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Abstract

Aim

To determine whether acute loss of liver tissue affects hepatic short-chain fatty acid (SCFA)

clearance.

Methods

Blood was sampled from the radial artery, portal vein, and hepatic vein before and after

hepatic resection in 30 patients undergoing partial liver resection. Plasma SCFA levels were

measured by liquid chromatography-mass spectrometry. SCFA exchange across gut and

liver was calculated from arteriovenous differences and plasma flow. Liver volume was esti-

mated by CT liver volumetry.

Results

The gut produced significant amounts of acetate, propionate, and butyrate (39.4±13.5,

6.2±1.3, and 9.5±2.6 μmol�kgbw-1�h-1), which did not change after partial hepatectomy (p =

0.67, p = 0.59 and p = 0.24). Hepatic propionate uptake did not differ significantly before and

after resection (-6.4±1.4 vs. -8.4±1.5 μmol�kgbw-1�h-1, p = 0.49). Hepatic acetate and buty-

rate uptake increased significantly upon partial liver resection (acetate: -35.1±13.0 vs.

-39.6±9.4 μmol�kgbw-1�h-1, p = 0.0011; butyrate: -9.9±2.7 vs. -11.5±2.4 μmol�kgbw-1�h-1,

p = 0.0006). Arterial SCFA concentrations were not different before and after partial liver

resection (acetate: 176.9±17.3 vs. 142.3±12.5 μmol/L, p = 0.18; propionate: 7.2±1.4 vs.

5.6±0.6 μmol/L, p = 0.38; butyrate: 4.3±0.7 vs. 3.6±0.6 μmol/L, p = 0.73).

Conclusion

The liver maintains its capacity to clear acetate, propionate, and butyrate from the portal

blood upon acute loss of liver tissue.
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Introduction

Short-chain fatty acids (SCFA, i.e. acetate, propionate, and butyrate) have lately attracted con-

siderable attention since they are thought to underlie the effect of gut bacteria on body weight

and metabolism.[1] These organic acids constitute the main products of bacterial fermentation

of indigestible carbohydrates in the human colon.[2] Once produced, SCFA are for approxi-

mately 90% metabolized inside colonocytes. Another 5% is excreted with feces, and the

remainder is thought to be released into the portal vein.[3, 4] In the liver, acetate and butyrate

are metabolized to acetyl-coA before entering the tricarboxylic acid (TCA) cycle to generate

ATP and NADH.[5] Propionate, on the other hand, functions primarily as a precursor of glu-

coneogenesis in liver cells.[6]

Currently, there is growing interest in functional foods that affect the composition of gut

microbiota, and which may lead to the generation of these SCFA.[7, 8] Indeed, SCFA generated

by the intestinal fermentation of dietary fibers seem to have many positive actions on health in

terms of (body weight regulation, gut micromorphology, and insulin homeostasis.[3, 9–12] As a

result of the increasing evidence for a potential role of SCFA as a metabolic tool, various studies

have reported on beneficial effects of SCFA or SCFA precursor supplementation in (pre-) clini-

cal settings.[13–15] We recently reported on a possible clinical application of butyrate to

increase intestinal anastomotic strength.[16] Whereas these studies support the use of SCFA for

improving gut health in man, it is pivotal to better understand human SCFA metabolism before

therapeutic SCFA supplementation can be widely implemented, particularly given that high sys-

temic concentrations of especially propionate and butyrate are toxic.[17, 18]

Our group has previously shown that release of intestinal SCFA appears to be equaled by

hepatic uptake [19], even in patients with a cirrhotic dysfunctional liver.[19] However, a

potential drawback of the latter study was the possible shunting of blood from the portal to the

systemic circulation in patients with liver cirrhosis, making exact quantification of hepatic

SCFA metabolism in this population difficult.

To address this problem, we now studied SCFA metabolism in a controlled situation of

acute loss of liver function where shunting does not play a role, i.e. surgical removal of major

parts of the liver.

Materials and Methods

Study population

We included thirty patients planned to undergo liver resection to remove colorectal cancer

metastasis at Maastricht University Medical Centre+ (MUMC+). All patients provided

informed consent. Patients with known parenchymal liver disease, inborn errors of metabo-

lism, diabetes mellitus type I, and/or use of antibiotics four weeks prior to the operation were

excluded from the study. All patients were on a stable, Western diet. Immediately preopera-

tively, patients received a single intravenous dose of 2200 mg amoxicillin/clavulanic acid as

antibiotic prophylaxis.

