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There is growing awareness that aphasia following a stroke can include deficits in other cognitive functions and that these are

predictive of certain aspects of language function, recovery and rehabilitation. However, data on attentional and executive

(dys)functions in individuals with stroke aphasia are still scarce and the relationship to underlying lesions is rarely explored.

Accordingly in this investigation, an extensive selection of standardized non-verbal neuropsychological tests was administered to 38

individuals with chronic post-stroke aphasia, in addition to detailed language testing and MRI. To establish the core components

underlying the variable patients’ performance, behavioural data were explored with rotated principal component analyses, first

separately for the non-verbal and language tests, then in a combined analysis including all tests. Three orthogonal components for

the non-verbal tests were extracted, which were interpreted as shift-update, inhibit-generate and speed. Three components were

also extracted for the language tests, representing phonology, semantics and speech quanta. Individual continuous scores on each

component were then included in a voxel-based correlational methodology analysis, yielding significant clusters for all components.

The shift-update component was associated with a posterior left temporo-occipital and bilateral medial parietal cluster, the inhibit-

generate component was mainly associated with left frontal and bilateral medial frontal regions, and the speed component with

several small right-sided fronto-parieto-occipital clusters. Two complementary multivariate brain-behaviour mapping methods were

also used, which showed converging results. Together the results suggest that a range of brain regions are involved in attention and

executive functioning, and that these non-language domains play a role in the abilities of patients with chronic aphasia. In

conclusion, our findings confirm and extend our understanding of the multidimensionality of stroke aphasia, emphasize the

importance of assessing non-verbal cognition in this patient group and provide directions for future research and clinical practice.

We also briefly compare and discuss univariate and multivariate methods for brain-behaviour mapping.
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Introduction

There is a growing understanding that a left hemispheric

stroke leading to impairments in language processing—

aphasia—often also affects other cognitive functions, such

as attention or executive functions (Glosser and Goodglass,

1990; Helm-Estabrooks, 2002; Jefferies and Lambon

Ralph, 2006; Murray, 2012; Villard and Kiran, 2017)

and it has been shown that impairments in these cognitive

functions play an important role in aphasia recovery and

rehabilitation (Fillingham et al., 2005; van de Sandt-

Koenderman et al., 2008; Lambon Ralph et al., 2010;

Brownsett et al., 2014; El Hachioui et al., 2014;

Geranmayeh et al., 2017; Simic et al., 2019). The occur-

rence and patterns of non-verbal cognitive dysfunctions in

patients with aphasia, the relationship between non-verbal

and language impairments, and their structural correlates

have been examined separately in some studies. To date,

however, no investigation has undertaken a detailed behav-

ioural assessment of both verbal and non-verbal perform-

ance or combined this with structural imaging data.

A handful of previous behavioural studies have examined

non-verbal cognition in patients with aphasia, but did so

either with a narrow focus, for instance investigating the

impact of domain-general executive dysfunctions on

semantic cognition (Thompson et al., 2018), or on a

rather general level with findings based on composite

scores (Helm-Estabrooks, 2002), a few standardized tests

per domain (Kauhanen et al., 2000; Fucetola et al., 2009;

El Hachioui et al., 2014; Lee and Pyun, 2014; Marinelli

et al., 2017; Wall et al., 2017) or experimental tasks

(Villard and Kiran, 2015; Kuzmina and Weekes, 2017).

This limited test selection stands in contrast to research

efforts with healthy participants or other patient popula-

tions that have explored the nature of multiple components

within attention and executive function (Mirsky et al.,

1991; Miyake et al., 2000; Friedman and Miyake, 2017).

One study including patients with aphasia used a broad

range of attention assessments and indeed found that as-

pects of attention differed with respect to their predictive

power regarding language function (Murray, 2012).

Another limitation of existing studies is that patient per-

formance is often reported on a group level only (Glosser

and Goodglass, 1990; Kauhanen et al., 2000; El Hachioui

et al., 2014; Lee and Pyun, 2014; Naranjo et al., 2018) and

information about the prevalence of impaired performance

based on normative data is seldom available or incomplete.

This information is, however, of clinical significance and

relevant when performance in different aspects of cognitive

functioning is to be compared.

Underlying patterns in impaired and preserved abilities of

heterogeneous patient populations can be extracted using

data reduction techniques, such as principal component

analysis (PCA) (Kummerer et al., 2013; Butler et al.,

2014; Mirman et al., 2015; Halai et al., 2017; Lacey

et al., 2017). Applied to large, detailed datasets containing

language measures and a handful of executive function as-

sessments, a previous study of chronic post-stroke aphasia

found three principal components (phonology, semantics,

executive function) underlying participants’ performance

(Butler et al., 2014), which was supplemented by a fourth

speech quanta component (the quantity of speech produced

in connected-speech tasks) in a subsequent study (Halai

et al., 2017). One major advantage of data-driven

approaches is that they can accommodate for the fact that

multiple processes underlie performance in any given test

(e.g. naming requires preserved visual perception, semantics,

phonology and motor articulation) and no test is a pure

measure of single cognitive/language processes. Indeed, sens-

ibility regarding the linguistic demands of any test is par-

ticularly high within the field of aphasia. These concerns are

usually expressed in the sense that impaired language func-

tions may interfere with testing of other cognitive domains

(Keil and Kaszniak, 2002), and more rarely the other way

around (Heuer et al., 2017). Data-driven approaches offer a

formal method to establish the mutual influences of lan-

guage and non-verbal ability on test performance.

Based on studies with healthy controls and various

neurological populations, a bilateral fronto-cingulo-parietal

network is known to be involved in attention and executive

function processes (Miller and Cohen, 2001; Duncan,

2010; Niendam et al., 2012; Petersen and Posner, 2012;

Fedorenko et al., 2013; Power and Petersen, 2013) but

little is known about the structural correlates of attentional

and executive dysfunctions in patients with aphasia. Recent

research combining data-driven decomposition of behav-

ioural assessment with neuroimaging data, has revealed

the structural correlates of behavioural performance in pa-

tients with aphasia (Kummerer et al., 2013; Butler et al.,

2014; Mirman et al., 2015; Halai et al., 2017; Lacey et al.,

2017). While extracting clear brain-behaviour relationships

for various aspects of language, these studies struggled to

find significant associations of tissue integrity with scores

on executive function (but see Lacey et al., 2017), either

because non-language assessment was not included

(Kummerer et al., 2013; Mirman et al., 2015) or assess-

ment coverage was too limited (Butler et al., 2014; Halai

et al., 2017).

