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Characterizing dissimilarity
of weighted networks

Yuanxiang Jiang, Meng Li, Ying Fan & Zengru Di"*

Measuring the dissimilarities between networks is a basic problem and wildly used in many fields.
Based on method of the D-measure which is suggested for unweighted networks, we propose

a quantitative dissimilarity metric of weighted network (WD-metric). Crucially, we construct a
distance probability matrix of weighted network, which can capture the comprehensive information
of weighted network. Moreover, we define the complementary graph and alpha centrality of
weighted network. Correspondingly, several synthetic and real-world networks are used to verify the
effectiveness of the WD-metric. Experimental results show that WD-metric can effectively capture the
influence of weight on the network structure and quantitatively measure the dissimilarity of weighted
networks. It can also be used as a criterion for backbone extraction algorithms of complex network.

Since various systems with complex interactions can be abstractly represented as networks, network science has
developed rapidly and widely used in various fields such as biology'~®, economics** and social science®%. One
of the most important features of network science is that it can extract the common characteristics of different
systems under the network representation. The most representative is the study about the nontrivial topological
properties such as community structure and long-tail degree distribution. Therefore, how to accurately extract
network topological characteristics and find out the general rules of different systems is the focus and difficulty
of network science®'’.

About network topologies, many scholars have shown great interest in comparison of complex networks
which is mainly to measure the differences between two networks by comparing their topological properties.
Network comparison is the basic of many network analysis applications such as model selection'?, network clas-
sification and clustering'®, anomaly and discontinuity detection'®, and evaluation of sampling algorithms!’. The
core of network comparison is to define an effective dissimilarity metric'®-?°, which can capture and adequately
quantify topological differences between networks even when they have different sizes. Moreover, a good dis-
similarity metric should have the ability to recognize the different roles of links and nodes, considering overall
structural properties.

The network comparison comes from the graph comparison in graph theory. Early graph comparison meth-
ods, such as graph isomorphism?"*? and edit distance**~?, are mainly based on graph matching®® technology to
decide whether two graphs are identical. Generally, the algorithms have the time complexity of NP-Complete
so that they are time-consuming for large networks and could only work on graphs with relatively few nodes.
Vishwanathan and Kondor et al. put forward the Graph Kernels, which decomposes the graph into multiple
substructures and then determines whether substructures are isomorphic?. This method has the obvious advan-
tage of reducing the time complexity from NP-Complete to polynomial level, but the kernel function is difficult
to construct. Mieghem et al. used the eigenvalue vector of the graph’s adjacency matrix or Laplacian matrix to
represent the network structure and characterized the graph’s distance by comparing the differences between
the two vectors®®. This method is relatively simple to understand and operate, but it is only applicable to the
comparison of two graphs with the same number of nodes, and it cannot accurately describe the distance between
graphs with the same spectra but different structure. Sadegh et al. proposed an intelligent method based on the
genetic algorithms, with integrating, selecting, and weighting the network features to measure the similarity
of complex networks®. The complexity of this method depends on the complexity of their feature extraction.
However, most methods of network comparison have the problem that the extraction of network information
is limited or incomplete thus important structural differences are missed.

Recently, Schieberl proposed a discriminative and computationally efficient differences measure for net-
work comparison®. This method has relatively superior polynomial time complexity. More importantly, it can
accurately distinguish all the isomorphism and non-isomorphism networks and can quantitatively describe the
network differences. It can also compare networks with different sizes. However, this method, regardless of the
edge weight, is only applicable to the unweighted networks.
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It is generally accepted that weights are coupled in a non-trivial way to the binary network topology, play-
ing an important part in structural organization, functionality and dynamics. For instance, the spreading of
emergency diseases in the international airport network is closely related to the number of passengers travelling
from one airport to another. In many applications of similarity comparison, such as discriminating between
neurological disorders’!, quantifying changes in temporal evolving network®, if these networks are weighted,
undoubtedly, more accurate similarity measurement can be obtained after considering the edge weight. Especially,
when comparing two weighted complete graphs, like the similarity network between cities obtained by different
methods®, whose difference mainly comes from the edge weight, and then a dissimilarity metric of weighted
networks becomes indispensable.

