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Counting using deep learning 
regression gives value to ecological 
surveys
Jeroen P. A. Hoekendijk1,2*, Benjamin Kellenberger3, Geert Aarts1,4,5, Sophie Brasseur4, 
Suzanne S. H. Poiesz1,6 & Devis Tuia3

Many ecological studies rely on count data and involve manual counting of objects of interest, which is 
time-consuming and especially disadvantageous when time in the field or lab is limited. However, an 
increasing number of works uses digital imagery, which opens opportunities to automatise counting 
tasks. In this study, we use machine learning to automate counting objects of interest without the 
need to label individual objects. By leveraging already existing image-level annotations, this approach 
can also give value to historical data that were collected and annotated over longer time series 
(typical for many ecological studies), without the aim of deep learning applications. We demonstrate 
deep learning regression on two fundamentally different counting tasks: (i) daily growth rings from 
microscopic images of fish otolith (i.e., hearing stone) and (ii) hauled out seals from highly variable 
aerial imagery. In the otolith images, our deep learning-based regressor yields an RMSE of 3.40 day-
rings and an R2 of 0.92. Initial performance in the seal images is lower (RMSE of 23.46 seals and R2 of 
0.72), which can be attributed to a lack of images with a high number of seals in the initial training set, 
compared to the test set. We then show how to improve performance substantially (RMSE of 19.03 
seals and R2 of 0.77) by carefully selecting and relabelling just 100 additional training images based on 
initial model prediction discrepancy. The regression-based approach used here returns accurate counts 
( R2 of 0.92 and 0.77 for the rings and seals, respectively), directly usable in ecological research.

Ecological studies aim to unravel the interactions between organisms and their environment at various spatial 
scales. In order to quantify these intricate relationships, many ecological studies rely on count data: for instance, 
during animal surveys, individuals are counted to estimate and monitor population size1,2 or to predict the 
spatial distribution of animals3. On smaller scales, counting physical traits is widely used in, for example, plant 
phenotyping, where the number of leaves of a plant is a key trait to describe development and growth4,5. The 
usage of count data in ecology is also common on microscopic scales, for example to estimate the age of fish by 
counting daily growth rings that are visible in otoliths (i.e., hearing stones)6,7.

Irrespective of the scale, counting objects of interest can be tedious and time-consuming, especially when 
objects occur in large numbers and/or densities (e.g., wildlife that clusters in colonies8), when they overlap (e.g., 
leaves of plants4,5), or when they are less well-defined and cryptic (e.g., otolith rings6). Historically, many of these 
traits were counted directly by eye. Later, objects of interest were photographed, which allowed for optimisation of 
the time in the field (or lab) and repeatability of the counts. Nowadays, many studies increasingly take advantage 
of digital photography, allowing for more efficient ways of archiving the data. Crucially, these archived images 
can now potentially be used for digital processing and automated counting.

To this end, recent ecological studies have shown promising potential of using computer vision to count 
objects of interest from digital imagery9,10: they employ Machine Learning (ML) models, which are trained 
on a set of manually annotated (labelled) images to learn to recognise patterns (e.g., colours and shapes), and 
eventually objects, in those training images. Once trained, these ML models can be used to automatically recog-
nise similar patterns in new images and perform tasks like species classification, animal detection, and more11. 
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Most successful ML models belong to the family of Deep Learning (DL)12, in particular Convolutional Neural 
Networks (CNNs)13.

Most ecological studies that use computer vision for counting apply CNNs designed for object detection14–16. 
These object detectors are trained on images in which every object of interest is annotated individually, most 
commonly by a bounding box drawn around the object, or a location point at its centre. Alternatively, objects of 
interest can be counted using detectors based on image segmentation17, which require even more extensive anno-
tations, as every pixel in the image must be labelled. Annotating training images for object detection and image 
segmentation can therefore be labour-intensive, especially for images where object counts are high. Hence, this 
could potentially undermine the time (and cost) reduction advantage promised by ML models in the first place.

An alternative is to instead annotate training images with a single value that represents the number of objects 
in an image. These image-level annotations pose significantly reduced annotation time and can directly be used to 
train regression-based CNNs. Perhaps more importantly, image-level counts are an often used annotation format 
in ecological studies, for example in cases where objects are manually counted from digital imagery over longer 
time series. Furthermore, image-level annotations provide a viable solution for scenarios that are complicated 
to annotate otherwise, such as for overlapping objects5, complex and atypically shaped objects like concentric 
rings18, or continuous variables like an individual’s size or age19.