In addition to the form and analysis of patients’ behav-

ioural assessment, the approach to mapping brain-behav-

iour relationships could also be critical. Univariate
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approaches, such as voxel-based lesion-symptom mapping

(VLSM) (Bates et al., 2003) and voxel based correlational

methodology (VBCM) (Tyler et al., 2005), are relatively

easy to run and interpret. Recent debate has noted the po-

tential shortcomings of univariate approaches (Karnath

et al., 2018) including the inability to detect conditional

voxel combinations (DeMarco and Turkeltaub, 2018) and

mislocalization (Mah et al., 2014), which might be ad-

dressed by multivariate analyses (but see Sperber et al.,

2019). The power of multivariate analyses, however,

bring new interpretation challenges that are straightforward

in univariate approaches: because all weights in multivari-

ate models are conditional on each other, the interpretation

or post hoc thresholding of individual weights becomes

non-trivial (Haufe et al., 2014). Accordingly, making infer-

ences about local brain-behaviour relationships based on

multivariate models is, at best, complicated. One transpar-

ent way forward is for studies to begin to present both

univariate and multivariate results. Therefore, in the cur-

rent study we show the results for four different methodo-

logical approaches, which allows us to demonstrate some

commonalities and differences.

To extend our understanding of stroke aphasia to poten-

tially critical aspects of non-verbal cognitive function and

their structural correlates, we administered a comprehen-

sive battery of non-verbal tests of attention and executive

function to a large and diverse group of individuals with

chronic post-stroke aphasia. The key aims of the study

were: (i) to assess the prevalence of attention and executive

dysfunction in patients with post-stroke aphasia; (ii) to ex-

plore the underlying relationships between the tests of at-

tention and executive function, as well as the link to the

patients’ language profiles; and (iii) to map the structural

correlates for these underlying attention, executive and lan-

guage features by means of four different methodological

approaches.

Materials and methods

Participants

Thirty-eight participants were recruited for the present study
(11 female, 27 male; mean age 64 � 11.9 years, range 45–88

years; see Supplementary Table 1 for more details). All partici-
pants had a single left hemispheric stroke (ischaemic or haem-
orrhagic) at least 1 year before assessment and imaging (see
Fig. 1 for lesion overlap map) and had no additional signifi-
cant neurological conditions and no contraindications for
MRI. They were pre-morbidly right-handed native English
speakers with normal or corrected-to-normal vision. All had
been diagnosed with aphasia but no restrictions were applied
regarding the type of aphasia or the severity. Five patients are
identical to patients whose data were reported in Halai et al.
(2017) and Butler et al. (2014). Informed consent was ob-
tained from all participants prior to participation, in line
with the Declaration of Helsinki and as approved by the
local NHS ethics committee. MRI data from a healthy age
and education matched control group (10 female, 12 male)
was used as a reference to identify lesion/abnormal tissue for
each patient (Seghier et al., 2008).

Neuropsychological assessments

In addition to comprehensive language testing, described in
more detail in Butler et al. (2014) and Halai et al. (2017), a
broad range of standardized neuropsychological tests of atten-
tion and executive functions were administered. This included
the subtests Alertness, GoNoGo, Divided Attention, and
Distractibility from the Test of Attentional Performance (TAP
Mobility version 1.3.1; Zimmermann and Fimm, 1995; www.
psytest.net), a computerized test battery measuring reaction
times and error rates in tests with varying attentional demands;
the subtests Design Fluency and Trail Making (parts 2–4) from
the Delis-Kaplan Executive Function System (D-KEFS; Delis
et al., 2001), the former assessing non-verbal idea generation
by requiring participants to draw as many different figures as
possible (connecting dots with lines), and the latter assessing
visuospatial attention, processing speed and flexibility by
requiring participants to connect numbers (part 2), letters
(part 3) or alternatingly both (part 4) in ascending order; a
computerized version of the Tower of London (TOL-F by
Schuhfried; Kaller et al., 2011), a visuospatial planning task;
the Kramer test (Balzer et al., 2011), a categorization task
requiring participants to find ways of sorting eight cards into
two groups; the Raven’s Coloured Progressive Matrices
(Raven, 1962), assessing reasoning abilities; and the Brixton
test (Burgess and Shallice, 1997), assessing visuospatial rule
detection. Test scores were compared to published norms;
age- and/or education-corrected norms were considered if
available. For the Raven Matrices, the norms for part B
were taken from Smits et al. (1997). Following Brooks et al.

Figure 1 Overlap of the 38 patients’ lesions.
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(2011), performance was considered as at least mildly-to-mod-
erately impaired if it was more than 1.5 standard deviations
(SD) below the mean (i.e. a T-score535, a percentile
rank5 6 or a scaled score of4 5).

Data analysis

For a descriptive comparison of the impairments per patient
and measure, and to account for missing data, percentages of
impaired scores were calculated based on 16 measures from
the 10 non-verbal tests and 14 measures from 12 language
tests. The percentage of impaired scores per patient was
taken as an indicator of the severity of their impairment and
subsequently used in correlation analyses. Based on the raw
test scores, three PCAs (correlation-based) were performed
(using IBM SPSS 22.0) to elucidate the data’s underlying struc-
ture. The first PCA comprised just the non-verbal tests of at-
tention and executive function. In the second PCA, only the
language measures were included, which also provided a rep-
lication of previous results (Butler et al., 2014; Halai et al.,
2017). Lastly, the third PCA comprised the combination of all
measures included in the two other PCAs. To facilitate inter-
pretation, it was ensured that a higher score would indicate
better performance for all measures. To this end, reaction time
measures were inverted, and accuracy rates were computed.
Because of missing values and to include the same sample in
all analyses, data of 32 of 38 patients were entered in the
PCAs. TAP Distractibility and the letter and switching versions
of the Trail Making Test were not included in order to not
decrease the sample size further. Importantly, analyses includ-
ing these measures showed that they were highly correlated
with measures of the GoNoGo test or the number version of
the Trail Making Test, respectively. To reduce the number of
variables entered in the analysis, some comparable language
measures were combined (Boston naming and Cambridge
naming, immediate and delayed repetition of words and non-
words, spoken and written word-picture matching, word and
non-word minimal pairs). All components with eigen-
values51 were extracted and then varimax rotated, yielding
orthogonal and interpretable components. Two control ana-
lyses were performed to assess the stability and predictability
of the PCA results. First, means and 95% confidence intervals
for the component loadings were computed by leaving one
case out each time. Second, the similarity between the observed
data and those predicted was determined using a leave one
case out method (by projecting the left-out case into the com-
ponent space using the coefficient matrix). Correlations were
computed to explore the relationship between component
scores and the severity of the impairment in the neuropsycho-
logical tests as well as with patient characteristics such as
lesion volume, age, and years of education.

