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We are living longer. Are we living healthier? As we age, cellular and molecular damage
reshape our physiological responses towards environmental and endogenous stimuli. The
free radical theory of ageing has been proposed long before ageing has been considered a
“scientific discipline” and, since then, has been discussed and upgraded as a major
contributor to aberrant ageing. Assuming that ageing results merely from the accumulation
of oxidativemodifications of biomolecules is not only a simplistic and reductive view of such
a complex and dynamic process, but also free radicals and related oxidants are now
considered pivotal signalling molecules. The fine modulation of critical signalling pathways
by redox compounds demands a novel approach to tackle the role of free radicals in
ageing. Nitric oxide (·NO) is a paradigmatic example given its biological functions in
cardiovascular, neurologic and immune systems. In addition to the canonical ·NO
synthesis by a family of enzymes, nitrate from green leafy vegetables, is reduced
to nitrite in the oral cavity which is further reduced to ·NO in the stomach. Boosting
this nitrate-nitrite-NO pathway has been shown to improve gastrointestinal, cardiovascular,
metabolic and cognitive performance both in humans and in animal models of disease. In the
elderly, nitrate-derived ·NO has been shown improve several physiological functions that
typically decline during ageing. In this paper, the role of nitrate and derived nitrogen oxides
will be discussed while reviewing pre-clinical and clinical data on the cardiovascular,
neuronal, musculoskeletal and metabolic effects of nitrate during healthy ageing.
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INTRODUCTION: FROM THE FREE RADICAL THEORY OF AGEING
TO THE NITRATE-NITRITE-NITRIC OXIDE PATHWAY

Ageing and the physiological events that limit lifespan have been subject of intense research for many
decades. Increasing age is not only associated with physiological alterations in different organs, but is
also the major risk factor for the most prevalent diseases of the XXIst century including
cardiovascular, oncological, neurodegenerative and metabolic disorders (Niccoli and Partridge,
2012). Ground breaking discoveries on the molecular mechanisms of ageing have unveiled
environmental, genetic and intracellular signalling pathways, involving target of rapamycin
(TOR) proteins and insulin-like signalling cascades, as potential drivers of age-associated cellular
dysfunction (recently reviewed in (Campisi et al., 2019)) and the hallmarks that represent common
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denominators of mammal aging in different organisms have been
proposed (López-Otín et al., 2013). In the 1950s, the
overproduction of reactive oxygen species and the
accumulation of oxidative modifications, known as the free
radical theory of ageing, has been proposed as a driver of
biological ageing (Harman, 1956). However, the production of
reactive oxygen species cannot be envisaged as the sole or even
major driver of ageing because these compounds are a chemically
and biologically diverse group of molecules derived from
molecular oxygen with critical signalling functions under
physiological conditions, ensuring what has been called the
oxidative eustress (Viña et al., 2007; Sies et al., 2017; Borras
et al., 2020). Also, data from different research groups have not
only shown that antioxidants do not prevent the molecular
mechanisms of ageing and age-related disorders (Viña et al.,
2018) but also that, from the manipulation of several antioxidant
genes, only the deletion of Sod1 gene reduced lifespan (Pérez
et al., 2009). Taken together, the free radical theory of ageing is
now considered a simplistic and outdated hypothesis.
Accordingly, superoxide radical and hydrogen peroxide are
two emerging examples of how oxidants may be produced by
tightly controlled enzymatic reactions (Sies and Jones, 2020) and,
nitric oxide (•NO) is an additional example of a pleiotropic
signalling radical with physiological relevance (Moncada and
Higgs, 2006).