In this study we highlight the value of regression-based CNNs for ecological studies. We present a relatively 
lightweight DL model for counting objects in digital imagery and evaluate it on two fundamentally different real-
world datasets, that were originally collected without the aim of training DL models. The first dataset consists of 
microscopic images of plaice (Pleuronectes platessa) otoliths (i.e., hearing stones) in which concentric rings are 
visible. These rings represent daily growth layers and are used to estimate the age of the fish to reconstruct egg 
and larval drift and calculate the contribution of various spawning grounds to different settling areas6,7. Plaice 
eggs and larvae are transported from their North Sea spawning grounds towards the coast of the North Sea and 
into the Wadden Sea (pelagic phase), where they settle (benthic phase). The transition of the pelagic phase to 
the benthic phase is visible in the otoliths. For this application, only the post-settlement benthic phase growth 
rings (visible directly after the pelagic phase centre) are counted. The already existing image-level annotations 
in this dataset are of high quality and are directly usable for DL applications. The second dataset consists of 
aerial images of grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina) hauled out on land, which 
are collected from an aircraft using a hand-held camera during annual surveys monitoring population size and 
distribution8. These images are highly variable in light conditions, distance towards the seals, focal length and 
angle of view. For this second dataset, some of the existing image-level annotations were not directly usable for 
DL applications (see “Methods” section). Instead of recounting the seals and correcting the annotations for all 
images in this dataset, we propose a multi-step model building approach to handle scenarios where the quality 
of existing image-level annotations is insufficient to train a CNN. This approach can also be used to adapt the 
CNN to dataset variations that appear over time or with new acquisitions conditions.

These two real-world applications show that regression-based CNNs have the potential to greatly facilitate 
counting tasks in ecology. They allow researchers to reassign valuable resources and scale up their surveying 
effort, while potentially leveraging existing image-level annotations from archived datasets directly for the auto-
mation of counting.

Results
For the results reported in this section, we used a pre-trained ResNet-18 CNN20 and modified it for the task of 
regression. After various experiments with other architectures and hyperparameters (Supplementary S1), we 
found that this relatively lightweight (i.e., shallow) ResNet-18, trained with a Huber loss function21 and with the 
largest possible batch size (limited by hardware, n = 84 and n = 100 images for the otolith and seal application, 
respectively) gave the best performance on the validation set, for both the seal and otolith ring counting applica-
tion. Details on the CNN architecture selection and training are provided in the “Methods” section.

Otolith daily growth rings from microscopic images.  For the otolith growth ring counting applica-
tion, the regression CNN was trained on 3465 microscopic images of otoliths. The results are provided in Fig. 1. 
Here, the predicted counts on the randomly selected test set ( n = 120 ) are plotted against the labels (i.e., the 
manual counts of the post-settlement growth rings). The CNN achieved an R2 of 0.92, an RMSE of 3.40 day-rings 
and an MAE of 2.60 day-rings (Table 1), which corresponds to an average error of 9.9%.

Hauled out seals from aerial images.  For the seal counting application, the existing image-level annota-
tions were of insufficient quality (see “Methods” section) and manual recounting was required before training 
the CNN. Instead of recounting all the seals and correcting the annotations for all 11,087 aerial images in the 
main dataset, we applied a multi-step model building approach. First, two smaller subsets from the main dataset 
were selected, recounted and used for (i) a stratified random test set ( n = 100 ) and for (ii) training/validation 
(named ‘seal subset 1’, n = 787 ) (see “Methods” section). Unlike the stratified random test set (which reflects 
the full distribution of available annotations from the main dataset), the images in ‘seal subset 1’ were selected 
(visually) for their high quality, which led to an under-representation of images with a high number of seals 
(which were generally of poorer quality). This first step greatly reduced the number of images that needed to be 
recounted and relabelled. Figure 2 (open dots, panels A and B) illustrates the predicted counts versus the real 
counts of the resulting model. This Step 1 model achieved an R2 of 0.72, an RMSE of 23.46 seals and an MAE of 
10.47 seals on the seal test set (Table 1). The next step allowed us to focus on images where the CNN was most 
incorrect. Here, the Step 1 model was used to predict counts on the 10,200 remaining images from the main 
dataset (that still include noisy labels). To train the model further, the images from the main dataset in which 
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the number of seals was most overestimated ( n = 50 ) and most underestimated ( n = 50 ) with respect to the 
original (noisy) labels were selected (‘seal subset 2’), manually recounted and relabelled and used to supplement 
‘seal subset 1’. By further tuning the model using this extended training/validation set, the performance on the 
test set improved (Fig. 2, solid dots, panel A and C), with the model achieving an R2 of 0.77, an RMSE of 19.03 
seals and an MAE of 8.14 seals (Table 1). This can be attributed mostly to improved predictions for images with 
a higher number of seals. Experiments with a random sampling on the whole distribution of labels (i.e., 787 
images randomly selected from ‘seal subset 1’ and ‘seal subset 2’ combined, including images with a high num-
ber of seals) did not lead to better performance of the Step 1 model (see Supplementary S3). Thus, the two-step 
strategy allowed us to significantly improve the model performance on the seals with only 100 images to be re-
annotated, thereby reducing labelling efforts to a minimum.

In the test set, a total of 3300 seals were annotated. With our multi-step approach, the predicted total number 
of seals on the test set increased from 2372 (71.9% of the total) to 2986 (90.5%) for the Step 1 and Step 2 model, 
respectively.

