alignment workloads over CPUs and GPUs to
balance the runtimes of CPU and GPU computations. On
the CPU side, the streaming SIMD extensions- (SSE-) based
vector execution units and multithreading are employed to
speed up the Smith-Waterman algorithm. On the GPU side,
PTX SIMD video instructions are used to parallelize the
Smith-Waterman algorithm.
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FIGURE I: The block diagram of (a) CUDA-enabled GPUs and (b) the memory hierarchy.

Manavski and Valle introduced the idea of query profile
and the sorted database [21]. Ligowski and Rudnicki reported
their research result almost at the same time as CUDASW++
1.0 and they investigated how to use shared memory to
improve the performance of the Smith-Waterman algorithm
[22]. The above two projects both did not exploit the intratask
parallelism for long subject sequences. Khajeh-Saeed et
al. proposed an interesting parallel scan Smith-Waterman
algorithm [23]. They argued that the classic diagonal par-
allelization approach suffers from nonuniform parallelism
distribution across phases of dynamic programming and the
memory access pattern is hard to the advantage of memory
coalescing. Instead, they aimed to fully parallelize the com-
putation of the cells in one row of the dynamic programming
matrix at the same time. To enforce the data dependence
between the cells in the same row, they needed to perform
the parallel scan to update the values of the cells, resulting in
high synchronization overhead between threads and blocks.
The parallel scan algorithm can be used in the intratask kernel
of CUDASW++. Blazewicz et al. mainly focused on how to
improve the backtracking procedure of the Smith-Waterman
algorithm [24]. They proposed to use four Boolean matrices
to indicate the proper direction of backward moves for every
position during the process of backtracking. Their method
can be adopted by other packages for further performance
improvement, including CUDASW++. Hains et al. proposed
using a tiling approach to improve the performance of the
intratask kernel of CUDASW++ [25]. They also pointed
out several important design issues for tuning performance,
including how to ensure that registers are used, instead of
global memory, even when the capacity is not exceeded.

CUDA is a new language and development environ-
ment, allowing execution of general-purpose applications on
NVIDIAs GPUs [28]. The hardware model is comprised of

several highly threaded streaming multiprocessors (SMs),
where each SM consists of a set of streaming processors
(SPs), as shown in Figure 1(a). The computing system con-
sists of a host that is a traditional CPU, also called host,
and one or more GPUs, also called device, as shown in
Figure 1(b).

3. Materials and Methodology

3.1. Multiple Subject Sequences of Parallel Method on Smith-
Waterman Algorithm. The Smith-Waterman algorithm has
been mathematically proven to find the best local alignment
of two sequences. The algorithm compares two sequences
by computing a score that represents the minimal cost of
transforming one sequence to another using two elemen-
tary operations: match/mutation and insertion/deletion. If
two characters from two sequences match, the cumulative
score is increased. However, if one character in the first
sequence can be mutated from another character in the
second sequence, the cumulative score is either increased or
decreased depending on the relationship between these two
characters defined in the adopted substitution matrix. There
are different substitution matrices for scoring alignment of
two sequences. For instance, a BLOSUM (blocks substitution
matrix) is a substitution matrix used for sequence alignment
of proteins and it records a score for each of the 210 possible
substitution pairs of the 20 standard amino acids. Several
sets of BLOSUMs exist using different alignment database,
where each is named with a number. For two sequences,
S; and S, with lengths L, and L,, the first elementary
operation, match/mutation, computes the similarity H(i, j)
of these sequences ending at positions i and j in order to
identify common subsequences. We call the sequence S, the
query sequence and the sequence S, the subject sequence.



