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Abstract

Integrated Discrete Multiple Organ Co-culture (IDMOC) is emerging as an in-vitro alterna-
tive to in-vivo animal models for pharmacology studies. IDMOC allows dose-response rela-
tionships to be investigated at the tissue and organoid levels, yet, these relationships often
exhibit responses that are far more complex than the binary responses often measured in
whole animals. To accommodate departure from binary endpoints, IDMOC requires an
expansion of analytic techniques beyond simple linear probit and logistic models familiar in
toxicology. IDMOC dose-responses may be measured at continuous scales, exhibit signifi-
cant non-linearity such as local maxima or minima, and may include non-independent mea-
sures. Generalized additive mixed-modeling (GAMM) provides an alternative description
of dose-response that relaxes assumptions of independence and linearity. We compared
GAMMs to traditional linear models for describing dose-response in IDMOC pharmacology
studies.

Introduction

A goal of pharmacological studies is to predict the dose-response relationship of a chemical in
humans and any potential toxicological effects [1, 2, 3, 4]. A common approach is to employ in
vivo animal testing following the assumption that animals have evolved complex functional
organ systems similar to those of humans and therefore should be useful predictors of a given
human response. However, failure of animal models to accurately predict a response in
humans for many compounds, cost, and ethical concerns associated with the use of animal
resources are limiting factors to the utility of animal models [4]. Thus, incentive is mounting to
develop alternatives.

In vitro cell culture systems, may offer a viable alternative to the use of animals for many
pharmacological tests. In vitro testing has advantages over in vivo testing, including lower cost,
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and higher throughput. Another important difference between in vitro and in vivo systems is
that the end-points are more mechanistic like apoptosis as opposed to the more apical in vivo
endpoints such as animal lethality. This has important consequences for mathematical models
describing in vitro dose-response.

Generalized linear models (GLM) for dose-response in vivo, such as probit-link models, are
familiar to many pharmacologists [5, 6]. GLM’s simplify dose range interpretation in animal
models. Further, GLMs relax normality assumptions inherent in linear models so that non-
normal data such binary lethality may be accommodated [7]. Yet, end-points for in vitro stud-
ies are not restricted to binary responses, and at the same time may exhibit internal extrema to
which probit-link linear models are insensitive.

In vitro, a proxy of lethality or a physiological mechanism is measured. For example, fluo-
rescent dyes can be used to measure changes in enzyme activity or cell membrane integrity. In
vitro responses are often measured on continuous, rather than binomial scales and are typically
non-linear [1]. Applying non-linear regression models as opposed to traditional GLM should
reduce error. While differences in response associated with increased dose can be called a trend
in a linear system, trend changes continuously in a non-linear system. Therefore we define the
dose response trajectory as changes in response in the non-linear system [8]. As such, a trajec-
tory can display internal extrema, such as a maximum dose-response, to which linear dose-
response trends are insensitive.

Non-linear models are rapidly gaining acceptance in the toxicology community, and are
supported by advances in software such as the Environmental Protection Agency’s BDMS [3],
which contains a selection of non-linear models. However, the particular form of a non-linear
dose response isn’t always known a-priori, and coercing a model into a preselected curvature
can result in poor model fit. Analytic problems, such as heteroscedasticity, excessively broad
confidence intervals, and misestimates of intercept values can occur when GLMs or non-linear
models with coerced curvature are applied. Misestimated intercept values can be particularly
problematic when seeking to isolate the effects of a toxicant from background levels. While
simple curved trajectories, such as the parabolic flight of a projectile through a gravitational
field may be easily quantified based on well-understood physical laws, we found that in-vitro
dose-response trajectories often assumed shapes of complex curvature due to the interaction
of biological effects, some of which were not well-understood, and could not be quantified a-
priori.

Generalized additive models (GAMs) have the advantage of objective curvature selection,
where data, rather than the researcher’s a-priori conception, determine the shape of the model
[9, 10]. Generalized additive mixed-models (GAMMs) have the additional advantage of relaxed
independence assumptions [11, 12], accommodating the repeated-measures experimental
design often found in in vitro toxicology studies. GAMMs can eliminate pseudo-replication,
improve model fit, increase reliability of confidence intervals, and provide better local estimates
of dose response and intercepts than other models.

Mathematical models of dose response provide a more generalized, simplified, and inter-
pretable description of dose response compared to less formal summaries of data such as bar-
graphs. Models allow statistics such as the 50% lethal response (LDsy), intercept values, and
standard measures of uncertainty such as confidence intervals to be estimated. Furthermore,
mathematical models can be transformed or scaled, so that their predictions more closely
resemble our expectations about in vivo systems. As such, mathematical representations of in
vitro models may better allow us to indirectly observe processes and predict patterns we would
expect to see with in vivo systems, if data on these latter systems were available.