Visualising counts.  Class activation maps (CAM)22,23 of images from the test sets were used to further 
examine model performance. These heatmaps represent the regions of the original image that contributed the 
most to the final prediction of the CNN. The heatmaps of the otolith images (Fig. 3) were less informative than 
those of the the seal images. However, they illustrate that areas with more contrasting post-settlement rings were 
highlighted, while the accessory growth centre (containing pre-settlement growth rings that are not targeted by 
this application) did not seem to contribute to the prediction (i.e., it remained darker). This underlines that the 
model is indeed focusing on the task of counting post-settlement growth rings.

For most seal images, the heatmaps show that the regions containing seals contributed the most to the final 
prediction. Unlike the cryptic concentric otolith rings, seals are clearly picked up by the model, according to 
the heatmaps (Fig. 4).

Figure 1.   Numerical results on the otolith test set ( n = 120 ), where the labels (i.e., manual counts of post-
settlement growth rings) are plotted against the predicted counts. The dotted line corresponds to the optimum 
y = x.

Table 1.   Numerical performance of the proposed method on the randomly selected test sets for both 
applications. The performance of the seal counting application increased after fine-tuning the Step 1 model 
using ‘seal subset 2’ (Step 2 model).

Otolith Seals

Rings Step 1 model Step 2 model

R
2 0.92 0.72 0.77

RMSE 3.40 23.46 19.03

MAE 2.60 10.47 8.14
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Discussion
The regression-based CNN presented here performed well when trained on the two fundamentally different 
datasets. This was achieved without making any modifications to the architecture of the CNN between the two 
cases, except for training hyperparameters like the learning rate and number of epochs (see “Methods” section). 
By automating the counting tasks, the processing time of newly acquired images is dramatically reduced: pro-
cessing 100 images using our trained CNN takes less than a minute, while manual processing the same amount 
of images is estimated to require at least one hour for the seals and three hours for the otoliths.

The accuracies reported here are directly usable in ecological research. For harbour seals, a correction factor 
of 0.68 is routinely used to extrapolate the survey counts to a population size estimate24. The 95% confidence 
interval of this correction factor is [0.47, 0.85]. In other words, the uncertainty in the population size estimate is 
minus 21% or plus 17%, which is substantially larger than the 9.5% underestimate in the total predicted counts 
of our Step 2 model. For the ring counting application, a coefficient of variation between multiple human experts 
was not available for daily growth rings of plaice. However, these are reported for yearly growth rings of Green-
land halibut as 12%25 and 16.3%26, which is higher than the reported 9.9% average error obtained by our deep 
counting regression approach.

The two datasets feature different challenges regarding both the quality of the existing annotations and the task 
complexity. In the case of the otoliths, the existing annotations were of good quality and could be used directly 
to train the model. These image-level annotations provide a solution to label the complex concentric growth 
rings, which would be extremely difficult to annotate using other approaches, such as bounding boxes. A DL 
regression-based approach was applied in previous research to count otolith growth rings18, which achieved a 
higher accuracy on their test-set (MSE of 2.99). However, the tasks considered in that study were radically differ-
ent from ours: in their paper, Moen and colleagues18 considered year rings, which are less cryptic than the post 
settlement day rings considered in this paper. Furthermore, our model was trained with fewer images ( n = 3585 
instead of n = 8875 ), to make predictions on a wider range of counts (1 to 63 day-rings instead of 1 to 26 year-
rings). Finally, we evaluated the performance using a stratified random test set, which covers the ensemble of 

Figure 2.   Numerical results on the seal test set ( n = 100 ), where the labels (i.e., the manual counts of hauled 
out seals) are plotted against the predicted counts. The black dotted lines resemble y = x . (A) The accuracy 
of the model trained on ‘seal subset 1’ (white dots) strongly improved after fine-tuning using training subset 2 
(black dots). (B,C) Zoomed in (range 0-30) on predicted counts made by the Step 1 model (B) and the Step 2 
model (C).
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the distribution of possible values, while Moen and colleagues used a non-stratified test set, therefore reducing 
the number of occurrences of rare out-of-distribution cases in the test set.

In the case of the seals, the counting task was complex due to the high variability of the images (e.g., light-
ing conditions, distance from the seals and angle of view). Additionally, some of the existing count labels were 
not directly usable for training a CNN (see “Methods” section). However, this provided an opportunity to 

Figure 3.   Examples of images (left) and CAMs (right), with good performance from the ring test set.