Nitric oxide is a small, hydrophobic gas that freely permeates
biological membranes and interacts with molecular targets within
its diffusional spread, ensuring physiological functions such as
vasodilation, innate immune response and neuromodulation
(Rocha et al., 2011; Ledo et al., 2005; Moncada and Higgs,
1993). Along with the canonical L-arginine-NO pathway
(Moncada and Higgs, 1993), •NO is also produced from
nitrate through the nitrate-nitrite-NO pathway (Lundberg
et al., 2008). The latter is particularly relevant since •NO is
produced from nitrate, traditionally regarded as an end
product of •NO oxidation, without the involvement of NO
synthases (NOS) (Benjamin et al., 1994; Lundberg et al., 1994).
Also, the major source of nitrate are green leafy vegetables and
roots such as lettuce, spinach, rucola and beetroot (Weitzberg and
Lundberg, 2013). Thus, the case can be made that the synthesis of
a pleiotropic signalling molecule may directly depend on human
dietary behaviour and, in fact, nitrate is now recognised as the
most significant biological precursor of •NO in vivo (Lundberg
et al., 2008). As we chew, green vegetables release nitrate to saliva
which is swallowed and absorbed in the small intestine. About
25% of circulating nitrate is transported by sialin, an electrogenic
nitrate/H+ transporter, into the salivary glands and secreted into
the oral cavity (Lundberg et al., 2008; Qin et al., 2012). This
enterosalivary circulation supplies nitrate to the oral microbiota
that uses nitrogen to produce ATP while reducing nitrate to
nitrite (Fritsch et al., 1985). Once swallowed, nitrite is reduced to
•NO and other bioactive reactive nitrogen oxides in the stomach
(Lundberg et al., 2009; Rocha et al., 2012). This is a chemical
rather than enzymatic reaction, as nitrite is protonated to nitrous
acid which decomposes to •NO and other oxidants (Benjamin
et al., 1994). However, most nitrite is absorbed into the
bloodstream, triggering •NO-dependent and independent

signalling pathways in every organ system (Lundberg and
Weitzberg, 2005; Bryan et al., 2007; Rocha et al., 2016;
Lundberg et al., 2018). Nitrate-derived •NO has been shown
to increase gastric mucosal blood flow and mucus production, to
eradicate gut pathogens and prevent inflammatory events
associated with peptic ulcer disease (Benjamin et al., 1994;
Dykhuizen et al., 1998; Björne et al., 2004; Jädert et al., 2012;
Rocha et al., 2013). Systemically, nitrate was shown to serve as a
reservoir of •NO under hypoxic conditions as several enzymes
acquire a nitrite-reductase activity under these conditions (van
Faassen et al., 2009). By increasing the bioavailability of •NO and
nitroso derivatives, nitrate prevents not only vascular
inflammatory events and atherogenesis, but also platelet
aggregation and myocardial ischemia-reperfusion injury
(Webb et al., 2004; Lundberg and Weitzberg, 2005; Shiva and
Gladwin, 2009). Also, by increasing the expression of
mitochondrial respiratory complexes and the synthesis of anti-
inflammatory cytokines, nitrate prevents visceral fat
accumulation and hyperglycaemia associated with metabolic
syndrome (Carlström et al., 2010; Lundberg et al., 2018).
While these metabolic effects have been shown to be
associated with the inhibition of NADPH oxidase (Hezel et al.,
2016), other molecular targets have also been described, such as
AMP-activated protein kinase (AMPK) (Cordero-Herrera et al.,
2019).

In this short review, it will be discussed pre-clinical and clinical
data on the impact of nitrate in cardiovascular, metabolic,
musculoskeletal and neurological diseases in the elderly. The
mitigation of age-associated co-morbidities by nitrate will also
be discussed and the translational opportunities of this anion will
be highlighted.