The computation of H(j, j),for 1 <i<L,and 1 < j < L,,is
formulated by the following recurrences:

Deletion E (i, j) = max {E (i, j—1),H (i, j— 1) - p}

_o,
Insertion F (i, j) = max{F (i— 1, j),H (i- 1, j) - p}

-0, €))
Similarity H (i, j)

=max{0,E (i,j),F(i,j),H(i-1,j-1)

+sbt (S, [i1.S, [j])}

where sbt(S, [i], S,[j]) represents the score for the ith charac-
ter in the sequence S; and the jth character in the sequence
S, defined in the specified substitution matrix. If S, [i] and
S,[j] are the same character, they are matched; otherwise, it is
assumed that the two are derived from an ancestral character,
that is, mutation.

Furthermore, in the recurrences, E(i, ) and F(i, j) repre-
sent the two cases when gaps are inserted because of different
sequence length, where a gap is a consecutive run of spaces
in an alignment, represented as a dash on a protein/DNA
sequence alignment. To perform a sequence alignment, we
write one sequence on top of another, where the characters
in one position are deemed to have a common evolutionary
origin. If the two sequences are of different lengths, gaps are
inserted to make them of equal length. Gaps are used to create
alignments that are better conformed to underlying biological
models and more closely fit patterns that one expects to find
in meaningful alignments. A gap can be inserted into either
a query sequence or a subject sequence. Since an insertion in
one sequence can always be seen as a deletion in the other
one, when a gap is used in the query sequence, it is a gap
insertion; otherwise, it is a gap deletion. Gap penalty values
are designed to reduce the score when a sequence alignment
has been disturbed by gaps. An initial penalty is assigned for a
gap opening, p, and an additional penalty is assigned for gap
extensions that increase the gap length, o.

We investigate the problem of aligning each subsequence
in a database with the query sequence using the Smith-
Waterman algorithm, where the database consists of N
subject sequences. The problem can be divided into N
independent subproblems, where each subproblem is to use
the Smith-Waterman algorithm to align the query sequence
and one subject sequence. Basically, we solve the problem
in a way that is the same as CUDASW++ 2.0. That is, a
thread will be assigned to align one subject sequence with the
query sequence if the length of the subject sequence is not
larger than the user predefined threshold. However, how each
thread uses the memory resources on a CUDA-enabled GPU
in our method is different from that in CUDASW++ 2.0. On
the other hand, for those subject sequences of lengths larger
than the threshold, all the threads in a block will perform the
alignment in parallel for only one subject sequence. For sim-
plicity, the details of how to use multiple threads to perform
an instance of the Smith-Waterman algorithm are omitted.
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3.2. Thread Assignment and Sequence Alignment in CUDA-
Enabled GPU. We assign one thread for solving one subprob-
lem in a CUDA-enabled GPU. The advantage of such a thread
assignment is no interthread communication incurred.
Because of the different lengths of the subject sequences in
the database, the execution times of the threads are not the
same. Therefore, the execution times of threads in a warp
will be different and the warp cannot be complete until the
slowest thread finishes its work, resulting in a longer warp
execution time. Since a block will execute warps one by one,
longer warp execution times lead to longer block execution
time. To address the problem, the subject sequences allocated
to the same warp should be of similar length. To meet
this requirement, we preprocess the database by sorting the
subject sequences by the length in the ascending order. At
the run time, every 32 continuous subject sequences will be
assigned to one warp.

Even though the sorted subject sequences can shorten
the execution times of warps, the sorted subject sequences
cannot be accessed efficiently in the global memory. The
reason is explained as follows. Because CUDA-enabled GPUs
are SIMD architecture, the 32 threads in a warp will access
the ith characters from their assigned subject sequences in
parallel, respectively. However, subject sequences are stored
one by one in the global memory, resulting in that every 32 ith
elements in 32 continuous subject sequences are not stored
contiguously. Therefore, the 32 threads in the same warp
cannot access the 32 ith elements in one bus transaction. To
conquer this problem and to take the advantage of memory
coalescing for accessing global memory, the sorted subject
sequence database is transformed based on the following
method before sending subject sequences to the global mem-
ory on a GPU. The elements from each 32 continuous subject
sequences are stored interleavingly. In other words, the ith
elements from the kth sequences in every 32 continuous
subject sequences are stored at (32 xi+k)th memory location.