Figure 4.   Examples of images (left) and CAMs (right), with good performance from the seal test set. Notice 
that in the top example some birds are visible (yellow dotted line), which are not counted by the model, which 
has specialised on seals.
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demonstrate the use of an iterative approach, in which the required re-annotation efforts could be minimised 
and focused on images where the model performed poorly. The CNN was first trained using only a subset 
containing recounted high quality images (‘seal subset 1’). As is common among DL applications, the resulting 
Step 1 model performed relatively poorly when it needed to make predictions that fell outside the range of the 
training images. This was the case for images in which a high number of seals were visible and/or when the seals 
appeared smaller (i.e., were photographed from a larger distance or a smaller focal length was used). The poor 
performance on these type of images could be attributed to ‘seal subset 1’ containing only images with clearly 
visible seals, ranging from zero to 99 individuals (see “Methods” section). By using the Step 1 model predic-
tions to guide the selection of images that need to be reviewed, a relatively small number of images (‘seal subset 
2’) was selected from the remaining images in the main database, to supplement ‘seal subset 1’. This multi-step 
approach allows to focus on images with a large potential for improvement for the Step 2 model: many of the 
images in ‘seal subset 2’ contained a high number of seals and/or seals that appeared smaller. This approach can 
therefore also be used to cope with dataset variations that appear over time or with new acquisitions conditions. 
The high variability in the seal dataset (i.e., distance towards seals, angle of view and zoom level) suggests that 
a regression-based approach based on this data can also provide solutions for scenarios where the objects of 
interest move through a three-dimensional space (e.g., flocks of birds, schools of fish), provided that the model 
is trained with a wide variety of input data covering the expected variations.

In contrast with an object detection approach, it is not possible to evaluate the predicted location of single 
objects in our regression-based approach, as the predictions are given as image-level counts. However, by using 
CAMs as presented here, model decisions can be visualised and used to evaluate the model performance in more 
detail. In case of the seals, these heatmaps were used to further compare the performance of the Step 1 and Step 
2 model on the test set. The Step 2 model generally performed better, especially for images where seals appeared 
smaller (e.g., Fig. 5, case A). For some images however, the model predictions deteriorated. This was for instance 
the case for an image with birds presents adjacent to the seals, which contributed to the predicted counts for 
the Step 2 model (Fig. 5, case B). For some images that were particularly difficult (e.g., due to blur or extremely 
small seals), the Step 2 model remained unable to count seals adequately (Fig. 5, case C).

For future applications, automated counts based on the regression approach presented here could poten-
tially be further improved by changing the survey design to have lower variability in the images. In the case of 
the seals for instance, this could be obtained by photographing the seals from a more constant distance with a 
single focal length, although in practice this might be challenging. For existing data sets, the model could also 
deliberately be exposed to more appearance variability. This could for instance be done by resorting to un- or 
semi-supervised domain adaptation routines27. This requires no or only a few extra annotated images but result 

Figure 5.   Examples of CAMs for cases with unsatisfactory performance. The first column shows the unedited 
aerial images, where the red dotted line marks the area where the seals are visible. The second and third columns 
show the heatmaps when predictions are made using the Step 1 and Step 2 model, respectively. For case (A) 
(small seals) the performance increased, but is still unsatisfactory, as seals remain only partially detected. For 
case (B) the performance decreased as birds (yellow dotted line) start to contribute to the predictions, while for 
case (C) (blurry and extremely small seals) the performance was poor for both models.
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in more robustness of the model to the appearance variations inherent in the data. Alternatively, in cases such as 
the seals, where many images remain unused due to noisy labels, the iterative approach presented in this study 
could be repeated, which is expected to further improve the models performance.

In many computer vision disciplines, regression-based CNNs similar to the one employed here are com-
monly used for counting tasks, especially when the objects of interest occur in high densities and high numbers, 
such as human crowds28,29 or buildings30. They have also been used in some ecological applications, particularly 
when the objects of interest are hard to annotate using bounding boxes, for instance in the case of overlapping 
plant leaves5,31,32. Wildlife counting is a domain that is typically addressed with spatially explicit object detection 
approaches14,15. Few other works have addressed this task using regression-based CNNs33,34, but they either had 
no explicit focus on wildlife detection34 or used it to approximate spatial locations33. Nonetheless, proceeding 
with a regression approach permits to process surveys where only global counts are provided, rather than precise 
annotations of individuals that would be required by object detection approaches. But even in the presence of 
individual annotations, the regression approach remains competitive in terms of final counts: when compared 
to a traditional deep object detection approach (Faster R-CNN35) on a manually annotated subset of the seals 
dataset, our regression approach remained more accurate (details in Supplementary S2). Furthermore, it took 
approximately one hour to obtain the image-level annotations required to train the regression-based CNN, 
while it took over 8 hours to create the individual bounding boxes required to train the Faster R-CNN model.

Our study illustrates how a relatively lightweight regression CNN can be used to automatically count objects 
of interest from digital imagery in fundamentally different kinds of ecological applications. We have shown that it 
is well-suited to count wildlife (especially when individuals occur in high densities) and to count cryptic objects 
that are extremely difficult to annotate individually. Previous ecological studies have shown that by automating 
detection tasks, time and resources can be reassigned, allowing for an increase in sampling effort14. By using 
annotations at the image-level, labelling efforts and costs can be reduced. Finally, a unique advantage of using 
a regression-based approach is that it has the potential to leverage already existing labels, collected without the 
aim of DL applications, thereby reducing labelling efforts and costs to zero.

Methods
Datasets.  In this study, datasets from two fundamentally different real-world ecological use cases were 
employed. The objects of interest in these images were manually counted in previous studies2,8,36,37, without the 
aim of DL applications.