THE IMPACT OF DIETARY NITRATE ON
AGE-RELATED CO-MORBIDITIES

The demonstration that nitrate is reduced to nitrite and •NO in
the gut, yielding up to 40,000 ppb, changed the paradigm of redox
biology (Gago et al., 2007; Rocha et al., 2009). Never such high
steady state concentrations of •NO have been reported in vivo
and, given the acidic pH of the stomach, the chemical complexity
leading to the production of other oxidants (nitrogen dioxide
radical, peroxynitrite, dinitrogen trioxide) was (and still is) largely
unclear in a biological setting (Rocha et al., 2012; Lundberg and
Weitzberg, 2013). The impact of such fluxes of •NO arising from
the gastric milieu was soon associated with gastrointestinal
effects. Nitrate-derived •NO was shown to diffuse towards the
gastric mucosa inducing local vasodilation (Björne et al., 2004;
Rocha et al., 2010), the expression of genes encoding mucins, the
glycoproteins that sustain the gastric mucus, and to inhibit
inflammatory pathways such as those involving
myeloperoxidase and the expression of adhesion molecules
such as ICAM and P-selectin (Jädert et al., 2012; Peleli et al.,
2019). Such anti-inflammatory properties have been shown to
prevent peptic ulcer disease both induced by NSAIDs or not and
alleviate histological and clinical signs of inflammatory bowel
disease (Jansson et al., 2007; Borniquel et al., 2010; Rocha et al.,
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2013). The production of •NO-derived compounds, more stable
than •NO itself, such as nitroso compounds and nitroalkenes, that
can be absorbed into the systemic circulation, opened new
avenues on the putative systemic effects of nitrate (Bonacci
et al., 2012; Kelley et al., 2014; Delmastro-Greenwood et al.,
2015). Also, after a meal containing nitrate, plasma nitrate and
nitrite increase in approximately 30 min and remain high for
5–6 h due to the enterosalivary circulation of nitrate (Lundberg
and Govoni, 2004). Hence, regarding the systemic effects of
nitrate, one needs to consider both the physiologically active
molecules that are produced and absorbed from the gut and the
signalling events elicited by circulating nitrite. Although plasma
nitrite increases typically from 120 nM under fasting to 400 nM
after an oral nitrate load (10 mg/kg) (Lundberg and Govoni,
2004), this is sufficient to produce •NO under hypoxia. At this
pO2, several enzymes, including haemoglobin, myoglobin and
xanthine oxidase acquire a nitrite reductase activity, reducing
nitrite to •NO (for a comprehensive review see (van Faassen et al.,
2009)). Also, under hypoxia, and since oxygen is a co-factor for
NOS, the activity of these enzymes is inhibited and nitrite
reduction is the only source of •NO at locations where
vasodilation is mandatory to prevent or revert the effects of
oxygen privation. These observations from the past 2 decades
prompted several pre-clinical and clinical studies with the aim of
using nitrate to prevent a wide range of diseases (Rammos et al.,
2016; Bettio et al., 2017; Raubenheimer et al., 2017; Coggan and

Peterson, 2018). Curiously, many of these disorders are frequent
co-morbidities in the elderly and deviate not only what would be a
healthy decay of organ functions, but also compromise the quality
of life and ultimately, lifespan (Niccoli and Partridge, 2012; Divo
et al., 2014). During healthy ageing, several anatomical and
functional alterations occur in all organ systems. To cite just a
few examples, there is a 1) decline of muscle and bone mass, 2)
reduction of the functional capacity of neurons, 3) decrease of
gastrointestinal motility and gastric acid production, 4) reduction
of renal weight and size due to the loss of glomeruli and 5)
increase of the anteroposterior diameter of the thorax in addition
to an increased thoracic rigidity (Sharma and Goodwin, 2006).
Accumulating evidence suggest that nitrate may prevent or
mitigate these age-related alterations and promote healthspan,
the healthy life expectancy. This data will now be discussed and is
summarised in Figure 1.

CARDIOVASCULAR SYSTEM

It has been demonstrated that dietary nitrate is associated with
improved cardiovascular health (Bryan et al., 2007; Borlaug et al.,
2015; Kapil et al., 2015; Hezel et al., 2016). Indeed, given that
green leafy vegetables are the major source of nitrate, and that the
consumption of such foods is recommended by theWorld Health
Organisation to prevent major cardiovascular events (Appel et al.,