Neuroimaging data acquisition and
analysis

High resolution structural T1-weighted MRI scans were
acquired on a 3.0 T Philips Achieva scanner (Philips
Healthcare) using an 8-element SENSE head coil. A T1-weighted
inversion recovery sequence with 3D acquisition was used
with the following parameters: repetition time = 9.0 ms, echo
time = 3.93 ms, flip angle = 8�, 150 contiguous slices, slice

thickness = 1 mm, acquired voxel size 1.0 � 1.0 � 1.0 mm,
matrix size 256 � 256, field of view = 256 mm, inversion
time = 1150 ms, SENSE acceleration factor 2.5, total scan acqui-
sition time = 575 s.

Structural MRI scans were preprocessed with Statistical
Parametric Mapping software (SPM8: Wellcome Trust Centre
for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). The
images were normalized into standard Montreal Neurological
Institute (MNI) space using a modified unified segmentation-
normalization procedure optimized for focal lesioned brains
(Seghier et al., 2008). Data from all participants with stroke
aphasia and all healthy controls were entered into the segmen-
tation-normalization. Images were then smoothed with an
8 mm full-width at half-maximum (FWHM) Gaussian kernel
and used in the lesion analyses described below. An age and
education matched healthy control group was used to deter-
mine the extent of abnormality per voxel. This was achieved
using a fuzzy clustering fixed prototypes (FCP) approach,
which measures the similarity between a voxel in the patient
data with the mean of the same voxel in the control data (note:
this method does not discriminate what caused the abnormal-
ity, but simply reflects how deviant the signal in the patient
scan is from a healthy group). One can apply a threshold to
the FCP to determine membership to abnormal/normal voxel.
The default parameters were used apart from the lesion defin-
ition ‘U-threshold’, which was set to 0.5 to create a binary
lesion image. We modified the U-threshold from 0.3 to 0.5
after comparing the results obtained from a sample of patients
to what would be nominated as lesioned tissue by an expert
neurologist. The images generated for each patient were visu-
ally inspected and manually corrected if necessary and were
then used to create the lesion overlap map in Fig. 1.

The smoothed FCP images (% abnormality) were used to
determine the brain regions where abnormality correlated
with PCA component scores using a voxel-based correlational
methodology (VBCM) (Tyler et al., 2005), a variant of voxel-
lesion symptom mapping (Bates et al., 2003), in which both
the behaviour and signal intensity measures are treated as con-
tinuous variables (conducted in SPM12). For the structural
correlate analysis, we assume a negative correlation between
abnormality and behavioural component score (i.e. greater ab-
normality leads to poorer performance). The participants’
component scores from the combined PCA, were entered sim-
ultaneously into a VBCM analysis. The resulting clusters thus
account for the unique variance of a component. In additional
analyses, lesion volume (calculated from the lesion identified
by the automated lesion identification method; Seghier et al.,
2008), age, education, and time post-stroke were entered as
covariates. Unless noted otherwise, we applied the threshold at
voxel-level P5 0.001 and family-wise error corrected (FWEc)
cluster-level P5 0.05.

To supplement the univariate analysis, we conducted multi-
variate analyses in two ways. First, we used the support-vector
regression lesion symptom mapping (SVR-LSM) toolbox re-
cently updated by DeMarco and Turkeltaub (2018), which is
based on Zhang et al. (2014). In this framework, we loaded
the lesion binary images as the features and created a separate
model for each component score. The following settings were
used: MATLAB SVM implementation, hyper-parameter opti-
mization (Bayes optimization with default settings) and lesion
threshold = 3 (�10% of sample). The resulting beta weights
were evaluated by permutation testing (n = 10 000, voxel-
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wise P50.005 and cluster-wise P50.05), but note that the
model performance (predicted versus observed scores) is not
evaluated in this approach. We ran two models per compo-
nent, with and without correction for lesion volume (‘regress
on both’). Second, we used the pattern recognition of neuroi-
maging toolbox (PRoNTo V2.1) (http://www.mlnl.cs.ucl.ac.uk/
pronto/) (Schrouff et al., 2013) as an alternative method be-
cause (i) it formally evaluates model predictions; and (ii) it
does not truncate beta weights post hoc. For this toolkit, we
entered the FCP % abnormality images as a continuous meas-
ure and followed the pipeline through in two pathways:
(i) using the whole brain as input (similar to the VBCM);
and (ii) restricted to lesion territory (n4 3) (similar to
VLSM/SVR-LSM). Given the simplicity of the toolkit, we ran
models using four regression machine implementations: (i)
kernel ridge regression (KRR; Hastie et al., 2009); (ii) rele-
vance vector regression (RVR; Tipping, 2001); (iii) Gaussian
processes regression (GPR; Rasmussen and Williams, 2006);
and (iv) multi-kernel regression (MKR; Bach et al., 2004;
Rakotomamonjy et al., 2008). PRoNTo relies on kernel meth-
ods to overcome the high dimensionality problem in neuroima-
ging (using n � n pair-wise similarity matrix) and features
were mean centred. The default parameters were used for all
machines and where necessary hyper-parameter optimization
was achieved using nested leave-one-out cross validation (de-
fault grid search). A leave-one-out cross-validation scheme was
used to determine model performance. For model inference, we
report P-values for correlation and mean square error (MSE)
following a permutation test of the observed scores (n = 1000)
with a P50.05 alpha threshold. As with the SVR-LSM, we
ran each component model with and without lesion volume as
a covariate.