Akaike’s information criterion (AIC) is a method for selecting among candidate models
based on a comparison of model likelihoods calculated from experimental data [13]. The
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process is similar to using likelihood ratio tests (LRT) for model comparison except that AIC
includes a penalty for model complexity and compares models by relative informational
weight, rather than using tests of null hypotheses. Each competing model is allocated a propor-
tional model weight (w;) out of a total weight of one for all models compared. The result is that
all candidate models may be directly compared, so are not restricted to the nested-pairwise
comparisons of LRT [14]. AIC selects the most parsimonious model or group of models for
model-based inference, rather than using formal tests of null hypotheses [15]. Model confi-
dence intervals are then estimated in lieu of p-values.

In the current study we report on the validation of mathematical models in the analysis of
in vitro studies for metabolic toxicity using Integrated Discrete Multiple Organ Co-culture
(IdMOC). IdMOC further enhances simulation of in vivo systems because it allows the study
of interactions between tissues derived from separate progenitor cell lines [16, 17]. For exam-
ple, cells with a predominately metabolic role, such as hepatocytes, may be cultured alongside
connective tissue-derived cells, such as fibroblasts [17]. IIMOC allows interaction between the
disparate cell types by connection through a shared liquid medium which, in turn, permits
transport of soluble metabolites [17]. That is, metabolites produced in one cell type are free to
diffuse to the other. This method of co-culture creates conditions for toxicology research that
could be expected to more closely resemble those of in vivo systems, when compared to cul-
tures of single cell lines [16]. Because of the complexity of interacting cell types, substantial
deviation from linear dose response should be expected in IAMOC systems.

Methods
Cell Culture, Staining, and High Content Analysis

Cell culture, toxicant exposure, and staining were conducted essentially as described in litera-
ture [17]. Briefly, 7,000 3T3-L1 cells (ATCC, Manassas, VA) per well were cultured in the pres-
ence and absence of 35,000 cryopreserved human hepatocytes per well (lot #:H1020, In Vitro
ADMET Laboratories, Columbia, MD) in collagen-coated 96 well IIMOC plates (In Vitro
ADMET Laboratories, Columbia, MD). In these experiments, 3 of the 6 inner wells in the
IdMOC chambers contained 3T3-L1 cells, while the remaining 3 contained either hepatocytes
(co-culture) or Universal Primary Cell Plating Medium (mono-culture; In Vitro ADMET Lab-
oratories, Columbia, MD). Cells were dispensed into wells of the IIMOC plate and allowed

to attach to the substrate for 4 hours in a 37°C humidified incubator with 5% CO,, after

which they were exposed to toxicant diluted in Hepatocyte Induction Medium (HIM; In Vitro
ADMET Laboratories, Columbia, MD). Cyclophosphamide was dissolved directly into HIM,
while stocks of 4-aminophenol and ticlopidine were first dissolved in dimethyl sulfoxide
(DMSO) and paraoxon was dissolved in ethanol before dilution in HIM. The DMSO concen-
tration was maintained at 0.25% and 0.33% in all wells for the 4-aminophenol and ticlopidine
exposures, respectively, while the ethanol concentration was maintained at 2.5% in all wells for
the paraoxon exposure. The cells were exposed to 1.2 mL per chamber of toxicant diluted in
HIM for 24 hours in a humidified incubator with 5% CO, at 37°C before staining.

After 24 hours, the toxicant was removed from the IIMOC chambers and was replaced with
phosphate-buffered saline containing 1 uM calcein AM (live stain) and 2 uM Hoechst 33342
(nuclear stain). The cells were incubated with stain for 1 hour at room temperature before high
content analysis was conducted.

The Target Activation BioApplication of a Cellomics Arrayscan VIT HCS Reader (Thermo-
Fisher, Pittburgh, PA) was employed for high content analysis. Two channels, XF93-Hoechst
(nuclear stain) and XF93-FITC (live stain), under 10x magnification were used to identify cells
(nuclear stain) and measure the fluorescence intensity of the live stain. Five hundred cells per
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well were analyzed, and the mean total intensity of the live stain fluorescence was reported in
the vHCS:ViewTM software, from which the data were exported and analyzed further in
Microsoft Excel 2007 (Microsoft Corporation, Redmond, WA). The fluorescence intensity of
the experimental wells was scaled to that of the vehicle control wells.

Modeling and Analysis

Models were produced using computational software R version 3.01 [18], and the R library
mgcev [10].

For each endpoint response of the fibroblasts for each toxicant, the following models were
compared:

E[y] = uy +s,(Conc x Co) (GAMM with interactions) (1)
Ely] = u; +5,(Conc) + B,(Co) (Main effects GAMM) (2)
E[y] = uy + f,(Conc) + B,(Co) + ,(Conc x Co) (ANCOVA) (3)
E[y] = u,, + B,(Co) (ANOVA) (4)

Ely] = uy + u(y) (Intercept) (5)

Where E[y] was the expected florescence, u;;, was a random intercept for well j in plate k, s; was
a smoothing function (here, cubic regression splines), ;.5 were coefficients associated with
each linear term, Conc was the concentration of each agent, and Co was the co-cultured vs.
mono-culture category.

Non-independence in preparation heterogeneity was controlled using the random intercept
terms [12]. A Gaussian distribution was assumed for all dependent variables.