To align the query sequence with each subject sequence in
the database, the query sequence will be used repeatedly. On
the other hand, the number of amino acids is only 20. That
is, each character of the query sequence will be pairing with
the 20 amino acids repeatedly. It is time consuming if each
time of pairing has to access the substitution matrix one tome
for scoring. Therefore, it is usual to construct a query profile
to address the problem. A query profile is a two-dimensional
array. The row fields consist of the characters of the query
sequence in order and the column fields consist of the 20
amino acids. The value of each cell of a query profile is the
score of the relationship between the corresponding amino
acid and the corresponding character in the query sequence.
The query profile is saved on the texture memory. Each time
we can fetch 4 consecutive scores from the texture memory
in one access and use four registers to save the 4 scores in a
vector fashion. In this way, the cost of accessing the scores can
be reduced.

3.3. Memory Allocation at Run Time. To perform the Smith-
Waterman algorithm, at run time we need to allocate memory
space for the three matrices: H, E, and F. Since the matrices
might be very large but the data are intermediate, it is better
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not to save all the matrices data in the global memory. To
reduce the required memory space as much as possible,
we analyze the dependency relationship among the three
matrices, as shown in Figure 2. To compute the element,
H(i, j), we require to access the values of E(3, ) and F(i, j),
meaning that we have to calculate E(4, j) and F(i, j) before
H(i, j) in the same loop iteration. On the other hand, E(i, j)
depends on E(i, j — 1) and H(i, j — 1) while F(3, j) depends
on F(i — 1, j) and H(i — 1, j). It means that, when executing
iteration (3, j), we require the intermediate data produced in
iterations (i — 1, j) and (4, j — 1) only. Therefore, we have no
need to save all the intermediate data of matrices H, E, and
F on global memory. Instead, we can use registers to save the
intermediate data produced in the previous iterations and the
computation result in the current iteration. Assume the index
of the inner loop is j; two registers are sufficient for storing
E: one for E(i, j — 1) and one for E(7, j). However, a row of
registers is required for F, which is infeasible because of very
limited number of registers for a thread. Similarly, we need a
row of registers plus two for H. Due to the limited number
of registers available in a thread, we use shared memory to
buffer the spilled values of registers.

However, all the threads in a block, on a streaming
multiprocessor, share the shared memory and its space is not
as large as the global memory’s. For instance, the amount
of shared memory on C1060 is 16 K bytes. If there are 256
threads in a block, each thread can have 64 bytes, that is,
16 words. Therefore, we can swap at most 16 register values
out to shared memory for each of the threads. Otherwise,
the shared memory is overflow and the slow global memory
has to be used to buffer the data due to overflow, which
will degrade the overall performance. Therefore, we use our
method only when shared memory can store all the spilled
register values. In other cases, the original CUDASW++
will be invoked to process the query. Our method will be
built in the CUDASW++ package as an execution option.
In general, if there are T threads in each block and the

amount of available shared memory is S bytes per streaming
multiprocessor, the longest length of one query sequence is
equal to S/(4 x T) since matrices H and E require shared
memory for buffering and each cell requires two bytes.

3.4. Proposed Mapping Algorithm on CUDA-Enabled GPUs.
Registers are the fastest memory and shared memory is faster
than global memory one hundred times. To use registers
to solve dependence as much as possible and to efficiently
use shared memory to buffer spilled registers, we propose
the following algorithm to perform the Smith-Waterman
algorithm, as shown in Figure 3. Every K consecutive residue
on the assigned subject sequence for a thread is grouped in
order, padding dummy residues at the end of the subject
sequence when necessary. Similarly, every P consecutive
residue on the query sequence is in an ordered partition,
padding dummy residues at the end of the query sequence
when necessary. A tile is defined as the alignment of one
group of ordered residues on the subject sequence with a
partition of ordered residues on the query sequence. To
enforce the dependence, tiles will be aligned one by one in the
column-major order, where the tiles on the same column are
processed from top to bottom. Furthermore, for a tile, the first
residue on the query sequence is aligned with the K residues
on the subject sequence one by one, from left to right; then
the second, the third, and to the Pth residues are aligned with
the K residues on the subject sequence, respectively.