The study was approved by the Local Medical Ethics Committee of Maastricht University

Medical Center and was performed in accordance with the ethical standards of the Helsinki

Declaration of 1975. Written informed consent was obtained from all subjects before partici-

pation in this study.

Study protocol

Anaesthesia was performed according to institutional routines as has been described previ-

ously.[20, 21] Briefly, the procedure included placement of two peripheral venous catheters, an
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epidural catheter for per- and postoperative analgesia, an arterial line, and a central venous

line. Anesthesia was maintained using sevoflurane and propofol. Liver resections were per-

formed as described before and classified as major (i.e.� 3 segments) or minor (< 3 seg-

ments).[20] Liver resection started with mobilization of the liver, whereupon intraoperative

ultrasound (Aloka, Zug, Switzerland) determined the definitive surgical procedure. Liver tran-

section was performed using a Cavitron Ultrasonic Surgical Aspirator (CUSA, system 200

Macrodissector; Cavitron Surgical Systems, Stamford, CT). Argon beam coagulation (Force

GSU Systems; Valleylab, Boulder, CO), clips and sutures were used to achieve hemostasis.

When the portal and hepatic veins were exposed (mostly within one hour after skin incision,

but before liver transection), blood was drawn from the portal vein and a hepatic vein by direct

puncture simultaneously with arterial blood sampling, as described before.[20] Directly after

hepatic transection, blood was sampled again from the portal vein, a hepatic vein and the radial

artery simultaneously. Blood was collected in EDTA vacuum tubes (BD Vacutainer, Franklin

Lakes, NJ) and placed on ice. Blood was centrifuged at 3,500 g and plasma was stored at -800 C

until analysis. Finally, the liver resection specimens were weighed.

Sample preparation and liquid chromatography-mass spectrometry

(LC-MS)

Deproteinization and subsequent preparation of plasma samples for analysis of SCFA was per-

formed as recently reported.[22] Briefly, plasma samples were deproteinized using methanol,

after which they were centrifuged at 50,000 g for 10 minutes at 4˚C. The clear supernatant was

transferred to a 300 μl glass micro-insert into a WISP-style vial. Analysis was performed using

LC-MS. SCFA concentrations were determined using the external standard method by calibra-

tion curves of SCFA. The detection limits for acetate, propionate, and butyrate were 0.1, 0.05,

and 0.05μmol/L, respectively. The coefficients of variance were 4.2%, 9.8%, and 5.1% for ace-

tate, propionate, and butyrate, respectively.

CT-volumetry

Liver volumetry was performed in a subset of 16 patients using open source software OsiriX1,

as described before.[23] Briefly, series of axial images in the portal venous phase from the pre-

operative computed tomography (CT) scans were used for volumetry. A slice thickness of

approximately 3–5 mm, depending on the CT-scanner was used. The outline of the total liver,

future resection specimen, and tumors were traced manually on each slice with specific tools

belonging to OsiriX1. Whereas intrahepatic vascular and biliary structures were included, the

gall bladder and the inferior caval vein were excluded for all slices. After selecting all regions of

interest within one series, total liver volume, resection volume, and metastases volumes were

calculated. Then, 3D images were created and virtual resections were performed according to

the treatment plan. Functional volume was calculated as total volume minus tumor volume.

Subsequently, these volumes were used to estimate the remnant liver volume in order to assess

differences in SCFA clearance per gram functional liver tissue pre- and post- hepatic resection.

Flux calculations

Arteriovenous differences (ΔAV) and net organ fluxes (flow � ΔAV) were calculated across the

liver, portal drained viscera (PDV), and splanchnic area. Plasma flows for flux calculations

were derived from previously performed measurements in a similar patient group.[20] As we

demonstrated before that total hepatic plasma flow does not change after major hepatectomy

[24], the same plasma flow data were used before and after resection. The corresponding AV

differences were calculated as follows: ΔAVPDV = [PV]–[A] and ΔAVsplanchnic area = [HV]–[A].
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Fluxes were calculated as FPDV = portal plasma flow � [PV-A], Fsplanchnic = splanchnic plasma

flow � [HV]-[A], Fliver = Fsplanchnic-FPDV. In these equations [PV], [A], and [HV] indicate por-

tal venous, radial artery, and hepatic venous concentrations respectively, whereas Fsplanchnic,

Fliver, FPDV denote splanchnic flux, liver flux, and PDV flux, respectively. Positive fluxes indi-

cate net release and negative fluxes indicate net uptake. To estimate hepatic functional reserve,

hepatic SCFA exchange was also calculated per gram of liver tissue using the volumetry data

and assuming 1 mL corresponds with 1 gram of liver tissue.