In view of the above analysis, we propose a quantitative dissimilarity metric for comparing weighted networks
based on method proposed by Schieberl®. It is assumed that the initial weighted networks are with similarity
weights. Firstly, the shortest path lengths are measured through reciprocal edge weights and are rescaled by
the ratio of the average shortest path lengths of the weighted network to its binary counterpart. Hence, we can
construct a probability matrix based on distance between each pair of nodes, which captures the comprehensive
information of the network. Secondly, Jensen-Shannon divergence is used to compare the differences between
the distance distribution vectors obtained from probability matrix. Thirdly, the concept and calculation of com-
plementary graph and alpha centrality of weighted network are defined. The quantitative differences between
original weighted network and its complementary graph in alpha centrality are respectively computed through
Jensen-Shannon divergence. Finally, several synthetic and real-world networks are used to verify the effective-
ness and necessity of the proposed WD-metric. Moreover, WD-metric is used to compare original real networks
and their skeleton, extracting through Disparity filter and Global Threshold filter when retaining similar edge
density, indicating new proposed metric can be used as a criterion for backbone extraction algorithms of com-
plex network.

Methods
D-measure. When measuring the difference between two unweighted networks, Schieberl proposed a dis-
similarity metric (D-measure), which was defined as a three-term function®”:
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where w1,0; and w; are arbitrary weights of the terms satisfying w; + wz + w3 = 1. ] is the Jensen-Shannon (JS)
divergence.

Instead of comparing vectors whose elements were numbers such as the number of node or edge, average
degree and so on, Schieberl considered vectors in which the elements were sets of probability distributions.
Particularly, for each nodei =1,2,...,N, the node-distance distribution P; = {p;(j)} was defined as the frac-
tion of nodes at distance j from node i. The set of N node-distance distributions {Py, . .., Py} contains a lot of
detailed topological information, such as the degree (number of nodes at distance 1 from i) and the closeness
centrality (the sum of the inverse distance from i to all other nodes). Then, the network node dispersion (NND)
was defined as:
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where

J(P1,...,PN) = iZpl(])log(pli(])) (3)
N i i
Wi = Zfil pi(j)/N,d is the diameter of network G.

In the first term of Formula (1), averaged connectivity distribution of nodes, g and g , the set of
wiG=12,..., d) and ,uj/(] =1,2,...,d") were compared, which captured the global topological differences of
network G and G’ The second term analyzed the heterogeneity of nodes by comparing the connectivity distribu-
tion of each node P;(i = 1,2,...,N) and normalizing by log(d + 1). In addition, considering many networks
like most k-regular networks possess NND = 0, the third term compared the difference values of the graphs and
their complements in alpha centrality.

Because of the importance of weight in the research of network structure and function, designing an efficient
and quantitative dissimilarity metric applicable to weighted network is very meaningful and necessary. Therefore,
we propose the WD-metric based on D-measure.

WD-metric. Given the weight, the distances between nodes of weighted network become different real num-
bers, not just integer any more as in an unweighted network. How to convert them to integers for calculating the
node-distance distributions while depicting their meaning of n-th order neighbors? In addition, little is known
about complement of a weighted network. Moreover, redesigning the reasonable parameter values in calculating
alpha centrality of a weighted network is also an important part.

As for the weighted network G, = (V,,, E,), where V,, and E,, represent the set of nodes and edges in G,,.
Denote W as the adjacency matrix of G,,. Here, for consistency of understanding and processing distance, we
state that the wj; is the similarity weight and the value w;; = 0 if two nodes i and j are disconnected. In addition,
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we perform the normalization on weight by dividing the maximum weight. So, the similarity weights are dis-
tributed in [0,1].