The anatomical labels for the clusters were determined
using the Harvard-Oxford atlas for grey matter and on the
John Hopkins white matter atlas for white matter tracts.
Furthermore, comparisons to existing findings were made by
either overlapping the respective maps, if available, or by
checking (in MRIcron) whether published peak coordinates
overlapped with the clusters from the VBCM.

Data availability

Behavioural data are available in the Supplementary material.
Further data are potentially available by request to M.A.L-R.

Results

Neuropsychological profiles

The first aim of this study was to assess the prevalence of

impairments in attention and executive functions in patients

with post-stroke aphasia. Patients’ performance was thus

compared to available norm data to identify the number

of impaired scores per patient and test. All participants

scored below normal range in at least one measure of the

10 tests of attention and executive function, but no partici-

pant was impaired in all of these tests (mean percentage of

impaired scores per patient 36.7 � 20.8%, range 6.3–

90.9%). Fifteen patients were impaired in at least half of

the administered non-verbal tests. In comparison to the

non-verbal test performance, all participants scored below

normal range in at least three measures of the 12 language

tests, 30 patients were impaired in at least half of the ad-

ministered language tests, and five participants were im-

paired in all of these tests (mean percentage of impaired

scores per patient 65.0 � 22.4%, range 21.4–100%).

Details on impaired performance in the non-verbal and

language tests are depicted in Fig. 2, while Fig. 3 shows

the patients’ overall impairment in the non-verbal versus

language tests (as percentage of impaired scores in the re-

spective tests). Individual patients’ scores are available in

Supplementary Tables 2 and 3, while Supplementary Fig. 2

gives details about impaired performance on the different

principal components.

The Alertness test and the Distractibility without distrac-

tor condition were the only two non-verbal tests where the

percentage of impaired scores was around or below 5% of

the sample. These tests measure more basic attention func-

tions and it has previously been reported that these aspects

of attention are more commonly impaired in right-hemi-

spheric stroke patients (Sturm et al., 1997). The tests

with the highest percentages of impaired scores were the

Trail Making Test [numbers impaired in 25 patients

(65.8%), letters in 32 patients (88.9%), and switching in

29 patients (85.3%)], the Design Fluency Test (25 patients,

67.6%) and the Kramer Test (21 patients, 58.3%). We split

the sample into two groups of ‘cognitive’ severity based on

a median split of overall impairment in the non-verbal tests

(see Supplementary Table 2 for details). Comparison of the

two groups revealed that only the more cognitively-severe

patients had impaired scores in the Tower of London and

TAP Divided Attention tests. As such, the test of divided

attention might be especially clinically useful as a predictor

of impaired cognition in aphasic populations. In contrast,

both groups showed a similar and high degree of impair-

ment in two other tests, the Kramer and the letter version

of the Trail Making Test. The high percentage of impaired

performance in the Trail Making Test is particularly im-

portant considering the widespread use of this test with

aphasic patients. Thus, impaired performance in the switch-

ing condition of the trail making test need not necessarily

stem from difficulties in switching but from reduced

automaticity of accessing the letters in order (and, to a

lesser extent, numbers), which is a prerequisite for task

completion.

Separate and combined principal
component analyses of non-verbal
and language tests

The second aim was to explore the underlying relationships

between the tests of attention and executive function, as

well as linking these to the patients’ language profiles.

We computed separate PCAs for the non-verbal and

verbal tests, as well as a combined PCA including all

3206 | BRAIN 2019: 142; 3202–3216 R. Schumacher et al.



tests. The PCA including only the non-verbal tests of

attention and executive functions yielded three orthogonal

components accounting for 68.5% of the variance [Kaiser-

Meyer-Olkin (KMO) = 0.704]. Based on the tests loading

highest on each component (Fig. 4A), the first component

(accounting for 28.1% of the variance) was interpreted as

‘shift-update’ as the tests loading highest are relatively de-

manding with respect to flexible (visuo-spatial) processing

and working memory. Interestingly, the first component

contains tests that are traditionally regarded as tests of ex-

ecutive function (Tower of London, Brixton) as well as

tests that are more associated with attention (Divided at-

tention and Trails numbers), which underlines the link be-

tween the two domains that is also reflected in the term

‘executive attention’ (Kane and Engle, 2002; Petersen and

Posner, 2012). The second component (23.2%) was inter-

preted as ‘inhibit-generate’ as it included tests like the

Kramer sorting test (requiring idea generation as well as

inhibition of salient aspects of the stimuli) as well as

simple response inhibition tasks like the GoNoGo test.

The third component (17.2%) was interpreted as ‘speed’

as it contained the reaction time measures of both basic

attention tasks.

The separate analysis of the language tests yielded three

orthogonal components accounting for 78.3% of the vari-

ance (KMO = 0.718). The components can be interpreted as

‘phonology’ (accounting for 31.5% of the variance), ‘seman-

tics’ (24.2%), and ‘speech quanta’ (22.6%), directly replicat-

ing previous research (Butler et al., 2014; Halai et al., 2017).

The fact that the patient sample of this study largely consists

of patients not included in previous reports shows the sta-

bility of these results. Moreover, other groups report similar

patterns (Mirman et al., 2015; Lacey et al., 2017).

The third PCA—combining the non-verbal and language

tests—yielded six orthogonal components accounting for

78.6% of the variance (KMO = 0.661). Figure 4A shows

that the components from the two separate analyses re-

mained relatively stable (also evidenced by high correl-

ations between the separate and combined component

scores; Table 1 and Supplementary Fig. 2). Their order

and percentage of explained variance was as follows: phon-

ology (21.6%), shift-update (13.4%), inhibit-generate

(12.2%), speech quanta (11.7%), semantics (11.5%),

speed (8.2%). Notably, apart from the phonology compo-

nent which explained the highest amount of variance, the

other language and non-verbal components are weighted

similarly in terms of explained variance.

The stability analyses for all three PCAs revealed that all

test loadings had very tight 95% confidence intervals. The

Figure 2 Percentage of participants with impaired performance on each measure of the non-verbal tests (left) and language

tests (right).

Figure 3 Patients’ overall impairment in the non-verbal

versus language tests. The percentages of impaired scores cor-

related significantly (rs = 0.591, P5 0.01, n = 38, also if patient

characteristics were accounted for by means of partial correlations).