Microscopic images of otolith rings.  The first dataset consists of 3585 microscopic images of otoliths (i.e., hear-
ing stones) of plaice (Pleuronectes platessa). Newly settled juvenile plaice of various length classes were collected 
at stations along the North Sea and Wadden Sea coast during 23 sampling campaigns conducted over 6 years. 
Each individual fish was measured, the sagittal otoliths were removed and microscopic images of two zoom 
levels ( 10× 20 and 10× 10 , depending on fish length) were made. Post-settlement daily growth rings outside 
the accessory growth centre were then counted by eye6,7. In this dataset, images of otoliths with less than 16 and 
more than 45 rings were scarce (Fig. 6). Therefore, a stratified random design was used to select 120 images to 
evaluate the model performance over the full range of ring counts: all 3585 images were grouped in eight bins 
according to their label (Fig. 6) and from each bin 15 images were randomly selected for the test set. Out of the 
remaining 3465 images, 80% of the images were randomly selected for training and 20% were used as a valida-
tion set, which is used to estimate the model performance and optimise hyperparameters during training.

Aerial images of seals.  The second dataset consists of 11,087 aerial images (named ‘main dataset’ from now 
onwards) of hauled out grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina), collected between 
2005 and 2019 in the Dutch part of the Wadden Sea2,36. Surveys for both species were performed multiple times 
each year: approximately three times during pupping season and twice during the moult8. During these periods, 
seals haul out on land in larger numbers. Images were taken manually through the airplane window when-

Figure 6.   Distribution of the labels (i.e., number of post-settlement rings) of all images in the otolith dataset 
( n = 3585).
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ever seals were sighted, while flying at a fixed height of approximately 150m, using different focal lengths (80-
400mm). Due to variations in survey conditions (e.g., weather, lighting) and image composition (e.g., angle of 
view, distance towards seals), this main dataset is highly variable. Noisy labels further complicated the use of this 
dataset: seals present in multiple (partially) overlapping images were counted only once, and were therefore not 
included in the count label of each image. Recounting the seals on all images in this dataset to deal with these 
noisy labels would be a tedious task, compromising one of the main aims of this study of reducing annotation 
efforts. Instead, only a selection of the main dataset was recounted and used for training and testing. First, 100 
images were randomly selected (and recounted) for the test set. In the main dataset, images with a high number 
of seals were scarce, while images with a low number of seals were abundant (Fig. 7, panel A). Therefore, as with 
the otoliths, all 11,087 images were grouped into 20 bins according to their label (Fig. 7, panel A), after which 
five images were randomly selected from each bin for the test set. Second, images of sufficient quality and con-
taining easily identifiable were selected from the main dataset (and recounted) for training and validation, until 
787 images were retained (named ‘seal subset 1’). In order to create images with zero seals (i.e., just containing 
the background) and to remove seals that are only partly photographed along the image borders, some of these 
images were cropped. The dimensions of those cropped images were preserved and, if required, the image-level 
annotation was modified accordingly. The resulting ‘seal subset 1’ only contains images with zero to 99 seals 
(Fig. 7, panel B). These 787 images were then randomly split in a training (80%) and validation set (20%). In 
order to still take advantage of the remaining 10,200 images from the main dataset, a two-step label refinement 
was performed (see the section “Dealing with noisy labels: two-step label refinement” below).

Convolutional neural networks.  CNNs are a particular type of artificial neural network. Similar to a 
biological neural network, where many neurons are connected by synapses, these models consist of a series of 
connected artificial neurons (i.e., nodes), grouped into layers that are applied one by one. In a CNN, each layer 
receives an input and produces an output by performing a convolution between the neurons (now organised into 
a rectangular filter) and each spatial input location and its surroundings. This convolution operator computes a 
dot product at each location in the input (image or previous layer’s output), encoding the correlation between 
the local input values and the learnable filter weights (i.e., neurons). After this convolution, an activation func-
tion is applied so that the final output of the network can represent more than just a linear combination of the 
inputs. Each layer performs calculations on the inputs it receives from the previous layer, before sending it to the 
next layer. Regular layers that ingest all previous outputs rather than a local neighbourhood are sometimes also 
employed at the end; these are called “fully-connected” layers. The number of layers determines the depth of the 
network. More layers introduce a larger number of free (learnable) parameters, as does a higher number of con-
volutional filters per layer or larger filter sizes. A final layer usually projects the intermediate, high-dimensional 

Figure 7.   Distribution of the labels (i.e., number of seals) in (A) the seal main dataset ( n = 11,087 ), (B) ‘seal 
subset 1’ ( n = 787 ) and (C) ‘seal subset 2’ ( n = 100).
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outputs into a vector of size C (the number of categories) in the case of classification, into a single number in 
the case of regression (ours), or into a custom number of outputs representing arbitrarily complex parameters, 
such as the class label and coordinates of a bounding box in the case of object detection. During training, the 
model is fed with many labelled examples to learn the task at hand: the parameters of the neurons are updated 
to minimise a loss (provided by an error function measuring the discrepancy between predictions and labels; in 
our case this is the Huber loss as described below). To do so, the gradient and its derivative with respect to each 
neuron in the last layer is computed; modifying neurons by following their gradients downwards allows reducing 
the loss (and thereby improving model prediction) for the current image accordingly. Since the series of layers 
in a CNN can be seen as a set of nested, differentiable functions, the chain rule can be applied to also compute 
gradients for the intermediate, hidden layers and modify neurons therein backwards until the first layer. This 
process is known as backpropagation38. With the recent increase of computational power and labelled dataset 
sizes, these models are now of increasing complexity (i.e., they have higher numbers of learnable parameters in 
the convolutional filters and layers).