The distance distribution of weighted network. Given a network with similarity weight, the reciprocal of the
weight is taken to measure the path length. L,, is the matrix of shortest path length, whose entry [;; , being the
weighted distance from node i to node j, becomes continuous real number rather than integer. In this case,
instead of simply rounding it, we first rescale L, through multiplying it by L/L,, ( L, and L are the average
shortest path lengths of the weighted network and its binary counterpart, respectively) to get L, , and then ceil-
ing the values to get L. By doing this, the original real distances are classified thus we can count up the num-
bers of nodes with the same distance from node i and then divide them by N — 1 to obtain the node-distance
distributions of weighted network P = {p?(j)}(i = 1,2,...,N). Most importantly, the method of rescaling
distance can retain the topological properties about n-th order neighbor. The set of N node-distance distribution
(PP, PY, ..., PY) forms a matrix P, with the element p{’(j) being the fraction of nodes that are connected to the
node i at distance j, similar to the case for unweighted network. In particular, the matrix P,, includes one column
for those disconnected nodes. Therefore, our method can also work well for the disconnected networks. See Sup-
plementary Note 1 for detailed description with a simple example.

Complement of weighted network. There is very little discussion on the complement of a weighted network.
We give a similar and reasonable definition of the complementary graph of a weighted network referring to the
complement of an unweighted network.

For an unweighted network G with adjacency matrix A(G) , its complementary graph G, in the matrix rep-
resentation, can be denoted as A(G°) = K,, — A(G). K,, is a matrix whose entries are all equal to one.

For a weighted network G, with similarity weights distributed in [0,1], denoting its adjacency matrix as
W(Gy), correspondingly, its complementary graph can be defined as W(G.,)) = K,, — W(G,,), where K, is a
matrix whose entries are all equal to one.

Alpha centrality.  Since alpha centrality considers not only the interaction between nodes, but also the informa-
tion of each node that are independent of others®, it is widely studied as an important property of network. It
is generally formed as:

x =aAx+ B (4)

where A is the adjacency matrix of network G, « is the attenuation factor and g is an exogenous factor vector. It
can be proved that the solution of equation converges for o« < 1/7,4x , where A4y is the spectral radius of the
network.

According to the Perron-Frobenius theory, in a real symmetric matrix M, Ayqx < max; y M;;. Therefore,
in a graph, A,ax must be less than the maximum degree. Schieberl set & = 1/N and considered link density of
every node as an exogenous factor vector for an unweighted network. In a weighted network G, , the adjacency
matrix W is also symmetric, then A,y is bounded from above by the maximum node strength. Because the
weights of G, are distributed in [0,1], the maximum node strength is bounded from above by N. Hence, we set
a =1/N,B =S/[(N — 1) - w], where @ is the average weight, S is the node strength vector.

As known, JS divergence is often used to measure the difference between two probability distributions.
Therefore, when considering the influence of alpha centrality, we process the calculated alpha centrality vector
Vq to obtain P, who is a discrete probability distribution with one dimension more than V.

N
Ve N =D (Ve ()

i=1

1
Py =

=N (5)

Expression of the WD-metric. Considering the effects of global and local features, we can obtain a few related
vectors based on the above definitions of the distance probability matrix, complementary graph and alpha cen-
tricity of a weighted network.

