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Ensemble forecast of human West Nile virus
cases and mosquito infection rates
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West Nile virus (WNV) is now endemic in the continental United States; however, our ability

to predict spillover transmission risk and human WNV cases remains limited. Here we

develop a model depicting WNV transmission dynamics, which we optimize using a data

assimilation method and two observed data streams, mosquito infection rates and reported

human WNV cases. The coupled model-inference framework is then used to generate

retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for

2001–2014. Accurate forecasts of mosquito infection rates are generated before peak

infection, and 465% of forecasts accurately predict seasonal total human WNV cases up to

9 weeks before the past reported case. This work provides the foundation for implementation

of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.
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W
est Nile virus (family Flaviviridae, genus Flavivirus,
WNV) was first identified in North America in New
York City during the summer of 1999 (ref. 1) and by

2003 had spread throughout the continent and established itself
as the leading cause of domestically acquired arthropod-borne
viral (arboviral) disease in the United States2,3. While it is
estimated that most infections of WNV are asymptomatic,
20–30% develop acute systemic febrile illness and o1%
experience neuroinvasive disease (for example, meningitis, ence-
phalitis or myelitis)4,5. In 2012, human cases of WNV surged to
numbers not seen since 2003 suggesting that it will continue to
produce unpredictable local and regional outbreaks throughout
the US6. Although, WNV outbreaks recur annually, at present
our ability to predict the timing, magnitude and duration of local
WNV outbreaks remains limited.

Currently, with no vaccine or specific treatment for WNV, the
primary defenses against an outbreak are personal protective
behaviours (for example, mosquito repellent) and community-
based mosquito control programs6,7. On the population level,
community-based mosquito control programs are the most
effective tool to prevent the spread of WNV6. However, these
programs are typically inadequately funded8 and the effectiveness
of these control measures can be difficult to assess due to
naturally occurring confounding factors, such as host-vector
interaction and susceptibility of host species9–13. These
confounding factors result in seasonal outbreaks that vary in
size and scope, and where, even after an outbreak has begun, it
remains difficult to predict the future characteristics of the
epidemic curve14–16. If outbreak characteristics could be reliably
forecast, public health response efforts might be better
coordinated and mosquito control programs could improve the
use of these limited resources. Such a forecast system could also
improve our understanding of the epidemiology, ecology and risk
factors critical for controlling an outbreak.

Recently, a number of model-inference frameworks have been
developed and used to generate accurate ensemble forecasts of
infectious diseases, such as influenza and Ebola17–21. These
forecasting frameworks consist of three components: an
epidemiological model, surveillance data and a data assimilation
method that bridges the model output and surveillance data.

Here we extend the above approach to the prediction of WNV.
We first develop and validate a compartmental model that
describes the zoonotic transmission of WNV between mosquito
vectors and avian hosts while also accounting for spillover
transmission to humans. The model is then coupled with two
observed data streams—mosquito infection rates and reported
human cases of WNV during 2001–2014 in Suffolk County, New
York—using the ensemble adjusted Kalman filter (EAKF)22 for
data assimilation. Weekly retrospective forecasts of WNV are
generated for the 2001 to 2014 seasons using this coupled model-
EAKF framework. The findings indicate that accurate forecasts of
WNV outcomes can be generated with considerable lead-time,
and provide a foundation for a statistically rigorous system for
real-time forecast of seasonal outbreaks of WNV.

Results
Association of human WNV cases and mosquito infection rates.
In Suffolk County the seasonal sum of weekly observed
infected mosquito proportions is strongly correlated with the total
number of human WNV cases (r¼ 0.76, P¼ 0.002, Fig. 1); weekly
human cases were lag correlated with mosquito infection rates
during the prior week (Supplementary Fig. 1). In contrast, the
number of mosquitoes observed and mosquitoes caught per trap
night had no correlation to the number of infected humans.
These findings indicate that accurate prediction of infectious

mosquito rates throughout the season has the potential to inform
reliable prediction of total human WNV cases.

The WNV transmission model. We developed a compartmental
model that depicts the transmission dynamics of WNV among
mosquitoes and birds, as well as spillover transmission to
humans, and used this model to forecast the number of human
WNV cases along with the peak timing, peak magnitude and total
number of infectious mosquitoes over a season. The compart-
mental WNV model includes five state variables representing
susceptible mosquitoes and birds and infected mosquitoes, birds
and humans. Susceptible humans and recovered birds are
represented implicitly. All populations are assumed to be constant
and the mosquito population is assumed to be female and actively
seeking a blood meal (see Supplementary Methods).