CNNs come in many layer configurations, or architectures. One of the most widely used CNN architecture 
is the ResNet20, which introduced the concept of residual blocks: in ResNets, the input to a residual block (i.e., 
a group of convolutional layers with nonlinear activations) is added to its output in an element-wise manner. 
This allows the block to focus on learning residual patterns on top of its inputs. Also, it enables learning signals 
to by-pass entire blocks, which stabilises training by avoiding the problem of vanishing gradients39. As a con-
sequence, ResNets were the first models that could be trained even with many layers in series and provided a 
significant increase in accuracy.

Model selection and training.  For the otolith dataset, we employed ResNet20 architectures of various 
depths (i.e., ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152, where the number corresponds to 
the number of hidden layers in the model, see Supplementary S1). These ResNet models were pretrained on 
ImageNet40, which is a large benchmark dataset containing millions of natural images annotated with thousands 
of categories. Pre-training on ImageNet is a commonly employed methodology to train a CNN efficiently, as it 
will already have learned how to recognise common recurring features, such as edges and basic geometrical pat-
terns, which would have to be learned from zero otherwise. Therefore, pre-training reduces the required amount 
of training data significantly.

We modified the ResNet architecture to perform a regression task. To do so, we replaced the classification 
output layer with two fully-connected layers that map to 512 neurons after the first layer and to a single continu-
ous variable after the second layer23 (Fig. 8). Since the final task to be performed is regression, the loss function 
is a loss function that is tailored for regression. In our experiments we tested both a Mean Squared Error and 
a Smooth L1 (i.e., Huber) loss21 (see Supplementary S1). The Huber loss is more robust against outliers and is 
defined as follows:

where zi is given by

where ŷ is the value predicted by the model, y is the true (ground truth) value (i.e., the label) and n is the batch 
size. Intuitively, the Huber loss assigns a strong (squared) penalty for predictions that are close to the target 

(1)L (y, ŷ) =
1

n

n
∑

i

zi

(2)zi =

{

0.5× (yi − ŷi)
2, if |yi − ŷi| < 1

|yi − ŷi| − 0.5, otherwise

Figure 8.   Schematic representation of the CNN used in this study. The classification output layer of the 
pretrained ResNet18 is replaced by two fully-connected layers. The model is trained with a Huber loss.
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value, but not perfect (i.e., loss value < 1 ) and a smaller (linear) penalty for predictions far off, which increases 
tolerance towards potential outliers both in prediction and target.

Computations were performed on a Linux server with four Nvidia GeForce GTX 1080 Ti graphics cards. 
The CNNs were trained using the FastAI library23 (version 2.0.13) in PyTorch41 (version 1.6.0). FastAI’s default 
settings were used for image normalisation, dropout42, weight decay and momentum23, and a batch size of 84 
images was used for the otolith dataset. Whenever an image was used in a model iteration during training, a series 
of transformations was applied randomly to it for data augmentation (including resizing to 1040× 770 pixels, 
random horizontal flips, lighting, warping, zooming and zero-padding). When using image-level annotations, 
only limited degrees of zooming can be used, otherwise objects of interest might be cut out of the image, making 
the image-level annotations incorrect. For the same reason, images were squeezed instead of cropped whenever 
necessary to account for different image dimensions. Various Learning Rates (LR) and Batch Sizes (BS) were 
evaluated (see Supplementary S1). A LR finder43 was used to determine the initial LR values, and FastAIs default 
settings for discriminative LR were applied23. In discriminative LR, a lower LR is used to train the early layers of 
the model, while the later layers are trained using a higher LR. For this purpose, our model was divided into three 
sections (the pretrained part of the network is split into two sections, while the third section comprised the added 
fully-connected layers), that each had a different LR (specified below) during training. Additionally, we applied 
‘1cycle training’23,44. Here, training is divided into two phases, one where the LR grows towards a maximum, fol-
lowed by a phase where the LR is reduced to the original value again. Firstly, only the two fully-connected layers 
added for regression (i.e., the third section) were trained for 25 epochs (of which the best performing 24th epoch 
was saved) with an LR of 5e − 2 , while the rest of the network remained frozen. After this, the entire network was 
unfrozen and all layers were further tuned using a discriminative LR ranging from 9e − 7 to 9e − 5 , for another 
50 epochs, of which the best performing epoch was saved (50th epoch). The same model architecture, training 
approach and hyperparameters were used for the seal images, with the following exceptions. The batch size was 
100 and images were resized to to 1064× 708 pixels. First, only the added layers were trained (analogue to the 
rings), with an LR of 3e − 2 , for 50 epochs (of which the best performing 45th epoch was saved). After this, the 
entire network was unfrozen and further tuned for 50 epochs (of which the best performing epoch, the 49th, 
was saved), using a discriminative LR ranging from 3e − 4 to 3e − 2.