First of all, through the distance probability matrix P,,, we can obtain the average proportion of each order
neighbors:

N
W= /N (6)
i=1
Further, we can calculate the value of node dispersion of weighted network (WNND), which is defined as:

J(PY,PY,...,PY)

WNND(G) =
@) log(m + 1) )
with
pe. pe P2y = 1 » Nl pf)(])
JPY, Py, ..., N)—NZpi(])og 7 (8)
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Figure 1. Comparisons between complete graphs with different weights or not. The weights are drawn from
(a) Uniform distribution U[1 — ¢, 1 + ¢](0 < ¢ < 1); (b) Normal distribution X ~ N(1,02); (c) Lognormal
distribution InX ~ N (1, 0%); (d) Power-law distribution f (x, b) = b/x"*1.

where m is the number of columns of the distance probability matrix P,, , and J is the JS divergence.
Finally, the quantitative dissimilarity metric of weighted network is proposed as:

J(ugys may)
WD(GY, GY) =wlm + wz]\/WNI\UJ(G‘f’) - \/VW\WD(GE“)\

9
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Here we set the weights w1 = w; = 0.45 and w3 = 0.1 as Schieberl did to quantify structural dissimilarities
between weighted networks. On one hand, considering of the consistency, we hope that the weighted dissimilarity
metric is still applicable to the unweighted network. On the other hand, the weights here respectively represent
the influence of networks global (first term), networks local (second term) features and the network heterogeneity
(third term) on the network differences. The value of each term of the WD-metric supposed to be proportional
to that of unweighted. We calculate several pairs of real networks and get basically consistent results.

Results

Leveraging the WD-metric we propose, several groups of experiments are performed on synthetic networks and
real networks to verify the necessity and validity of new proposed metric. Note that, if no specific instructions
in this paper, the dissimilarity values (D-values) between all synthetic networks are average results of running
100 times, and the size of synthetic network is N=100.

Complete graphs with four edge weight distributions. In order to verify the effectiveness of the
WD-metric in comparison between diverse weighted networks, the weights drawn from different distributions
are first added to the complete graphs, and then the dissimilarity values (D-values) between the complete graphs
with and without weights are calculated and shown in Figs. 1 and 2.

As shown in Fig. 1, there is a significant difference between before and after weighting on a complete graph.
Meanwhile the D-values change gradually with the corresponding parameters under different weighting modes.
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Figure 2. Comparisons between weighted complete graphs. (a) The cyan and the green lines depict the
differences between weighted complete graphs and its binary counterpart, weights drawn from the uniform
distribution U[1 — ¢, 1 + c]and the normal distribution N(1,5%), (¢ = 2c), respectively. The blue line depicts
the difference of two weighted networks with the weights drawn from U[1 — ¢, 1 + c¢]and N(1, o), (o = 20).
(b) The differences of two weighted networks with the weights drawn from U[0, 2] and N(1, o2) change with o..
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Figure 3. Comparison between incomplete graphs with different edge densities. The black curves depict the
differences between two unweighted networks with the same density change with the probability p of connecting
pairs of nodes or average degree k. Other colored curves show the differences between weighted network

and its binary counterpart at various densities. The edge weights are drawn from lognormal distribution

(E(x) = 1,0 = 0.1), power-law distribution (b = 1), uniform distribution U[0, 2] and normal distribution

(n = 1,0 = 0.1). (a) The difference between Erdos-Renyi (ER) networks; (b) The difference between Barabasi-
Albert (BA) networks.

They indicate that our method captures the influence of the weight on the network structure. Except the com-
parison between a weighted and an unweighted network, we also compare the difference between two weighted
networks. As red lines shown in Fig. 2, the D-values between two networks with same topology but different
weights are relatively small, but they still change significantly with the weight, which further indicates the WD-
metric effectively depicts the effect of weight on the network.

Incomplete graphs with different edge densities. Having observed the differences between weighted
complete graphs, we would like to see the performance of the WD-metric on the weighted incomplete graphs.
Therefore, we use the WD-metric to observe the differences before and after weighting on Erdos-Renyi (ER)
network and Barabasi-Albert (BA) network with different densities.