For each tile, the values on the Kth column have to be
read by the tile next to it on the right hand side. Similarly,
the values on the Pth row have to be read by the tile next to
it to the bottom. For each of the F and H matrices, we use
K registers to save K consecutive values on the same row,
respectively. To calculate the next row, the K registers can
be reused because the source operand and the destination
operand of an instruction can use the same register. There-
fore, the values on the Pth row of a tile can be forwarded
through registers to the first row on the next tile, right below
the tile. However, the values on the Kth column cannot be
forwarded through registers to the next tile on the right hand
side because the K'th register is reused to save the value for the
next row on the Kth column, even in the same tile. Note that
the next tile on the right hand side of the current tile is not
the next tile to be processed; it is the next tile on the bottom
of the current tile. Consequently, shared memory is used to
buffer P values on the Kth column for each tile. The buffered
values can be read to calculate the values for the first column
of the tile on a tile’s immediate right hand side.

Since tiles are processed in column-major order, the
shared memory for buffering the Kth column of tiles on the
same column can be reused when the next column of tiles is
processed. If the query sequence length is not too long, shared
memory can buffer all the values on the Kth column of tiles
on the same column, no global memory access is required. Let
the number of bytes per shared memory be X, the number
of threads per block be T, and the number of residues in
the query sequence be Q. If X > T x Q, no global memory
access is required. At the run time, the system can decide if
shared memory can buffer all required values on a column
based on the hardware configuration and the length of the
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FIGURE 3: The overview of the proposed mapping algorithm.

query sequence specified by users. Since the shared memory
is rather limited, the query sequence length cannot be too
long for applying our method.

Since the query profile packs the scores of every four
continuous residues and saves the packed scores on texture
memory, we can get four scores whenever texture memory
is accessed. The fetched four scores have to be saved in
four registers because these scores are for the calculation of
the four consecutive cells on the same column inside a tile.
Consequently, P should be a multiple of four. The pseudo
code of our method is shown in Pseudocode 1, where P
and K are set to four to reduce the pressure on the register
requirement.

4. Results and Discussion

4.1. Analysis of Experimental Platforms between Tesla CI1060
and Tesla K20. We used CUDA version 5.0 to extend
CUDASW++ 2.0 with our proposed method. Two platforms
are used to evaluate our proposed method. The Dell Pre-
cision T5500 computer workstation is our first experimen-
tal platform, consisting of one Intel Xeon CPU and one
nVIDIA Tesla C1060 GPU. Another experimental platform
is comprised of Intel Core i7 CPU and nVIDIA Tesla K20,
where Tesla K20 is based on the new Kepler architecture,
providing a 15-time increase in double precision performance
compared Tesla C1060. Tesla K20 consists of 13 streaming
multiprocessors with 2496 cores totally while Tesla C1060 has
30 streaming multiprocessor with 240 cores totally.

The Kepler architecture employs a new streaming mul-
tiprocessor architecture, called SMX, which deliver more
processing performance and efficiency. An SMX allows a
greater percentage of space to be applied to processing cores
versus control logic. In addition, the Kepler architecture
simplifies GPU programming by allowing programmers to
easily accelerate all parallel nested loops, resulting in a GPU
dynamically spawning new threads on its own without going
back to the CPU. Finally, the Kepler architecture also uses

TaBLE 1: The hardware configuration of the first experimental
platform, where Tesla C1060 is included.

Intel Xeon processor E5504 NVIDIA Tesla C1060
Number of CPUs 1 Number of GPUs 1
Number of 4 Number of 240
processor cores processor cores
Clock speed 2GHz  Clock speed 1.3 GHz
Memory size 6GB Memory size 4GB
Memory types DDR3 800 Memory types GDDR3
Cache 4MB Memory clock 800 MHz

TABLE 2: The hardware configuration of the second experimental
platform, where Tesla K20 is included.