FIGURE 1 | Effects of dietary nitrate in the physiological events associated with healthy ageing and age-related disorders. *pre-clinical and clinical data obtained
from middle age and old volunteers.
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1997), it is not surprising that nitrate supplementation has been
investigated as a therapeutic strategy to reduce cardiovascular
mortality and morbidity (Hung et al., 2004; Carter et al., 2010;
Goh et al., 2019). An increase of systolic blood pressure is one of
the physiological hallmarks of ageing due to increased arterial
stiffness and left ventricle afterload with consequent ventricular
hypertrophy (Cheitlin, 2003). Hence, the impact of nitrate on
blood pressure has been extensively studied both in young and
old adults as well as in normotensive and hypertensive
volunteers (Larsen et al., 2006; Gilchrist et al., 2011; Kapil
et al., 2015). Data suggests that the stimulation of the
nitrate-nitrite-NO pathway reduces arterial blood pressure.
Depending on the experimental design (acute or sub-acute
nitrate administration) and the form of nitrate intake
(beetroot juice or sodium nitrate), dietary concentrations of
nitrate have been shown to reduce diastolic blood pressure by
3.7 mmHg (Larsen et al., 2006) or both diastolic (8.1 mmHg)
and systolic (4.4 mmHg) blood pressure (Webb et al., 2008). In
older adults, one needs to consider age-associated changes on
oral microbiome and a reduced salivary rate (Percival et al.,
1991) that may prevent the blood pressure lowering effects of
nitrate. Nevertheless, Vanhatalo and co-workers have elegantly
shown that a 10-days supplementation of nitrate increases
plasma nitrite while reducing both systolic and mean arterial
pressure in normotensive old volunteers (age range 70–79 years)
(Vanhatalo et al., 2018). Nitrate supplementation also altered
the composition of the oral microbiome, increasing the relative
abundance of Rothia and Neisseria and decreasing Prevotella
and Veillonella, which correlated with a higher increase in
plasma nitrite (Vanhatalo et al., 2018). Similarly, an acute
nitrate load, was also shown to decrease both diastolic and
systolic blood pressure by approximately six and 7.5 mmHg,
respectively, in a group of old volunteers (age range
50–70 years) (Stanaway et al., 2019). The increase of plasma
nitrite was also significantly higher in old rather than young
subjects (Stanaway et al., 2019), suggesting that boosting the
nitrate-nitrite-NO pathway may have an unexpected better
outcome in terms of cardiovascular indicators in the elderly.
Nevertheless, ageing is not only associated with a
vasoconstrictive state but also with pro-coagulant and pro-
inflammatory events (Cheitlin, 2003). In this regard, an
additional study has replicated both the systolic and diastolic
blood pressure lowering effects of nitrate in healthy older adults
(mean age 64), but has also shown a reduction in CD11b-
expressing granulocytes as well as in blood monocyte-platelet
aggregates, suggesting a novel anti-adhesive phenotype
(Raubenheimer et al., 2017). Finally, diastolic dysfunction,
with impaired passive filling, leads to heart failure, a cardiac
disease with high prevalence among elderly populations (Wan
et al., 2014). In aged mice, chronic nitrate supplementation
accelerates cardiomyocyte calcium handling by increasing
LTCC flux, a L-type calcium channel that controls
sarcoplasmic reticulum calcium release (Rammos et al.,
2016). Also, nitrate was shown to promote •NO-cGMP-PKG
signalling and to increase the levels of cardiac nitrosothiols
while reversing age-related diastolic dysfunction and improving
vascular function (Rammos et al., 2016).

By promoting systemic •NO synthesis, nitrate has been shown
to inhibit the vasoconstrictive, pro-adhesive and pro-coagulant
tendency observed with ageing. Thus, nitrate supplementation
may be hypothesized in the field of gerontology to prevent age-
associated cardiovascular morbidities.

CENTRAL NERVOUS SYSTEM

Cognitive impairment, working memory decline and poor
executive functioning are the most frequent neurological
deficits during healthy ageing (Bettio et al., 2017). Chronic
inflammation and cerebral hypoperfusion are fundamental
contributors for the decay of cognition and executive functions
(Ruitenberg et al., 2005). Anatomical and functional alterations of
cerebral blood vessels, including increased tortuosity and
diminished •NO bioavailability, contribute to a chronic
ischemic environment in the aged brain (Moody et al., 1995).
Hence, it has been hypothesised that nitrate could be reduced to
nitrite by the oral microbiota and, in turn, nitrite would be
univalently reduced to •NO in the cerebral parenchyma either
chemically or by specific enzymes that acquire a nitrite reductase
activity at low pO2 (Millar, 1995; van Faassen et al., 2009). This
could be interpreted as a dietary approach to increase •NO
bioavailability in the brain of older adults and, in fact, Presley
et al. have demonstrated that a diet rich in nitrate increases
cerebral blood flow in old human volunteers (mean age 75)
(Presley et al., 2011). Curiously, dietary nitrate does not
increase global cerebral blood flow but rather induces
vasodilation in the dorsolateral prefrontal cortex, a region
responsible for higher executive functions (Presley et al.,
2011). The vasodilatory effect of nitrate, upon reduction to
nitrite and •NO, was also observed in the prefrontal cortex of
young adults and was associated with improved cognitive
performance (Wightman et al., 2015). Curiously, blood flow
diminishes during the least demanding cognitive tasks
(Wightman et al., 2015), suggesting that nitrate-dependent
vasodilation affords an additional backup of nutrients and
oxygen needed to accomplish complex cognitive tasks.
However, other studies did not replicate the improvement of
cognitive performance in older adults (Kelly et al., 2013). In a
study by Kelly et al., old volunteers (mean age 63—females;
64—males), showed no improvement neither in serial
subtractions, rapid information processing nor number recall
tasks (Kelly et al., 2013). One possible explanation is that these
volunteers were about 10 years younger than the study
populations included in other studies which may mask the
effect of nitrate since cognition may still be quite well
preserved. Also, while in other studies (Presley et al., 2011),
volunteers were exposed to a nitrate-rich diet (a list of foods
high in nitrate was provided to participants), in this case
volunteers were exposed to a higher dose of nitrate
(24.6 mmol for 2.5 days) (Kelly et al., 2013).