As shown of the black curves in Fig. 3, there is little difference between two unweighted networks (UD-values)
at any of the same density. However, the colored curves show that the difference after weighting (WD-values)
increase obviously in most cases, except on ER network with small p. The possible reason may be that small
connecting probability causes the ER network to be divided into many disconnected groups, so the UD-values
are relatively larger. Moreover, in this case, a small quantity of edge weight has little effect on network, so there
is no clear difference between UD-values and WD-values. In addition, from the colored curves, it is not difficult
to find that the WD-values wholly increase with the increasing of the edge density. That is, when the network is
sparse, the weight has little impact on the structure, while in the dense network, the weight has a greater impact.
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Figure 4. A simplified two-layer neural network. The circles represent the neurons at each layer of the neural
network, corresponding to the nodes in the complex network. The correlations between neurons correspond
to edges, and the different feedback intensities between neurons correspond to edge weights in the complex
network.

The size of training sets (accuracy) 10 (19%) 100 (53%) 1000 (79%) 10,000 (97%)
10 0 0.0042 0.0119 0.0521

100 0.0042 0 0.0107 0.0509

1000 0.0119 0.0107 0 0.0402

10,000 0.0521 0.0509 0.0402 0

Table 1. The D-values for each pair of neural networks obtained by different sizes of training sets. The number
of hidden layers is 30 and training times is 100. Number in parentheses represents the classification accuracy of
the corresponding neural network. The larger the training set, the higher the accuracy.

These results are quite consistent with what we know, which further represents the effectiveness and feasibility
of our proposed WD-metric.

Comparison between neural networks. As an interdisciplinary technology, neural network has been
widely used in various fields to tackle the problems like classification and prediction in recent years®. Figure 4
shows a simplified two-layer neural network, composed of many neurons from input layer, hidden layer and
output layer, and weighted edges. Neural network is a typical weighted network with specific functions. By con-
tinually training data and adjusting edge weights, the new neural network usually has better ability in prediction
or classification. We try to use WD-metric to compare these neural networks with different prediction or classi-
fication accuracy. If the accuracy of two neural networks is closer, and the dissimilarity between them is smaller,
it will further probe the validity of the WD-metric in capturing the function of weighted networks.

Here, we perform some experiments on the classical BP neural network for pattern recognition of handwrit-
ten numbers. By inputting 4 groups of training sets with size of 10, 100, 1000 and 10,000, we can obtain four
neural networks with different weights but the same topology connection mode. Then, WD-metric is used to
compare these networks.

Table 1 shows that when the sizes of training sets are different, WD-metric can capture the differences between
corresponding neural networks with different classification ability. D-values increase gradually between network
with 10 training sets and networks with training sets 100, 1000 and 10,000, while D-values decrease gradually
between network with 10,000 training sets and networks with training sets 10,100 and 1000. This shows when
the difference of classification accuracy of networks is larger, the D-value between them is larger. The results
further manifest that the WD-metric is quantitative and effective for measuring the distance between networks
with different functions caused by weights.

Distances between real weighted networks. After the comparison between synthetic networks, in
order to observe the performance of the WD-metric on real-world networks, we make pair-by-pair comparison
among various weighted real networks and the results are shown in Fig. 5a.

17 data sets of 4 networks types: Animal, Online Communication, Human Contact and Human Social, are
considered. Table 2 shows the basic statistics of them. All networks here presented are freely available at The
Koblenz Network Collection (http://konect.uni-koblenz.de/). We also calculate the differences between those
networks when ignoring the weight, and the results shown in Fig. 5b. It can be found that there is a significant
difference between the two figures. What’s more, as shown in Fig. 5a, the dissimilarities between Reality Mining
and other networks are very large under consideration of weight. If not, shown as Fig. 5b, Reality Mining is sub-
merged in the networks, which further indicates the necessity of designing the dissimilarity metric of weighted
network. Moreover, we can find that the similarity between some networks with the same type are higher, such
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Network \ Directed \ N \ [E| \ (k) \ (s)
Animal

Bison Yes 26 314 2415 |69
Kangaroo No 17 91 10.71 | 65.29
Macaques Yes 62 1187 38.29 | 7855
Rhesus Yes 16 111 13.88 | 80.88