Symbols and colours denote an individual’s aphasia type based on

the BDAE (triangles for non-fluent, circles for fluent patients, for

colours see top left legend). More saturated or differently coloured

symbols denote two patients in the same spot.
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most unstable tests were Design Fluency in the non-verbal

PCA (mean loading = 0.58 � 0.02), Camel and Cactus in

the verbal PCA (0.86 � 0.08), and Kramer in the combined

PCA (0.75 � 0.05). We also found generally high correl-

ations between the predicted left-out cases and observed

scores for the non-verbal (r = 0.83), verbal (r = 0.88) and

combined (r = 0.88) PCAs.

Whilst the combined PCA preserves the nature of the six

principal behavioural components, it is notable that many

individual language tasks load across verbal and non-verbal

components, reflecting the fact that many language activ-

ities and the tasks used to assess them require generalized

attention and executive skills (e.g. comparing verbal sti-

muli, deciding between responses, etc.). This is true for

both semantic tests (aligning with the fact that semantic

cognition requires both access to semantic representation

but also executively-related processes (Jefferies and

Lambon Ralph, 2006; Thompson et al., 2018) and for

Figure 4 Component loadings and structural correlates associated with each component. (A) The darker coloured bars (from left

to right: blue, green, purple, orange, red, pink) represent the loadings on the six components from the combined PCA. The lighter coloured bars

represent the loadings on the three components in the separate non-verbal-only PCA (first three columns) and the language-only PCA (last three

columns). Loadings5 0.1 are not depicted. MLU = mean length of utterance; WPM = words per minute. (B) Structural correlates associated with

each component from the combined PCA. Clusters shown in blue-green were obtained by applying a voxel-level threshold of P4 0.01, clusters in

red-yellow correspond to a voxel-level threshold of P4 0.001. A family-wise error correction of P4 0.05 was applied to all clusters. The

respective coordinates in MNI-space are indicated on the left side. Figures are in neurological convention (left is left).
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phonological tests with demands on working memory (sen-

tence comprehension) or abstract reasoning and problem-

solving (minimal pairs).

Relationship between impairment,
component scores, and patient
characteristics

Previous research documents both the presence (Fucetola

et al., 2009; Baldo et al., 2015) and absence (Helm-

Estabrooks, 2002) of a significant correlation between

non-verbal and verbal impairment. We found a moderate

but significant relationship between simple indices of non-

verbal and language impairment (in terms of percentage of

impaired non-verbal/language test scores per patient), as

shown in Fig. 3 and Table 1. This finding seems to relate

primarily to the non-verbal shift-update component that

correlates with both indices of severity. Beyond this, there

is considerable variation, which results from the fact that

even when combined into one PCA there are statistically-

orthogonal components for the language and non-verbal

test scores; they would collapse into a shared PCA compo-

nent if performance in non-verbal and language tests was a

reflection of simple severity alone.

Regarding patient characteristics, also shown in Table 1,

non-verbal as well as verbal severity correlated significantly

with lesion volume, but neither correlated with age, educa-

tion or time post-stroke. More specifically, lesion volume

correlated with the separate non-verbal shift-update

component and with the semantic and speech quanta com-

ponents of both PCAs. Age correlated with the non-verbal

components apart from speed, and with the semantic com-

ponent from the separate verbal PCA. Education only cor-

related significantly with the inhibit-generate component

from the separate non-verbal PCA, and time post-stroke

correlated moderately with the shift-update components.

Notably, the first non-verbal and language components,

shift-update and phonology, were still significantly corre-

lated with the severity of the non-verbal and language

impairment, respectively, when age, education, time post-

stroke and lesion volume were accounted for by means of

partial correlation (separate shift-update component and

non-verbal impairment r = �0.629; separate/combined

phonology component and language impairment

r = �0.814/r = �0.851; all P5 0.0004).

Structural correlates

The third aim was to map the structural correlates for the

underlying attention, executive and language features. We

simultaneously entered all component scores obtained in

the combined PCA and performed a VBCM with tissue

abnormality, which yielded significant clusters for all com-

ponents (though shift-update and speech quanta were pre-

sent at a lower voxel-level threshold of 0.01, FWEc at

cluster-level P5 0.05). The clusters are depicted in

Figs 4B and 5, and details are listed in Table 2.

Table 1 Spearman correlations within and between severity of non-verbal and language impairment, component

scores, and patient characteristics

Severity Non-verbal PCA Patient characteristics

Non-verbal Verbal S-U I-G Speed Lesion Age Education Time

post-stroke

Severity

Verbal 0.535* – �0.521* �0.105 0.150 – – – –

Non-verbal – – �0.676* �0.283 �0.110 – – – –

Verbal PCA – –

Phonology �0.216 �0.719* 0.261 �0.294 0.025 �0.208 �0.126 �0.209 0.131

Semantics �0.316 �0.383* 0.421* 0.373* 0.087 �0.396* �0.433* 0.288 �0.115

Speech Quanta �0.362* �0.427* 0.443* 0.097 �0.283 �0.504* 0.068 0.190 �0.240

Combined PCA

Phonology �0.164 �0.744* 0.216 �0.245 �0.062 �0.238 �0.121 �0.213 0.126

S-U �0.530* �0.259 0.871* �0.063 �0.018 �0.308 �0.445* 0.143 �0.393*

I-G �0.235 �0.173 �0.109 0.905* �0.184 0.050 �0.436* 0.312 �0.208

Speech Quanta �0.325 �0.349 0.214 0.178 �0.195 �0.376* 0.053 0.120 �0.142

Semantics �0.139 �0.118 0.194 0.201 �0.010 �0.370* �0.014 0.247 0.061

Speed �0.172 0.103 �0.122 0.037 0.902* 0.177 �0.305 �0.003 0.294

Patient characteristics

Time post-stroke 0.196 0.151 �0.381* �0.187 0.240 0.389* 0.094 �0.123 –

Education �0.279 �0.061 0.254 0.494* �0.174 �0.132 �0.321 – –

Age 0.323 0.332 �0.441* �0.455* �0.254 0.251 – – –

Lesion 0.353* 0.555* �0.518* �0.146 0.156 – – – –

S-U = shift-update; I-G = inhibit-generate.