Taken altogether, despite the vasodilatory effect of nitrate-
derived •NO in the aged brain, additional studies are necessary to
ascertain the impact of the nitrate-nitrite-NO pathway in
cognitive performance and memory processing in the elderly.
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MUSCULOSKELETAL SYSTEM

During healthy ageing, there is a predictable decline in skeletal
muscle force, speed and strength that may limit or even disable
the accomplishment of daily life activities (Roshanravan et al.,
2017). Dietary nitrate, through the chemical reduction to nitrite
and •NO in the gut, has been shown to enhance the contractile
function of the skeletal muscle not only in young but also in old
human volunteers (Haider and Folland, 2014; Coggan et al.,
2017). In old adults (mean age 71), acute nitrate
supplementation increases plasma nitrate, nitrite and exhaled
•NO while improving knee extensor power and angular velocity,
paralleling similar observations in young adults (Coggan et al.,
2020). In this group age, nitrate increases both evoked muscle
force production as well as excitation-contraction coupling of the
skeletal muscle (Haider and Folland, 2014). The molecular
mechanisms underlying such effects include an increase of
•NO bioavailability and the downstream phosphorylation of
myofibrillar proteins (Coggan and Peterson, 2018). In
addition, nitrate has also been shown to promote muscle force
production in vitro by increasing the expression of calcium
handling proteins thereby improving intracellular calcium
handling (Hernández et al., 2012). These observations suggest
that nitrate supplementation in the elderly may preserve motility,
independence and even prevent premature death. Recently,
Kumar and co-workers have also shown that nitrate improves
diaphragmatic contractile function in old rodents (Kumar et al.,
2020), suggesting that the ventilatory movements may be
facilitated in old subjects complying with a nitrate-rich diet. In
addition to the anatomical changes of the thorax with ageing and
the loss of elastin, the contractile function of the diagram also
declines with age, leading to an insufficient airway clearance and
breathing complications whichmay ultimately increase the risk of
pulmonary infections (Kelley and Ferreira, 2017). A physiological
dose of nitrate increases the rate of force development and peak
power of the diaphragm of old mice but without affecting the
phosphorylation status of myofibrillar proteins or the abundance
of calcium handling proteins (Kumar et al., 2020). Finally, the
molecular mechanisms underlying the ergogenic effects of nitrate
are also associated with an increase of mitochondrial
bioenergetics (Jones et al., 2018) as nitrate improves oxidative
phosphorylation efficiency (P/O ratio) while reducing oxygen
cost during exercise in young (mean age 25 ± 1 year) human
volunteers (Larsen et al., 2011). From a mechanistic viewpoint,
nitrate has been shown to inhibit the expression of ATP/ADP
translocase, to increase the efficiency of ATP synthesis and of
ATP-consuming metabolic pathways (Larsen et al., 2011;
Affourtit et al., 2015). Also, nitrite derived from nitrate,
induces posttranslational modifications of mitochondrial
respiratory complexes (such as S-nitrosation of complex I)
dampening electron transfer, which may have a particular
interest during ischemia/reperfusion events (Shiva 2007)
(Shiva et al., 2007). Of note, most of the studies regarding
mitochondrial bioenergetics were performed in young
volunteers and therefore robust data on old populations are
necessary to a acknowledge the impact of nitrate on
mitochondrial pathways in the elderly. Although the molecular

mechanisms remain unclear, it is now apparent that nitrate, by
increasing the bioavailability of •NO, preserve the contractile
function of the skeletal muscle, likely promoting independent
routines and an improved quality of life.