Statistical analysis

Data are presented as mean (SEM). To test if fluxes were statistically different from zero, the non-

parametric Wilcoxon signed-rank test was used with a hypothetical value of zero. The nonpara-

metric Wilcoxon signed-rank matched pairs test was used to test if there were differences in fluxes

and concentrations before and after partial hepatectomy. Correlations were calculated with Spear-

man’s correlation coefficients. A p-value of<0.05 was considered statistically significant. For sta-

tistical analysis, Prism 5.0 for Windows (Graphpad Software Inc. San Diego, CA) was used.

Results

Patient population

Baseline characteristics of the thirty patients included in the study are presented in Table 1.

Sampling was performed in all patients according to protocol. Thirteen patients underwent

major liver resection, whereas 17 patients underwent minor liver resection. The median time

required for transection was 110 minutes.

SCFA production by the gut is not affected by partial liver resection

The gut produced significant amounts of acetate, propionate, and butyrate before liver transec-

tion, as evidenced by portal venous concentrations exceeding the arterial concentrations. The

Table 1. Baseline characteristics (n = 30).

Sex (Male) 20

Age (years) 62 (41–79)

BMI (kg/m2) 25.1 (20.3–33.3)

Neoadjuvant chemotherapy 20

Indication Colorectal liver metastases 26

Cholangiocarcinoma 1

Carcinoid 1

HCC 2

Type of liver resection Minor 17

Major 13

Colonic surgery in the past No colonic surgery 8

Right sided 8

Left sided 13

Transverse colon 1

Plasma flows (mL/min) Portal vein 320 (42)

Hepatic artery 110 (23)

Splanchnic 430 (47)

BMI: body mass index, HCC: hepatocellular carcinoma. Age and BMI are expressed as median (range).

Plasma flows are expressed as mean (SEM)

doi:10.1371/journal.pone.0166161.t001
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corresponding fluxes were 39.4±13.5, 6.2±1.3, and 9.5±2.6 μmol�kg bw-1�h-1 for acetate, propi-

onate, and butyrate, respectively (p<0.01 for all SCFA, Fig 1). As expected, the production of

acetate, propionate, and butyrate by the gut directly after partial liver resection was not statisti-

cally different from baseline production, with corresponding fluxes of 42.8±9.6, 8.9±1.5, and

11.9±2.3 μmol�kg bw-1�h-1, respectively (p = 0.67, p = 0.59, and p = 0.24 respectively; Fig 1).

Increased hepatic acetate and butyrate uptake after partial liver

resection

Acetate, propionate, and butyrate were all taken up by the liver both before (acetate: -35.1

±13.0 μmol�kg bw-1�h-1, p<0.01, propionate: -6.4±1.4 μmol�kg bw-1�h-1, p<0.001, butyrate:

-9.9±2.7 μmol�kg bw-1�h-1, p<0.001) and after partial liver resection (acetate: -39.6±9.4 μmol�kg

bw-1�h-1, p<0.001, propionate: -8.4±1.5 μmol�kg bw-1�h-1, p<0.001, butyrate: -11.5

±2.4 μmol�kg bw-1�h-1, p<0.0001; Fig 2). Whereas the increases in acetate and butyrate uptake

after liver resection were significant (p = 0.0011, p<0.0001, respectively), the increase in propi-

onate uptake was not (p = 0.50).

Splanchnic SCFA fluxes and systemic concentrations

Since acetate and propionate release from the gut equalled hepatic uptake both before and

after partial liver resection, there was no significant acetate or propionate release from the

splanchnic area at either time point. The corresponding splanchnic fluxes were 4.5

±3.8 μmol�kg bw-1�h-1 before and 4.2±1.8 μmol�kg bw-1�h-1 after partial liver resection for ace-

tate, and 0.1±0.2 μmol�kg bw-1�h-1 before and 0.4±0.2 μmol�kg bw-1�h-1 after partial liver resec-

tion for propionate (both p>0.05, Fig 3). A small but significant release of butyrate from the

splanchnic area was found only after partial liver resection (0.4±0.1 μmol�kg bw-1�h-1,

p = 0.0103). Arterial acetate, propionate, and butyrate concentrations were not significantly

different before versus immediately after partial liver resection; Table 2.