*P5 0.05 two-tailed; bold = significant after Bonferroni correction (P5 0.0004); n = 32.
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Table 2 Clusters and peaks associated with the non-verbal and language components

Component Extent Location Left/right Z x y z

Shift-Update 2032 Temporal fusiform cortex posterior Left 4.29 �40 �32 �16

Temporal fusiform cortex posterior Left 3.69 �38 �34 �30

Inferior longitudinal fasciculus Left 3.58 �42 �36 �14

Temporal fusiform cortex posterior Left 3.32 �42 �30 �28

Inferior temporal gyrus temporo-occipital Left 3.27 �60 �56 �22

Occipital fusiform gyrus Left 3.22 �26 �64 �16

Lateral occipital cortex superior Left 3.22 �56 �72 20

Inferior temporal gyrus temporo-occipital Left 3.19 �56 �50 �22

990 Left Precuneous cortex Left 4.04 �2 �62 66

Postcentral gyrus Right 3.78 10 �36 72

Precentral gyrus Right 3.76 10 �32 50

Corticospinal tract Right 3.64 16 �34 54

Superior parietal lobule Right 3.57 10 �48 72

Inhibit-Generate 1270 Frontal pole Left 5.00 �20 56 12

Frontal pole Left 3.99 �28 50 16

Middle frontal gyrus Left 3.94 �38 28 32

Frontal pole Left 3.91 �28 42 36

Frontal pole Left 3.63 �38 52 0

Middle frontal gyrus Left 3.60 �44 24 24

Inferior frontal gyrus pars triangularis Left 3.50 �40 32 18

Middle frontal gyrus Left 3.45 �52 18 30

530 Subcallosal cortex Right 5.06 6 26 �14

Accumbens Right 4.95 8 16 �6

Cingulate gyrus anterior Right 4.01 2 36 2

Accumbens Left 3.88 �8 12 �8

Subcallosal cortex Left 3.84 �12 28 �16

447 Occipital pole Left 4.27 �24 �96 16

Occipital pole Left 4.21 �22 �94 10

Lateral occipital cortex inferior Left 3.75 �42 �88 �10

414 Supplementary motor cortex Left 3.55 �16 �10 34

Anterior thalamic radiation Left 3.44 �20 20 18

Superior longitudinal fasciculus Left 3.34 �22 �4 30

337 Supplementary motor cortex Right 4.50 6 �12 46

Cingulate gyrus posterior Right 4.42 4 �22 42

Speed 369 Lateral occipital cortex superior Right 4.51 26 �86 34

Occipital pole Right 4.50 22 �90 32

355 Angular gyrus Right 4.53 62 �54 38

Lateral occipital cortex superior Right 4.12 54 �62 28

Phonology 5688 Inferior longitudinal fasciculus Left 5.99 �42 �30 �16

Inferior longitudinal fasciculus Left 5.70 �42 �34 �14

Temporal fusiform cortex posterior Left 5.58 �40 �24 �18

Inferior temporal gyrus posterior Left 5.11 �50 �18 �24

Inferior temporal gyrus temporo-occipital Left 4.93 �48 �46 12

Supramarginal gyrus posterior Left 4.61 �60 �48 34

Angular gyrus Left 4.56 �40 �54 14

Middle temporal gyrus temporo-occipital Left 4.47 �42 �54 8

Planum temporale Left 4.37 �36 �32 14

Semantics 4994 Temporal fusiform cortex posterior Left 5.48 �40 �30 �16

Inferior temporal gyrus posterior Left 5.15 �52 �16 �24

Parahippocampal gyrus anterior Left 5.12 �34 �6 �26

Thalamus Left 5.12 �10 �22 �4

Temporal Pole Left 5.04 �52 10 �36

Hippocampus Left 5.02 �34 �10 �24

Anterior thalamic radiation Left 4.90 �10 �18 �8

Anterior thalamic radiation Left 4.82 �8 �18 �12

Inferior longitudinal fasciculus Left 4.71 �40 �36 �14

Speech Quanta 1010 Postcentral gyrus Left 3.24 �66 �16 16

Postcentral gyrus Left 2.80 �56 �12 28

Supramarginal gyrus anterior Left 2.63 �62 �28 36

Postcentral gyrus Left 2.51 �50 �24 38

Postcentral gyrus Left 2.50 �44 �24 44

Precentral gyrus Left 2.37 �60 0 38

Only clusters with cluster-level FWEc P4 0.001 are shown in the table.
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From the non-verbal components, shift-update was

uniquely correlated with left lateral temporo-occipital re-

gions (encompassing parts of the medial and inferior tem-

poral gyrus, fusiform cortex as well as the lateral occipital

cortex and extending to parahippocampal regions and

brain stem), in addition to bilateral mainly parietal midline

regions (postcentral gyrus, precuneus, superior parietal

lobule). The inhibit-generate component was uniquely cor-

related with left lateral (middle and inferior frontal gyrus)

and subcortical frontal regions (anterior thalamic radiation)

as well as medial frontal regions bilaterally (subcallosal

cortex, (para)cingulate gyrus, supplementary motor

cortex), in addition to several smaller clusters in occipital

and parietal regions. The speed component was also asso-

ciated with several small, mainly right-sided parieto-occipi-

tal and frontal clusters.

The clusters associated with the three language compo-

nents resembled the clusters reported in previous studies by

our group (Butler et al., 2014; Halai et al., 2017). The

phonology cluster was uniquely correlated with left tem-

poro-parietal regions encompassing parts of the inferior,

middle, and superior temporal gyri as well as supramargi-

nal and angular gyrus. The semantics component was

associated with a cluster of left cortical (anterior temporal

lobe, extending inferiorly into occipital lobe) and subcor-

tical (thalamus) regions. The speech quanta cluster was in

the dorsal fronto-parietal cortex and included parts of the

pre- and postcentral gyrus. When lesion volume was

included as a covariate, inhibit-generate, speed, and phon-

ology remained significant. Semantics was only significant

at a less strict threshold; this applied as well to the shift-

update component and is shown in Supplementary Fig. 3.

The effects of including other patient characteristics such as

age, education, and time post-stroke in the VBCM are also

shown and discussed in the Supplementary material.