METABOLIC DISORDERS

The impact of dietary nitrate on human metabolic pathways has
been recently unveiled and include antidiabetic effects as well as
the reversal of hallmark features of metabolic syndrome (for a
recent review see (Lundberg et al., 2018)). In murine models of
metabolic diseases and diabetes, nitrate has been shown to
increase insulin secretion and glucose tolerance, reduce
haemoglobin A1c, dyslipidemia, visceral fat accumulation and
liver steatosis (Stokes et al., 2009; Carlström et al., 2010;
Velmurugan et al., 2016). The molecular mechanisms
underlying such effects include not only the post-translational
modification of mitochondrial respiratory complexes, such as
S-nitrosation of complex I and binding to cytochrome c, but also
the synthesis of cytokines with anti-inflammatory properties
(Lundberg et al., 2018). Also, nitrate-derived nitrogen oxides
downregulate NADPH oxidase activity thereby inhibiting the
synthesis of superoxide radical and higher oxidants such as
peroxynitrite anion (Cordero-Herrera et al., 2019). Regarding
the cellular energetic status, nitrate has been shown to activate
AMPK, reducing the synthesis of fatty acids, promoting fatty acid
oxidation and glucose uptake (Peleli et al., 2015; Cordero-Herrera
et al., 2019). These recent observations were made mostly in
animal models of disease or in adult populations (mean age 53)
(Hezel et al., 2016; Velmurugan et al., 2016; Cordero-Herrera
et al., 2019) and thus the metabolic effects of nitrate in older
adults remains largely unknown. This is a gap that needs to be
rapidly filled since many of these disorders are particularly
prevalent in the elderly (Niccoli and Partridge, 2012). Indeed,
reports are now emerging suggesting that, in ageing mice, daily
nitrate intake prevents hepatic senescence-related dysfunction by
decreasing the release of alanine aminotransferase and aspartate
aminotransferase as well as intracellular lipid deposition (Wang
et al., 2018). Additionally, recent metabolomic analysis have
shown that nitrate alters the plasma concentration of small
metabolites in healthy older adults and these changes correlate
with improved motor, vascular and cognitive function (DeVan
et al., 2016; Justice et al., 2015; Johnson et al., 2017). The proof-of-
concept provided by pre-clinical and clinical data on the
metabolic effects of nitrate in old subjects, should now prompt
researchers, clinicians and gerontologists to perform larger
clinical trials to ascertain whether nitrate should be used as a
supplement to prevent or reverse some of the most prevalent
ageing disorders.

CONCLUSION AND FUTURE DIRECTIONS

The pre-clinical and clinical data herein summarised suggest that
diets rich in nitrate may prevent, reverse or mitigate the
physiological decay observed during healthy ageing or age-
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associated disorders. Cardiovascular dysfunction, neurological
deficits and metabolic impairment are the major causes of
morbidity and mortality among older adults but nitrate
supplementation is now emerging as a nutritional approach to
enhance cognitive and functional abilities in the elderly. However,
some questions remain to be answered. For instance, given that
nitrate improves muscle mitochondrial function and oxygen
consumption in young volunteers, how would it impact in
muscle mitochondria in older adults? Would changes in •NO
bioavailability in old subjects interfere with the mitochondrial
effects of nitrate observed in young populations? May
mitochondrial function and intracellular calcium handling
concur to improve muscle contractile function in old subjects?
Finally, given the prevalence of metabolic disorders in the elderly,
it is mandatory to translate the antidiabetic and antilipemic
effects of nitrate observed either in rodents or young
volunteers to old populations. Thus, the impact of nitrate in
the healthy life expectancy should now be studied in large
multicentre trials to ascertain if nitrate-rich diets or
supplements could be used in the more generalised context of
gerontology.
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