Intel Core i7-4790 NVIDIA Tesla K20
Number of CPUs 4 Number of GPUs 1
Number of 3 Number of 2496
processor cores processor cores
Clock speed 3.6GHz  Clock speed 0.71GHz
Memory size 8GB Memory size 4.8GB
Memory types DDR31600 Memory types GDDR5
Cache 8§ MB Memory clock 2600 MHz

the Hyper-Q technique to slash CPU idle time by allowing
multiple CPU cores to simultaneously utilize a single Kepler
GPU.

The hardware configurations of Tesla C1060 and K20
are shown in Tables 1 and 2, respectively. The operating
system installed is Linux and its version is Ubuntu 12.04
64-bit. The BLOSUM64 protein sequences database is used
for the performance evaluation. Moreover, the short query
sequences are also from the BLOSUM 64.

4.2. Performance Evaluation on Tesla C1060. We present the
speedup of our method in the following, where the speedup
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for (j = 1; j < dblen; j += 4){
Initialize all the relevant variables;

for (i = 1;i < glen; i +=4){

for (k = 0; k < 45 k++){

and calculate the maximum score;

}
}
}

[# % % % % % % % % % % % % % * ASSUMPTION* # % % # % % % % % % * % % %%

Query sequence length — glen, aligned to 4 bytes and padded with dummy residues
Subject sequence length — dblen, aligned to 4 bytes and padded with dummy residues
**************************************/

Load the packed 4 residues between j and j + 3 from texture memory to register;

Get the j to j + 3 residues of the subject sequence from register;
Load substitution scores for cells (7, j) to (i + 3, j + 3) from query profile;

Load H and F values of the cell (i + k, j — 1) from shared memory;
Compute the H, E and F values of the cells from (i + k, j) to (i + k, j + 3),

Save H and F values of the cell (i + k, j + 3) to shared memory;

Pseupocopk 1: The pseudocode of the scoring function in our proposed method.

P36515

POC8D8

Query sequence

i CUDASW++ 2.0
[ Our method

FIGURE 4: The speedup of our method over CUDASW++ 2.0 on
Tesla C1060 with 256 blocks.

is to divide the execution time of a method by the execution
time of CUDASW++ 2.0. The performance improvement of
our method over CUDASW++ 2.0 is shown in Figure 4. The
C1060 has 16 K-byte shared memory. Because there are 256
threads in each block, each thread is assigned with 64-byte,
that is, 16-word, shared memory for storing the matrices H,
E, and F. The best speedup is about 1.14 when the query
sequence is P36515 consisting of four amino acids.

4.3. Performance Evaluation with CUDASW++ 2.0 and CUD-
ASW++ 3.0 on K20. We further compared with different
methods on Tesla K20 with 64 blocks and 64 threads. On the
Kepler GPU, K20, the space of shared memory per streaming
multiprocessor is much larger than that on Tesla C1060. This
characteristic can store more spilled register values for CUD-
ASW++ series and thus reduce the frequency of swapping
some 10 shared memory values out to/in from the slow global
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FIGURE 5: The GCUPS comparison of our method with CUD-
ASW++ 2.0 and CUDASW++ 3.0 on Tesla K20.

memory. The feature enables our method to process longer
query sequences with more parallel threads per block. The
GCUPS comparison between our method and CUDASW++
2.0 as well as CUDASW++ 3.0 is shown in Figure 5, where
GCUPS stands for giga cell updates per second. Our method
outperforms CUDASW++ 2.0 for all of the query sequences
because ours can fully utilize the shared memory without the
need of swapping data between shared memory and global
memory. When the query sequence length becomes larger,
our method can provide more performance improvement.
The reason is because CUDASW++ 2.0 required more data
swapping between shared memory and global memory when
processing a longer query sequence.