For both the otolith and seal cases, the trained models were evaluated on their respective test sets (described 
above). These test sets represent unseen data that is not used during the training and validation of the model. 
R2 , RMSE and MAE were used as performance metrics, and predicted counts were plotted against the labels. 
Additionally, Class Activation Maps (CAM) were made to aid with interpreting the models predictions22,23.

Dealing with noisy labels: two‑step label refinement.  In order to take advantage of the additionally 
available noisy data during training, a two-step approach was employed that avoids the need to recount tens of 
thousands of seals. By using the Step 1 model (trained using ‘seal subset 1’) predictions, an additional 100 images 
were selected (and recounted) from the remaining main dataset (see “Results” section). For 35 images, the seals 
were not clearly identifiable by eye (i.e., they appeared too small) and the image was discarded and replaced by 
the next most poorly predicted image. These resulting 100 images (named ‘seal subset 2’, Fig. 7, panel C) were 
expected to include cases with noisy labels, but also cases that were challenging for the model to predict (e.g., 
images with a high number of seals). After this, the entire model (i.e., all layers) was retrained using ‘seal subset 
1’ supplemented with ‘seal subset 2’, randomly split in a training (80%) and validation set (20%), for an additional 
50 epochs using the same hyperparameters as before, except for the LR. Various LR were evaluated and a dis-
criminative LR ranging from 1e − 5 to 1e − 3 gave the best performance on the validation set, in the 48th epoch.

Data availability
The data used in this study are open-source and publicly available. Code and data associated with this study can 
be obtained at https://​doi.​org/​10.​25850/​nioz/​7b.​b0c.

Received: 18 August 2021; Accepted: 10 November 2021

References
	 1.	 Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 

2001).
	 2.	 Brasseur, S. M. J. M. et al. Echoes from the past: Regional variations in recovery within a harbour seal population. PLoS One 13, 

e0189674 (2018).
	 3.	 Matthiopoulos, J., Fieberg, J. & Aarts, G. Species-Habitat Associations: Spatial Data, Predictive Models, and Ecological Insights 

(University of Minnesota Libraries Publishing, 2020).
	 4.	 Walter, A. & Schurr, U. The modular character of growth in Nicotiana tabacum plants under steady-state nutrition. J. Exp. Bot. 50, 

1169–1177 (1999).
	 5.	 Dobrescu, A., Valerio Giuffrida, M. & Tsaftaris, S. A. Leveraging multiple datasets for deep leaf counting. In Proceedings of the 

IEEE International Conference on Computer Vision Workshops, 2072–2079 (2017).
	 6.	 Poiesz, S. S. H. et al. A comparison of growth in two juvenile flatfish species in the Dutch Wadden Sea: Searching for a mechanism 

for summer growth reduction in flatfish nurseries. J. Sea Res. 144, 39–48 (2019).
	 7.	 Poiesz, S. S. H. et al. Is summer growth reduction related to feeding guild? A test for a benthic juvenile flatfish sole (Solea solea) in 

a temperate coastal area, the western wadden sea. Estuar. Coast. Shelf Sci. 235, 106570 (2020).
	 8.	 Cremer, J. S. M., Brasseur, S. M. J. M., Meijboom, A., Schop, J. & Verdaat, J. P. Monitoring van gewone en grijze zeehonden in de 

nederlandse waddenzee, 2002-2017. Tech. Rep., Wettelijke Onderzoekstaken Natuur & Milieu (2017).
	 9.	 Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2018).
	10.	 Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).
	11.	 Thessen, A. E. Adoption of machine learning techniques in ecology and earth science. One Ecosystem 1 (2016).

https://doi.org/10.25850/nioz/7b.b0c


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23209  | https://doi.org/10.1038/s41598-021-02387-9

www.nature.com/scientificreports/

	12.	 Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015).
	13.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	14.	 Eikelboom, J. A. J. et al. Improving the precision and accuracy of animal population estimates with aerial image object detection. 

Methods Ecol. Evol. 10, 1875–1887 (2019).
	15.	 Kellenberger, B., Marcos, D. & Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced 

dataset with deep learning. Remote Sens. Environ. 216, 139–153 (2018).
	16.	 Corcoran, E., Denman, S., Hanger, J., Wilson, B. & Hamilton, G. Automated detection of koalas using low-level aerial surveillance 

and machine learning. Sci. Rep. 9, 1–9 (2019).
	17.	 Zabawa, L. et al. Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS 

J. Photogram. Remote Sens. 164, 73–83 (2020).
	18.	 Moen, E. et al. Automatic interpretation of otoliths using deep learning. PLoS One 13, e0204713 (2018).
	19.	 Vabø, R. et al. Automatic interpretation of salmon scales using deep learning. Ecol. Inform. 63, 101322 (2021).
	20.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 770–778 (2016).
	21.	 Girshick, R. Fast R-CNN. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1440–1448 (2015).
	22.	 Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 2921–2929 (2016).
	23.	 Howard, J. & Gugger, S. Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (O’Reilly Media Incor-

porated, 2020).
	24.	 Ries, E. H., Hiby, L. R. & Reijnders, P. J. H. Maximum likelihood population size estimation of harbour seals in the Dutch Wadden 

Sea based on a mark-recapture experiment. J. Appl. Ecol. 35, 332–339 (1998).
	25.	 Albert, O. T., Kvalsund, M., Vollen, T. & Salberg, A.-B. Towards accurate age determination of Greenland halibut. J. Northwest Atl. 