The multivariate analyses yielded similar results, as

shown in Fig. 5. The SVR-LSM produced significant clus-

ters for inhibit-generate, phonology, semantics and speech

quanta. The evaluation of the best model within PRoNTo

revealed significant brain-behaviour relationships for in-

hibit-generate (KRR model cross-validation r = 0.357,

MSE = 0.854, P = 0.022), phonology (MKR model cross-

validation r = 0.379, MSE = 1.008, P = 0.042), and seman-

tics (KRR model cross-validation r = 0.750, MSE = 0.431,

P5 0. 001) when using the whole brain. The results were

the same when using the restricted lesion territory: inhibit-

Figure 5 Comparison of brain-behaviour mapping results based on the four different methodological approaches. The significant

VBCM clusters are shown in blue (voxel-level threshold 0.01) and green (voxel-level threshold 0.001), a family-wise error correction of P4 0.05

was applied to all clusters, and images are thresholded at the respective minimum t-value. The PRoNTo results depict the weights for the winning

model if significant (see text), either including the whole brain space or restricting it to lesion territory (n4 3). They are thresholded from

�0.005 to �0.0001 (green-blue) and 0.0001 to 0.005 (red-yellow). The negative weights are considered as more meaningful in this approach. The

SVR-LSM images show voxels with significant beta weights after permutation testing (n = 10 000, voxel-wise P5 0.005 and cluster-wise P5 0.05).

MNI coordinates of slices, from left to right, are z = �25, �10, 5, 20, 35, 50 and they are in neurological convention (left is left). A grey surface

indicates that no significant results were found for the respective component and methodological approach.
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generate (KRR model cross-validation r = 0.400,

MSE = 0.816, P = 0.019), phonology (GPR model cross-

validation r = 0.359, MSE = 0.860, P = 0.013), and seman-

tics (KRR model cross-validation r = 0.712, MSE = 0.478,

P50.001). When lesion volume was added as a covariate,

the SVR-LSM produced significant clusters for inhibit-gen-

erate and phonology only, while the PRoNTo toolkit found

significant models for inhibit-generate and semantics (for

both whole brain and restricted lesion territory), as detailed

in Supplementary material.

As can be seen in Fig. 5, the VBCM and SVR-LSM re-

sults were strikingly similar. For inhibit-generate, VBCM

yielded bigger and more distributed clusters but there was

an overlap with the significant SVR-LSM result in left fron-

tal subcortical regions. For phonology, the SVR-LSM and

VBCM clusters were nearly identical, with the former ex-

tending slightly more into the superior parietal cortex, and

the latter extending more anteriorly in the temporal lobe.

Likewise, the VBCM and SVR-LSM results for the seman-

tics component overlapped largely, with the former being

slightly bigger and extending further posteriorly in the ven-

tral temporal lobe. Finally, the main difference regarding

the speech quanta results was that the SVR-LSM cluster

extended slightly more dorsally and anteriorly.

Furthermore, the unthresholded beta maps from PRoNTo

showed some correspondence to both VBCM and SVR-

LSM in terms of the negative beta weights. Apart from a

small set of voxels in the medial temporal lobe that was

part of the VBCM semantics cluster, all voxels identified in

the VBCM and SVR-LSM analyses were within regions

that were given a (strong) negative weight in the

PRoNTo models. In contrast to SVR-LSM, the PRoNTo

beta maps show the weights of the entire input space

after confirming the model significantly maps to behaviour.

Discussion
Even though there is growing awareness of the importance

of attentional and executive (dys)functions in aphasia, to

date the occurrence and patterns of such impairments, the

relationship between non-verbal and language functions, as

well as their structural correlates have not been studied in

detail in the same sample of patients. This study extended

our understanding of the multidimensionality of chronic

post-stroke aphasia and found that: (i) a considerable

number of patients showed impaired performance in tests

of attention and executive function; (ii) the variance under-

lying non-verbal and language test performance was best

captured by three orthogonal components each; and

(iii) both univariate and multivariate mapping approaches

revealed brain-behaviour relationships in line with previous

studies based on other methodologies and populations.

Given that our sample consisted of patients diagnosed

with aphasia, unsurprisingly the incidence of language im-

pairments was high and performance in language tests was

overall worse than in non-verbal tests. However, patients’

performance in tests of attention and executive function

was also considerably impaired, as none of the patients

performed within normal range in all tests and nearly

50% of the patients showed deficits in at least half of the

administered tests. While language impairments might be

the most salient consequences of a left hemispheric

stroke, our more thorough and systematic investigation

replicates earlier observations of co-occurring deficits in

other cognitive domains (Helm-Estabrooks, 2002;

Murray, 2012; Marinelli et al., 2017; Ramsey et al.,

2017); a pattern that is important for clinical management

and response to rehabilitation.

Our comprehensive battery of non-verbal tests allowed

us to identify three separable components of attention

and executive function (shift-update, inhibit-generate, and

speed), which mirror explorations in healthy participants

(Petersen and Posner, 2012; Friedman and Miyake,

2017). This contrasts with current studies in aphasia and

clinical practice that either fail to assess non-verbal func-

tions at all, or if they do then only a few (screening) meas-

ures are used. Whilst there are clear co-occurrences and

simple raw correlations between measures, there is little

evidence that everything collapses to one simple severity-

based metric. This is in line with a recent study by

Marinelli et al. (2017), reporting that only a quarter of

their severely aphasic patients was also severely impaired

in non-verbal cognition, as well as classical findings show-

ing that language and non-language performance in apha-

sia have low correlations, and that aphasia cannot be

reduced to simple cognitive severity (Basso et al., 1973;

Helm-Estabrooks, 2002; Fucetola et al., 2009).

It is important to note that performance on the various

components is independent, suggesting that patients have

variable combinations of verbal and non-verbal deficits.

The common co-occurrence is relevant for three main rea-

sons: (i) many language assessments also load on attention

and executive functions; (ii) some aspects of language func-

tion require interactions between components (e.g. con-

trolled semantic processing: Jefferies and Lambon Ralph,

2006); (iii) response to therapy and recovery has been

shown to relate not only to language severity but also to

more domain-general functions (Lambon Ralph et al.,

2010; Geranmayeh et al., 2017; Conroy et al., 2018).