However, our method could not outperform CUD-
ASW++ 3.0 because the latter performed the sequence
alignment by coupling both the compute powers of CPU and



GPU while our method was built upon CUDASW++ 2.0,
which utilized the GPU compute power only. That is, the
subject sequences were divided and allocated to CPU and
GPU according to each individual compute power. On the
GPU side, CUDASW++ 3.0 used PTX assembly instructions
to implement the key recurrence equation and procedure
of finding the optimal local alignment score, where every
assembly instruction operated on quads of 8-bit signed
values, corresponding four independent alignments. The idea
of our proposed method can be applied to CUDASW++ 3.0
in the future to accelerate the processing of alignments with
short query sequences for the intertask kernel.

CUDASW++ 3.0 used local memory to buffer one row
of matrices H and E while we used shared memory instead
for the buffering because the access latency of local memory
is much longer than that of shared memory. However, the
shared memory space is so much smaller than the local
memory space that it is impossible to only use shared memory
for all the buffering without the help of global memory or
local memory if sequences are too long. That is why our
method is applicable for those alignments involving short
query sequences only. Our method can be integrated into
the CUDASW++ 3.0 package as an execution option and the
length of the input query sequence is used to determine which
method will be invoked for the alignments. If the length is not
too long to fit all the required buffering into shared memory;,
our method is invoked. Otherwise, the original CUDASW++
3.0 is invoked instead. Our method was originally designed
based on CUDASW++ 2.0. To integrate our method into
CUDASW++ 3.0, the PTX assembly instructions can be
used in our proposed algorithm for further performance
improvement.

4.4. Performance Evaluation of Different Threads and Blocks.
This subsection explores the influence of the numbers of
threads and blocks. We take the query sequence, P86783, for
the following study. First, we set the number of the blocks as
64 and change the number of threads, as shown in Figure 6.
When the number of threads is increased, our approach
and CUDASW++ 2.0 obtained almost the same GCUPS
while CUDASW++ 3.0 has higher performance. When the
number of threads per block becomes larger, the length
deviation of the subject sequences per block becomes higher,
resulting in poorer load balance between threads in the same
block. Moreover, the amount of shared memory allocated
to each thread is reduced when more threads in a block
contend for the shared memory. On the other hand, more
subject sequences per block can be aligned concurrently. For
CUDASW++ 3.0, it adopts advanced scheduling designed
especially for Kepler architecture, which prefers more threads
per block.

Next, we take the query sequence, P86783, to investigate
the influence of the number of blocks, as shown in Figure 7.
The number of threads per block is set to 64. When there
are more blocks, it means that the total number of threads
in a grid is increased. Consequently, the number of subject
sequences allocated to each thread is decreased. On the other
hand, we cannot run more than one block at the same time
on any streaming multiprocessor since each block required
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FIGURE 6: The performance analysis of 64 blocks based on different
number of threads.
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FIGURE 7: The performance analysis of 64 threads based on different
number of blocks.

almost all the shared memory space in its resident streaming
multiprocessor. As a result, increasing the number of blocks
incurs higher overhead for context switching between blocks.

5. Conclusions

The inexpensive general-purpose GPUs give engineers a great
choice to accelerate time-consuming applications. In this
work, we discussed how to use NVIDIA GPUs to implement
the Smith-Waterman database search algorithm. We have
added our method to the advanced package of CUDASW++
2.0 as an option of execution. When users input a query
sequence, the extended package will determine how to run
the query based on the length of the query sequence as well
as the space of shared memory per streaming multiprocessor.
If the query sequence length is short with the calculation of
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the available shared memory per streaming multiprocessor,
the extended package will use our method to run the query.
Otherwise, the original CUDASW++ 2.0 will be used. Our
idea can be applied to CUDASW++ 3.0 to improve the
intertask kernel in the future.

We have evaluated our method on Tesla C1060 and K20
using the benchmark BLUSOM64. Further, we analyze the
performance on different number of threads and blocks. The
results suggested that the proposed method may improve
Smith-Waterman algorithm on CUDA-enabled GPUs in
proper allocation of block and thread numbers.
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