No effect of partial liver resection on SCFA uptake per gram liver tissue

Before resection, mean total liver volume was 1692±88 mL and mean functional liver volume

(total liver volume minus tumor volume) was 1584±116 mL. Mean estimated remnant liver

Fig 1. Short chain fatty acid fluxes across the gut.

doi:10.1371/journal.pone.0166161.g001
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volume after resection was 1186±106 mL. The resection specimens weighed on average 475

±60 g, which was equivalent to 28% of total liver volume. Uptake of acetate, propionate, and

butyrate by the liver before partial resection did not correlate with the percentage functional

remnant liver volume (rs = 0.32 for acetate (p = 0.20), rs = 0.22 for propionate (p = 0.38) and rs

= 0.21 for butyrate (p = 0.39). Similarly, after partial resection, the uptake of acetate, propio-

nate, and butyrate by the liver was not correlated with the percentage functional remnant liver

volume (rs = -0.08 for acetate (p = 0.73), rs = 0.16 for propionate (p = 0.51) and rs = 0.13 for

butyrate (p = 0.60). Furthermore, no differences were found between arterial acetate,

Fig 2. Short chain fatty acid fluxes across the liver.

doi:10.1371/journal.pone.0166161.g002

Fig 3. Short chain fatty acid fluxes across the splanchnic area.

doi:10.1371/journal.pone.0166161.g003
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propionate, and butyrate concentrations in patients that underwent a minor resection com-

pared to patients that underwent a major resection; Table 3. When assessing the flux per gram

liver tissue before and after liver resection, no significant change in uptake per gram liver tissue

was seen for any SCFA (p = 0.87 for acetate, p = 0.88 for butyrate and p = 0.12 for propionate).

Discussion

The present study was undertaken to investigate the effect of partial liver resection, as a model

for controlled loss of liver function, on interorgan exchange of short chain fatty acids (SCFA).

Our data confirm that the gut produces significant amounts of acetate, propionate, and buty-

rate. Intestinal production of acetate exceeds the production of butyrate which, in turn, is

higher than the production of propionate. These gut derived SCFA are subsequently to a large

extent taken up by the liver. Hepatic uptake of acetate and butyrate even increases after partial

liver resection.

Together with data from our previous studies [19], the present data indicate that the liver is

able to take up acetate, propionate and butyrate proportionally to gut production, both before

and after partial liver resection. These findings are in concordance with previous work by our

group showing excess hepatic capacity in e.g. hepatic urea synthesis and ammonia clearance.

[20]

Complete hepatic clearance of the main SCFA acetate, propionate, and butyrate (even after

partial hepatectomy) is important to avoid the possible toxicity of SCFA. However, it may also

be considered as less beneficial given recent data on the metabolic signaling activities of these

SCFA. In fact, an enteroendocrine pathway has been proposed by which SCFA control gut

hormone expression. SCFA are ligands for G-protein-coupled receptors (GPCRs) GPR43 and

GPR41 expressed on enteroendocrine L-cells.[25] In response to SCFA activation of these

GPCRs, the gut hormones glucagon-like peptide (GLP-1) and Peptide YY (PYY) are secreted.

[26] PYY subsequently regulates intestinal motility and thereby nutrient absorption from the

gut, whilst GLP-1 affects satiety.[27] The secretion of GLP-1 is reduced in type 2 diabetes and

seems to be reduced in obese subjects as well.[28] Furthermore, mice lacking GPR43 exhibit

reduced SCFA-triggered GLP-1 secretion and an impairment of glucose tolerance.[29] More

recently, Kimura et al. demonstrated that GPR43 links SCFA production by gut microbiota to

Table 2. Arterial SCFA concentrations before and after resection (n = 30).

Before After p-value

Acetate 176.9 (17.3) 142.3 (12.5) 0.18

Propionate 7.2 (1.4) 5.6 (0.6) 0.38

Butyrate 4.3 (0.7) 3.6 (0.6) 0.73

Concentrations in μmol/L

doi:10.1371/journal.pone.0166161.t002

Table 3. Arterial concentrations before and after minor (n = 17) and major resection (n = 13).