Free simulation with the compartmental model captures the
general shape of an outbreak in Suffolk County (Supplementary
Fig. 2). WNV transmission dynamics among birds and
mosquitoes are represented by three parameters: (1) the life
expectancy of the mosquito, (2) the recovery time for an infected
bird and (3) the contact rate between mosquitoes and birds.
While two of these parameters are relatively constant during the
mosquito season, the contact rate changes due to changes in
mosquito feeding preferences. Many mosquito species, including
the dominant WNV vector of Suffolk County, Culex pipiens,
transition from preferential feeding on birds to mammals over the
course of a season23–26. Consequently, we depicted contact
between vector mosquitoes and avian hosts using a logistic
function that represents this change in mosquito biting preference
(Supplementary Fig. 2). Accounting for this transition in feeding
preference allows the model to capture the temporal change in the
contact rate between mosquitoes and birds, which is important in
predicting future mosquito infection rates.

Next, we coupled the model with the EAKF, which we used for
model optimization and parameter estimation17,22. We used
output from model free simulation as an initial target to test the
optimization efficiency of the filter (Fig. 2). The model state
variables and parameters from the free simulation were defined as
the ‘truth,’ and synthetic observations were generated through the
addition of noise to that truth. The model-EAKF system not only
simulated the ‘true’ state variables well (infectious mosquitoes, IM,
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Figure 1 | Scatterplot of the annual total number of human WNV cases in

Suffolk County, NY, USA as a function of the annual sum of weekly

observed mosquito WNV infection rates. The two quantities are highly

linearly correlated (r¼0.76, P¼0.002).
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and human WNV cases, IH) but, in addition, also inferred the
unobserved state variables and epidemiologically significant
parameters that help define the number of human WNV cases,
along with the peak timing, magnitude and duration of infectious
mosquitoes during an outbreak (Supplementary Figs 3–6).
These inferences included estimation of the parameters

defining mosquito-to-human spillover transmission rates, Z, and
mosquito-bird transmission rates, A, r and b(t). For more infor-
mation on this validation of the model-EAKF system, see the
Supplementary Information.

Retrospective forecast of human and mosquito WNV infection.
We next used the combined model-EAKF system to generate
retrospective forecasts of infectious mosquito rates and human
WNV cases. For each annual outbreak during 2001–2014, the
model-EAKF system was initiated 4 weeks before the first positive
mosquito observation. Each week, observations of mosquito
infection rates and human WNV cases were assimilated using the
EAKF, and a forecast was generated by integrating the posterior
model ensemble to the end of the outbreak season. Weekly
forecasts were produced from the first detection of infectious
mosquitoes to the end of the season. Figure 3 shows successive
forecasts of infectious mosquitoes and human cases during the
2010 season, beginning 4 weeks before peak mosquito infection
rate until 2 weeks past that peak. The ensemble forecasts capture
the overall structure of the outbreak among mosquitoes well in
advance of peak infection; further, predictions of human WNV
cases come in line with observed values as more observations are
assimilated.

Seasonal forecast accuracy was examined for four metrics: total
human WNV cases, total infectious mosquitoes, peak infectious
mosquitoes and peak timing. Forecasts were deemed accurate if
the ensemble mean trajectory was within ±25% or ±1 case,
whichever was larger, of the first metric, within ±25% of the
next two metrics, and within ±1 week of the fourth metric.
Supplementary Figs 7–10 present this forecast accuracy across all
seasons (2001–2014) as a function of calendar week. Forecasts
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Figure 3 | Ten bi-weekly forecasts of infectious mosquitoes and human WNV cases for 2010. The magenta lines are the ensemble mean forecasts, the

grey area is the spread of the ensemble forecast (light grey represents area between the 10th and 90th percentile and the darker grey area represents the
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were further grouped by prediction lead-time, here defined as the
week of forecast generation minus the week of predicted peak
mosquito infection (Fig. 4). Forecasts of peak timing were
accurate 480% of the time with 1 week prediction lead. Forecasts
of peak infectious mosquito number were also accurate 1 week
before the peak and were 467% accurate when the predicted
lead-time was at the peak or past the peak. For the total number
of infected mosquitoes 52% of forecasts were accurate one week
before the predicted peak, and 473% were accurate at or past the
predicted peak.