Online communication

DNC Yes 2029 | 5598 544 |36.89
Manufacturing Yes 167 5784 69.26 | 992
Human contact

Haggle No 274 | 2899 1550 | 124.21
Hypertext No 113 | 2196 38.87 | 368.46
Infectious No 410 2765 13.49 |84.38
Reality mining No 96 2539 52.90 |22,633.42
Train bombing No 64 243 7.59 |88l
Windsurfers No 43 336 15.63 | 56.09

Les No 77 254 6.60 |21.30

Human social

Adolescent Yes 2539 | 12,969 |10.22 |29.71
Highschool Yes 70 366 10.46 | 14.46
Residence hall Yes 217 2672 24.63 |83.21
Seventh graders | Yes 29 376 2593 |51.03

Table 2. The basic statistics of the real networks. These 17 weighted networks include 4 types: animal, online
communication, human contact and human social. |V, |E|, (k), (s) represents the number of nodes, the
number of edges, average degree, and average strength of network, respectively.
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Figure 5. Difference between more weighted real networks. (a) Heatmap of the dissimilarity values for each
pair of weighted real networks; (b) The difference between the real networks when ignoring their weights.

as Animal. However, some networks with the same type, such as Human Contact, are also quite different from
each other, especially the dissimilarities between Reality Mining and other same type networks are very large.
Probably because the classification of networks only by their domain is not enough. See Supplementary Note 3
for specific dissimilarity values between various real networks.

Application of the WD-metric to backbones extraction. In a large-scale network, the extraction of
truly relevant nodes or connections forming the network’s backbone can help form reduced but meaningful
representations of a large-scale complex network, and understand its fundamental structure and function®.
However, many existing extraction methods are mainly for retaining one or more topological attributes. For
example, the classical method of Disparity filter proposed by Serrano?, still qualitatively shown its superiority to
the global threshold filter mainly through the heterogeneity of the weight distribution.

However, our proposed WD-metric can quantitatively measure the dissimilarity of weighted network from
comprehensive information. Figure 6 presents us the D-values between the U.S. Airport and Residence Hall
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Figure 6. D-values between the filtered backbones and the original networks. (a) For the U.S. Airport. (b) For
the Residence Hall. The abscissa represents the edge density proportion of extraction backbone to the original
network.

network and their backbones. On one hand, with the increase of edge density, D-values gradually decrease as a
whole, which can’t agree more about the fact that the subgraph with lager density retains more information. On
the other hand, the blue line is almost below the red line, quantitatively and intuitively indicating the disparity
filter is superior to the global threshold filter. The WD-metric can be used as a criterion for backbone extraction
algorithms of complex network.

Discussion

In this paper, we propose a qualitative dissimilarity metric applicative to weighted networks (WD-metric) based
on the method of D-measure®® only for unweighted networks. Especially, for disconnected networks, it also
performs well. Various experiments have shown that WD-metric can capture the influence of the weight on the
network structure, and quantitatively and effectively measure the dissimilarity of weighted networks. In addi-
tion, it can depict the influence of edge density on network structure. On one hand, when the network is sparse,
the weight has little impact on the structure. On the other hand, while in the dense network, the weight has a
greater impact. Furthermore, the WD-metric can be used as a criterion for backbone extraction algorithms of
complex network.

We have compared among some real-world networks and obtained the dissimilarity values between them
through the WD-metric but without further analyzing the practical significance of the dissimilarity values.
Scholars from different fields can use it combined with various practical problems yield interesting results and
applications. Moreover, from the perspective of minimizing D-value between original network and its backbone,
developing a new method of backbone extraction is a meaningful idea. In addition, we can pay more attention to
the relationship between network differences and network functionalities such as the percolation and spreading
dynamics. How to set the weight of each term of the WD-metric is also worth seriously considering.
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