Fish. Sci. 40, 81–95 (2008).
	26.	 Albert, O. T. Growth and formation of annual zones in whole otoliths of Greenland halibut, a slow-growing deep-water fish. Mar. 

Freshw. Res. 67, 937–942 (2016).
	27.	 Wang, M. & Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 312, 135–153 (2018).
	28.	 Ryan, D., Denman, S., Sridharan, S. & Fookes, C. An evaluation of crowd counting methods, features and regression models. 

Comput. Vis. Image Underst. 130, 1–17 (2015).
	29.	 Sindagi, V. A. & Patel, V. M. A survey of recent advances in CNN-based single image crowd counting and density estimation. 

Pattern Recognit. Lett. 107, 3–16 (2018).
	30.	 Lobry, S. & Tuia, D. Deep learning models to count buildings in high-resolution overhead images. In 2019 Joint Urban Remote 

Sensing Event (JURSE), 1–4 (IEEE, 2019).
	31.	 Jiang, Y. & Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: A review. Plant Phenomics 

2020 (2020).
	32.	 Li, Z., Guo, R., Li, M., Chen, Y. & Li, G. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 

176 (2020).
	33.	 Kellenberger, B., Marcos, D. & Tuia, D. When a few clicks make all the difference: Improving weakly-supervised wildlife detection 

in UAV images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019).
	34.	 Marsden, M., McGuinness, K., Little, S., Keogh, C. E. & O’Connor, N. E. People, penguins and petri dishes: Adapting object count-

ing models to new visual domains and object types without forgetting. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 8070–8079 (2018).

	35.	 Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural 
Inf. Process. Syst. 28, 91–99 (2015).

	36.	 Brasseur, S. M. J. M. et al. Rapid recovery of Dutch gray seal colonies fueled by immigration. Mar. Mamm. Sci. 31, 405–426 (2015).
	37.	 Van der Veer, H. W., Witte, J. I., Flege, P., van der Molen, J. & Poiesz, S. S. H. Synchrony in plaice larval supply to European coastal 

nurseries by different North Sea spawning grounds (in prep.)
	38.	 LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).
	39.	 Hochreiter, S., Bengio, Y., Frasconi, P. & Schmidhuber, J. Gradient flow in recurrent nets: The difficulty of learning long-term 

dependencies. In A Field Guide to Dynamical Recurrent Neural Networks, chap. 14 (eds Kremer, S. C. & Kolen, J. F.) 237–244 (IEEE 
Press, 2001).

	40.	 Deng, J. et al. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 248–255 (IEEE, 2009).

	41.	 Paszke, A. et al. Automatic differentiation in pytorch. In NIPS Workshop (2017).
	42.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks 

from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
	43.	 Smith, L. N. A disciplined approach to neural network hyper-parameters: Part 1—Learning rate, batch size, momentum, and 

weight decay. arXiv:​1803.​09820 (2018).
	44.	 Smith, L. N. & Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Artificial Intelligence 

and Machine Learning for Multi-Domain Operations Applications, vol. 11006 (International Society for Optics and Photonics, 2019).

Acknowledgements
The authors would like to thank Peter Reijnders, André Meijboom, Hans Verdaat and Jessica Schop for their 
help collecting the aerial seal images, Hans Witte and Henk van der Veer for their work on the otoliths and to 
Dainius Masiliunas for his assistance with the server.

Author contributions
S.B. and S.P. collected the data, J.H., G.A., S.B., B.K. and D.T. conceived the experiments, J.H. and B.K. conducted 
the experiments and analysed the results. All authors wrote and reviewed the manuscript.

Funding
This study was funded by Nederlandse Organisatie voor Wetenschappelijk Onderzoek (project ALWPP.2017.003).

Competing interests 
The authors declare no competing interests.

http://arxiv.org/abs/1803.09820


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23209  | https://doi.org/10.1038/s41598-021-02387-9

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​02387-9.

Correspondence and requests for materials should be addressed to J.P.A.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-02387-9
https://doi.org/10.1038/s41598-021-02387-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Counting using deep learning regression gives value to ecological surveys
	Results
	Otolith daily growth rings from microscopic images. 
	Hauled out seals from aerial images. 
	Visualising counts. 

	Discussion
	Methods
	Datasets. 
	Microscopic images of otolith rings. 
	Aerial images of seals. 

	Convolutional neural networks. 
	Model selection and training. 
	Dealing with noisy labels: two-step label refinement. 

	References
	Acknowledgements