Accurate estimation and prediction of infectious mosquito
numbers and EAKF optimization of spillover transmission rates
enabled accurate forecast of total human WNV cases. At 0, 1 and
2 weeks past peak predicted mosquito infection rates, the
forecasts of total human WNV cases were accurate 100, 65 and
72% of the time, respectively. On average, only one-fifth of
human cases are reported before the week of peak mosquito
infection. Consequently over the season, the forecast of human
cases, near the predicted peak of mosquito infection, is before the
reporting of the majority of human cases.

Discussion
Our findings demonstrate that a compartmental model of WNV,
iteratively optimized with data assimilation methods and weekly
observations of mosquito infection rates and human WNV cases,
can produce accurate forecasts of mosquito infection rates,
infectious biting pressure and human cases. With timely
provision of these data, real-time operational forecasts can be
generated. Such information has the potential to help public
health officials, mosquito control programs and parks depart-
ments target control of infectious mosquito populations, alert the

public when WNV spillover transmission risk is elevated, and
determine if parks and camping grounds should be closed.

The forecasts provide ample lead-time for undertaking targeted
interventions. Infectious mosquito peak timing, an important
indicator of spillover transmission potential, is forecast accurately
up to 6 weeks in advance but with high accuracy 1 week in
advance (Fig. 4). Indeed, the onset of human WNV cases was
within 1 week of the observed infectious mosquito peak in half of
the years with human cases, and only 3 years reported cases
earlier. In addition, by the week of the predicted peak, the model-
EAKF system has undergone extensive training and begins to
forecast other characteristics more accurately, with greater than
67%, 73% and 65% accuracy pertaining to the peak infection rate
of mosquitoes, the seasonal total of infectious mosquitoes, and the
total number of human WNV cases reported during the outbreak,
respectively.

Observed total infected mosquito proportions are strongly
correlated with the total number of human WNV cases (Fig. 1).
This association, coupled with sufficient optimization of the
parameter Z determining mosquito-to-human transmission rates
(equation 5), allows accurate forecast of total human WNV cases
with considerable lead. Indeed accurate forecasts of total human
WNV cases were generated up to 9 weeks before the end of an
outbreak, Supplementary Fig. 11.

There were some differences in forecast accuracy among high
and low years. During high case years, which we define as years
with more than 6 human WNV cases, infectious mosquito
forecasts were more accurate than forecasts of human cases,
Supplementary Fig. 12. The tendency, in some high case years,
was to underestimate human WNV cases until six cases had been
observed; however, during low case years the system tended to
predict a high number of cases early in the season. Consequently,
the current forecast system has a proclivity, early in the season, to
commit a type II error, for example, forecast a low human case
year when it is really a high year. As the season progresses and
more cases are observed, the system adjusts and the forecasts
improve so that total human WNV cases are accurately forecast
with substantial lead times (2–9 weeks before the end of the
season).

As more years of data become available, we hope to further
validate and refine estimates of the relationship between peak
timing of infectious mosquitoes, total numbers of infected
mosquitoes, and spillover infection of humans. We also hope to
entrain environmental variables, such as temperature, into the
core model structure, to explore whether observations of those
variables help further constrain model dynamics and forecast of
the timing and magnitude of infectious mosquitoes and potential
risk to humans.

In building this WNV forecast system, we had to choose which
processes to include and which to exclude in the core dynamic
model. A number of unrepresented effects, including ongoing
mosquito control efforts, within county spatial heterogeneity10,
bird migration13, variable susceptibility among different hosts9

and vectors11, WNV strain variability12, vertical transmission11,
mosquito overwintering patterns27 and the extrinsic incubation
period28, may affect WNV transmission dynamics and spillover
infection to humans. However, inclusion of too many processes
results in a high-dimensional model structure, which, given the
limited observational data streams available, may be difficult to
optimize. On the other hand, a model that is too simple will
not contain sufficient dynamics to generate a characteristic
WNV outbreak in free simulation and thus will not produce
accurate forecasts. The model we chose for the present work
is of intermediate complexity. It is capable of producing a realistic
outbreak of WNV in free simulation, yet is sufficiently
parsimonious to permit state variable and parameter estimation
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Figure 4 | Results for 2001–2014 retrospective forecasts. Shown are the

fraction of forecasts accurate as a function of lead week for the metrics
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rates, orange), peak infection rate (yellow) and total infectious mosquitoes

(purple). A forecast was deemed accurate if: (1) peak timing was within ±1
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with the EAKF and accurate forecast of future outcomes given
currently available data streams. As more data become available,
inclusion of additional effects in the core dynamic model may
improve overall system performance.