Minor resection Major resection

Before After p-value Before After p-value

Acetate 189.9 (27.8) 155.4 (16.9) 0.97 158.5 (17.61) 124.8 (19.8) 0.27

Propionate 7.7 (2.2) 5.9 (0.9) 0.90 6.7 (1.5) 5.2 (1.0) 0.70

Butyrate 5.2 (1.1) 4.0 (0.8) 0.27 3.1 (0.6) 3.0 (0.6) 0.20

Concentrations in μmol/L

doi:10.1371/journal.pone.0166161.t003
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host energy homeostasis.[30] They showed that GPR43- deficient mice are obese on a normal

diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when

fed a high-fat diet. Besides, SCFA have been shown to influence obesity-induced chronic low-

grade inflammation. In addition, acetate, propionate, and butyrate can directly decrease the

secretion of adipose tissue-derived proinflammatory cytokines and chemokines. Butyrate, in

particular, can also indirectly influence proinflammatory cytokine and chemokine production

by influencing signaling pathways like the nuclear factor-kB pathway and by inhibition of his-

tone deacetylases.[31, 32] Butyrate is part of a well-known class of epigenetic regulators known

as histone deacetylase inhibitors (HDACi), which modulate the accessibility of genes to tran-

scription factors. Hence, dietary manipulation of histone structure and function of critical

genes associated with physiologic and pathologic processes [33] may be a solution to the puzzle

of the relation between dietary fiber and the prevention and treatment of different diseases. In

this regard, there is a growing interest in butyrate as its impact on epigenetic mechanisms will

lead to potential clinical implications.[34]

SCFA might also enhance the intestinal barrier function, further supporting their anti-

inflammatory potential. In several studies using intestinal cell lines, SCFA (particularly buty-

rate), have been shown to improve epithelial barrier function and gut permeability by modu-

lating expression of tight junction proteins and mucins. [35, 36] As such, SCFA, and the

microbiota that produce them, are considered to modulate human metabolism by acting as

signaling molecules [37–39].

Whereas hepatic acetate and butyrate uptake was increased after liver resection, no signifi-

cant changes appeared to occur in the uptake per gram liver tissue. This might be related to the

fact that the uptake per gram liver tissue could only be calculated in a subgroup of patients and

the substantial variation in hepatic SCFA uptake between patients. Our data further showed

that the uptake of acetate, propionate, and butyrate by the liver was not correlated with the per-

centage functional remnant liver volume. This may indicate that the magnitude of hepatic

SCFA clearance is dependent on gut production, i.e. SCFA availability. Of note, it should be

taken into account that the patients were fasting overnight before the operation, so the intesti-

nal SCFA production was lower during the sampling than the usual average production rate.

In a sheep model, Bergman et al.[40] found that acetate concentrations were indeed signifi-

cantly lower in the fasted state compared to the fed state, despite the intensive microbial SCFA

production in the rumen of ruminants. In contrast to this study in which the sheep were fasted

for three days, the patients in our study had just an overnight fast which may suggest that the

influence of fasting on SCFA availability in our study was less pronounced.

Our current data obtained in a unique model of acute loss of liver function underscore the

large capacity of the liver to metabolize SCFA released from the gut. It should, however, be

taken into consideration that it only reflects a short term acute loss of liver function as blood

samples were taken immediately after the partial liver resection. Additional intervention stud-

ies must be performed to ensure that supplementation of SCFA in patients is safe. Of note,

administering precursors of SCFA (i.e. inulin or fructo-oligosaccharides) has been reported to

lead to increased intraluminal SCFA concentrations, but systemic changes in SCFA concentra-

tions have not been reported to date.[41, 42]

Conclusion

This in vivo study in humans confirmed that the gut produces significant quantities of the

main SCFA acetate, propionate, and butyrate. Acute hepatic tissue loss did not influence sys-

temic concentrations of SCFA, implying that the liver has a large reserve capacity to metabolize

propionate, acetate, and butyrate to prevent any increase of arterial concentrations. This was
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underscored by the increased hepatic uptake of acetate and butyrate after partial liver resection

which, in turn, may be interpreted as circumstantial evidence for the safety of SCFA supple-

mentation even in patients with limited liver tissue.
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