Our findings thus imply that the three identified non-

verbal cognitive components need to be assessed separately

in future studies and in clinical practice, as they might have

different implications for function and recovery. Likewise,

interventions should be considered in this patient popula-

tion that (i) specifically aim at improving domain-general

cognitive deficits (Geranmayeh et al., 2017); (ii) integrate

therapy of attentional or executive dysfunctions into

speech-language remediation (Mayer et al., 2017); and

(iii) adopt a multidisciplinary team approach.

Using univariate and multivariate brain-behaviour map-

ping approaches we identified separable structural correl-

ates for all three non-verbal components, in addition to

replicating previous findings regarding the structural
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correlates of the three verbal components. The clusters of

all three non-verbal components overlapped to some degree

with the multi-demand network (Duncan, 2010; Fedorenko

et al., 2013). In addition, the shift-update cluster over-

lapped with the dorsal attention and control network,

while the inhibit-generate cluster overlapped with the ven-

tral attention and control network (Yeo et al., 2011). More

specifically, the correlates of shift-update fit well with task-

based functional imaging studies that report activations in

lateral temporo-occipital areas for demanding visuo-spatial

tasks (Fedorenko et al., 2013; Humphreys and Lambon

Ralph, 2017) or when location and feature information

must be combined (Simpson et al., 2011); both processes

are inherent to shift-update. The findings for the inhibit-

generate component are also in line with previous research.

Although more extensive, this network of areas overlaps

with the regions found in a previous study of aphasia

(Lacey et al., 2017) and those identified in a meta-analysis

of functional imaging studies on executive functions

(Niendam et al., 2012).

From a methodological point of view, it is important to

note the complementary differences between the interpret-

ation of univariate and multivariate analyses (Hebart and

Baker, 2018). In general, with univariate analyses, the beta

values assigned to voxels are relatively transparent (i.e.

their sign and strength indicates meaningful relationships

with behaviour) and thus inferences about local function

are easier to make (although inference using cluster-level

thresholds can only show that there is signal somewhere

in the cluster; Woo et al., 2014). However, univariate

methods are limited by practical (i.e. multiple comparison

correction, interactions between multiple variables that are

typically not orthogonal) and theoretical concerns (i.e. as-

sumption of voxel independence, mislocalization of effects;

Mah et al., 2014; DeMarco and Turkeltaub, 2018; Karnath

et al., 2018). In contrast, multivariate methods can be used

for encoding or decoding (Naselaris et al., 2011; Hebart

and Baker, 2018) and have different goals (i.e. to predict

data from experimental conditions or to map brain status

to behavioural performance and make formal predictions,

respectively). These models can have problems with inter-

pretability as feature weights become non-transparent

(Haufe et al., 2014; Hebart and Baker, 2018), although

encoding can assist with this challenge to some degree

(such as partial least squares and canonical correlation ana-

lysis). By definition, in multivariate analyses all voxel/fea-

ture weights are non-independent and thus the importance

of these weights is not easy to interpret. Furthermore, ana-

lysis steps that select a subsample of weights automatically

mean that the overall multivariate model has been changed

and one would need to test (i) whether the contribution of

a voxel to the model is greater than chance; or (ii) whether

the contribution of a voxel to the model is stable across

different samples (e.g. via bootstrapping; Kuceyeski et al.,

2016). Given these differences between the methods, it is

striking that the multivariate models (both SVR-LSM and

PRoNTo) produced beta maps that strongly correspond to

the VBCM results. We assume this follows the fact that

stroke tends to generate binary tissue status (intact versus

infarcted) and this will dominate the predictions of behav-

ioural variation in all models (and are the most likely fea-

tures to be selected in any form of weight truncation such

as that used in SVR-LSM). There are some potential av-

enues to help improve interpretations of both univariate

and multivariate methods in the future. First, a recent

study showed that it may be possible to compute a correc-

tion for the mislocalization caused by anatomical bias

(Sperber and Karnath, 2017). Second, Haufe et al. (2014)

and Naselaris et al. (2011) propose ways in which a decod-

ing model can be transformed into an encoding model,

which potentially leads to interpretable weights. Third, al-

ternative sparse algorithms (such as LASSO, elastic net or

recursive feature selection) have the benefit of introducing a

penalty for complexity and therefore provide a solution

with the smallest number of features (though the challenge

of interpreting the resultant weights still holds). Finally, we

note that multivariate decoding methodologies typically re-

quire a large dataset, as data are partitioned into training/

test sets for cross validation. This can be practically chal-

lenging, as not only do we require neuroimaging data but

also a large neuropsychological test battery to determine

the underlying principal components. In a recent simulation

study (Sperber et al., 2019), it was suggested that �100

subjects are required to have stable/reproducible beta par-

ameter mapping, whereas for prediction of clinical out-

comes the number peaked at 40 and was relatively stable

from this point up to 100 cases. In the current study we

obtained 32 cases (similar to Lacey et al., 2017) and so

future work will require replication based on larger

groups sizes.

Overall, the structural correlates align with areas of dif-

ferent cognitive functions in healthy participants. The vari-

able combinations of verbal and non-verbal deficits

observed across post-stroke aphasia (see above) presumably

reflect differential encroachment of each person’s lesion on

the various regions implicated for each non-verbal and

verbal component and/or their connections. This would

imply that interventions should target different brain re-

gions depending on which component needs to be amelio-

rated to improve performance. Options to be explored

include neurostimulation, for instance by targeting medial

frontal areas (Sliwinska et al., 2017) or pharmacology

(Berthier et al., 2011). It also has implications for building

accurate prediction models (Price et al., 2010; Hope et al.,

2013, 2018; Yourganov et al., 2015, 2016; Pustina et al.,

2017; Thye and Mirman, 2018). First, it may be that pre-

dictions of language performance might be improved if the

predictors include non-verbal cognitive abilities alongside

patient characteristics. Second, it may be possible to im-

prove prediction models of both verbal and non-verbal

abilities by using these updated PCA-derived structural cor-

relates (cf. Halai et al., 2018).

In conclusion, this study was able to demonstrate that

functionally distinct aspects of attention and executive
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skills are commonly impaired in patients with post-stroke

aphasia. The assessments successfully used here could be

adopted in clinical assessment to guide management and

choices over clinical pathways. Furthermore, future investi-

gations can explore which specific aspects of attention and

executive function are crucial for effective therapy and

good rehabilitation outcomes, and how these features of

non-verbal abilities can be supported or boosted through

novel interventions.
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