Though WNV transmission dynamics vary by loca-
tion10–13,27,28, the simple forecasting framework presented here
was designed for broad application in different settings. To test
this generalizability, we applied the model-inference forecast
system to one additional location, Cook County Illinois during
2007–2014 (Supplementary Figs 13 and 14). The results from
Cook County are consistent with those found for Suffolk County.
Human cases were accurately forecast on average 6.3 weeks
before the end of an outbreak. Thus, it appears that EAKF
optimization allows this relatively simple construct to produce
accurate forecasts in locations where WNV, host and vector
dynamics differ.

Going forward, it is important to work with mosquito control
and public health officials to increase their familiarity with the
capabilities and limitations of these forecasts, as well as our own
familiarity with potential mosquito interventions and the process
for deciding when and where to implement those interventions.
By doing so, these forecasts can be presented and interoperated to
better support intervention decision and inform the public of
potential risks.

Methods
Compartmental model. Our model uses a standard SIR epidemiological frame-
work and is represented by following equations:

dSM

dt
¼ mMNM � b tð ÞSM

IB

NB
� mMSM� aSM ð1Þ

dIM

dt
¼ b tð ÞSM

IB

NB
� mMIM þ aSM ð2Þ

dSB

dt
¼ �b tð ÞIM

SB

NB
ð3Þ

dIB

dt
¼ b tð ÞIM

SB

NB
� IB

dB
ð4Þ

dIH

dt
¼ Poisson ZIMð Þ ð5Þ

where SM is the number of susceptible mosquitoes, mM is the mosquito birth and
death rate, NM is the mosquito population and is constant over an outbreak, t is
time in days, b(t) is the contact rate or probability of transmission between birds
and mosquitoes at time t, a is the rate of WNV seeding into the local model
domain before day 200, IM is the number of infected mosquitoes, NB is the bird
population and is constant over an outbreak, IB is the number of infected birds,
SB is the number of susceptible birds in the population, dB is the recovery rate of
birds, IH is the number of infected humans, and Z is a scalar that accounts for the
contact rate and probability of transmission from mosquitoes to humans. The
probability of WNV spilling over to humans is simulated using a Poisson random
number generator.

All model state variables and parameters were estimated simultaneously
through EAKF data assimilation. The EAKF is a recursive filtering technique
that combines observations with a temporally evolving ensemble of model
simulations to generate a posterior estimate of the model state22. This process
nudges the ensemble mean toward the observations and simultaneously contracts
the ensemble variance, and in doing so optimizes the state variables and
parameters. The contact rate, b(t), was originally specified as a single free
parameter, b; however, we observed during simulation of seasonal WNV that
estimates of b declined in a characteristic ‘S curve’ shape (Supplementary fig. 2).
This inferred change in the contact rate may be representative of the switch in
mosquito feeding preference from avian to mammalian hosts23,24,26. We chose to
explicitly model this process as a generalized logistic equation:

b tð Þ ¼ Aþ K �A
1þ e � r t� t0ð Þð Þ ð6Þ

where A is the lower asymptote, K is the upper asymptote, r is the growth rate and
t0 is the inflection point. By imposing this form within the model, we can predict
future shifts in feeding preference and vector-avian host contact, provided
sufficient optimization of the parameters in equation 6.

Observational data. Mosquito surveillance in Suffolk County New York was con-
ducted weekly from early June to the middle of October, depending upon the severity
of WNV. At the beginning of each season, trap locations were spatially distributed
throughout the county and guided by the historical presence of WNV. As the season
progressed, mosquito monitoring was expanded within regions where WNV had been
identified. Total traps within a season ranged from 47 to 104 traps depending on the
year, and the number of traps set each week varied. Approximately half of the traps
were operated in or around town, county or state parks. For abroviral analysis, pools
were submitted to the New York State Department of Health (Arbovirus Laboratory,
Wadsworth Center). WNV analysis was performed by real-time reverse transcription
PCR on pools of mosquitoes to determine the presence of WNV. We combined all
pools of mosquitoes sampled in a week and used a maximum-likelihood approach to
estimate the total weekly proportion of positive mosquitoes (see Supplementary
Information for more details on the mosquito data and this calculation)29.

Weekly human cases of WNV in Suffolk County New York were obtained from
ArboNET, the national arboviral surveillance system, from 2001 to 2014 (ref. 30).
WNV is a nationally notifiable disease. State and local health departments report
the weekly number of human WNV cases to the Centers for Disease Control and
Prevention through the ArboNET surveillance system31. In this analysis both
neuroinvasive and non-neuroinvasive cases were considered (see Supplementary
for more detail on human cases of WNV).

Model-EAKF system. The EAKF data assimilation method has previously been
used in conjunction with a variety of compartmental epidemiological models and
infectious disease data to simulate diseases such as influenza and Ebola17–20. This
data assimilation technique uses Bayes’ rule to provide an updated target of the
system state at a given point in time, using the current observation and all prior
observations. In the process of updating the observed model state variables the
EAKF algorithm also adjusts the unobserved state variables and parameters. For
further details on how the EAKF adjusts the ensemble prior such that the new
moments match the target moments of the posterior predicted by Bayes’ theorem
see the Supplementary Material and Anderson22.

In this study, a 300-member ensemble simulation of the SIR compartmental
model (equations (1)–(6)) was run in conjunction with the Suffolk County
infectious mosquito and human WNV case data and the EAKF. The model-EAKF
system contains the modelled state space composed of the five disease state
variables and seven parameters zt¼ (SM, IM, SB, IB, IH, m, A, K, r, t0, dB, and Z) and
the weekly observations of mosquito WNV infection rates and human WNV cases,
yt¼ (IM and IH). Whenever an observation becomes available, in this study
observations were reported weekly, the EAKF algorithm assimilates those new
observations to update the model observed state variables. The EAKF algorithm
also updates the model unobserved state variables and parameters using cross-
ensemble co-variability. The model is then integrated forward to the next
observation, using the updated (posterior) model state variables and parameters,
and the data assimilation updating process is repeated. Through this iterative
optimization process, the ensemble of model simulations is better aligned to
simulate current local outbreak dynamics. To validate that the EAKF data
assimilation optimizes the WNV-compartmental model, we synthetically tested
the combined model-EAKF system (see Supplementary Materials).

Initial conditions of compartmental model. The compartmental model was
initiated with a 300-member ensemble32 for each outbreak season (June to
November) and each ensemble member was initialized with a constant total
population Sm(0)¼ 4,000, Im(0)¼ 0 SB(0)¼ 500, IB(0)¼ 0 and IH(0)¼ 0. Model
parameters were randomly selected from a uniform distribution: m¼U(0.05,0.08)
(refs 33,34), A¼U(0.001,0.015), K¼U(0.06,0.1), r¼U(� 0.2, � 0.05),
d¼U(3.8,6.0) (ref. 35), Z¼U(0,0.004); and t0 was set 5 to 10 weeks after the timing
of the first infectious pool of mosquitoes. Initial priors for mosquito expected
lifespan33,34 and bird duration of infection35 were selected from the literature
whereas initial priors for b(t) and Z were determined during synthetic testing of the
model-EAKF system. The simulation was seeded with infected mosquitoes, a,
during the initial integration period until the middle of July, day 200, at a rate of
one infected mosquito per 500,000 susceptible mosquitoes.

Retrospective forecast. Retrospective forecasts were generated weekly, the
interval of observation, during each outbreak season from 2001 to 2014. For each
annual outbreak, the EAKF assimilates weekly observation of mosquito infection
rates and human WNV cases from the initiation of an ensemble simulation up to
the point of forecast. Each week, forecasts were generated following the most
recent update of model state variables and parameters by integrating the WNV
compartmental model (equations (1)–(6)) through time until the end of the
outbreak. This process was repeated weekly with each successive forecast having
one additional week of observational data assimilated. Each ensemble forecast was
repeated 10 times with different randomly selected initial conditions.

The quality of the forecast outbreak characteristics were derived from the
ensemble mean trajectory and compared with observed outcomes. A forecast was
deemed accurate if: (1) it peaked within ±1 week of the observed peak of
infectious mosquitoes; (2) the maximum mosquito infection rate was within
±25% of the observed peak infection rate; (3) the total number of infectious
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mosquitoes over the entire season was within ±25% of the observed; and (4) the
total number of human cases over the entire season was within ±25% or ±1 case
of the total number of reported cases, whichever was larger. As an additional
analysis, forecasts were examined across all years. All forecasts with the same lead
were grouped and the fraction of accurate forecasts was quantified. For more
details on the generation and analysis of these retrospective forecasts see the
Supplementary Material.

Code availability. The code that support the findings of this study are available
from the corresponding author upon request.

Data availability. Weekly human cases that support the findings of this study are
available from ArboNET30. Mosquito observations from Suffolk County are available
from Suffolk County Department of Health Services. All other data supporting the
findings of this study are available from the corresponding author upon request.
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