AIC was used to select models for inference, and weights were tabulated for model compari-
sons across all candidates (Table 1). First, the saturated model (GAMM with interactions; Eq
1), was used to select random terms using AIC [12]. Second, major model classes given by Eqs
1-5 were compared using AIC to select the level of inference supported by the data (Table la—
1d). Following initial comparisons, a step-wise method of model reduction was applied, where
appropriate, to determine if further simplification was warranted (Table 2a and 2b). AIC
weights [15] were calculated to compare random-effects terms, and to compare fixed-effects.

AIC preferred models were rendered graphically for interpretation, along with selected
graphic comparisons between competing models. Graphs were produced by predicting
response values and confidence intervals across a range of fixed concentration values, using the
R function predict [19].

For illustrative purposes, GAMMs compared to ANCOVA and ANOVA, and response to
cyclophosphamide were also weighted and graphed. Pearson residuals for the 3 models were
compared using a LOESS smoother with span of 0.5 [12].

Results
Toxicant Selection

The categories of toxicants chosen in the experiments described herein are as follows: hepato-
toxic (ticlopidine), generally cytotoxic (paraoxon), activated by hepatocytes (cyclophospha-
mide), and detoxified by hepatocytes (4-aminophenol). Ticlopedine is an anti-platelet drug
that has been shown to induce hepatotoxicity both in vivo [20] and in vitro [21], while it is
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Table 1. AIC comparison of linear and non-linear dose-response models.

A) 4-aminophenol

Model Terms AIC AAIC Wi
s(Conc) + Co | Well 6 1123.30 0.00 1.00
s(Conc X Co) | Well 7 1140.00 16.70 0.00
Conc + Co + Conc X Co | Well 6 1166.17 42.87 0.00
Co | Well 4 1203.08 79.78 0.00
1| Well 3 1205.14 81.84 0.00
B) Cyclophosphamide
Model Terms AIC AAIC Wi
s(Conc X Co) | Well 7 1329.21 0.00 0.95
Conc + Co + Conc X Co | Well 6 1335.12 5.91 0.05
s(Conc) + Co | Well 6 1354.21 25.00 0.00
1| Well 3 1360.16 30.95 0.00
Co | Well 4 1361.80 32.59 0.00
C) Paroxon
Model Terms AIC AAIC Wi
s(Conc) + Co | Well 6 1133.15 0.00 1.00
s(Conc X Co) | Well 7 1172.42 39.27 0.00
Conc + Co + Conc X Co | Well 6 1245.78 112.63 0.00
1| Well 3 1260.07 126.92 0.00
Co | Well 4 1262.04 128.88 0.00
D) Ticlopedine
Model Terms AIC AAIC Wi
s(Conc) + Co | Well 6 1227.34 0.00 0.71
Conc + Co + Conc X Co | Well 6 1229.79 2.45 0.21
s(Conc X Co) | Well 7 1232.95 5.62 0.04
Co | Well 4 1233.47 6.14 0.03
1| Well 3 1239.60 12.27 0.00
doi:10.1371/journal.pone.0152985.1001
Table 2. AIC comparison for simplification of indicated models.
A) 4-aminophenol
Model Terms AIC AAIC Wi
s(Conc) + Co | Well 6 1123.30 0.00 1.00
s(Conc) | Well 5 1146.30 23.00 0.00
Conc | Well 4 1171.35 48.05 0.00
B) Paroxon
Model Terms AIC AAIC Wi
s(Conc) | Well 5 1131.96 0.00 0.64
s(Conc) + Co | Well 6 1133.15 1.19 0.36
Conc | Well 4 1241.83 109.87 0.00
C) Ticlopedine

Model Terms AIC AAIC Wi
s(Conc) + Co | Well 6 1227.34 0.00 0.99
s(Conc) | Well 5 1237.10 9.77 0.01
Conc | Well 4 1240.86 13.52 0.00
doi:10.1371/journal.pone.0152985.t002
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expected to be less toxic to non-hepatic cells. Paraoxon is an organophosphate insecticide that
is generally toxic to a variety of cell types [22, 23], and as such is expected to induce cytotoxicity
in both hepatocytes and 3T3-L1 cells in our cell culture model. Cyclophosphamide is a chemo-
therapeutic agent that is known to require metabolic activation by hepatocytes in order to form
the cytotoxic metabolites 4-hydroxycyclophosphamide and phosphoramide mustard [24, 25].
In previous IAMOC experiments, it has been shown that cyclophosphamide is more toxic to
3T3-L1 cells that are cultured in the presence of hepatocytes compared to 3T3-L1 cells in
monoculture [16]. The toxic industrial chemical 4-aminophenol is known to be detoxified by
hepatocytes [26, 27], and it is expected that this compound will be more toxic to 3T3-L1 cells
grown in monoculture compared to those grown in the presence of hepatocytes in IAMOC
plates.

Model-selection

For cyclophosphamide and ticlopedine, preferred models included full interactions between
smoothed concentration and culture category (co-culture vs. monoculture). However, for ticlo-
pedine, model preference was weak, with a model weight (w;) of only 0.52 for the model with
interactions. Preferred models for 4-aminophenol and paroxon included a smoothed term for
concentration. Model preference for smoothed concentration only in paroxon, with no term
for co-culture category, was somewhat weak, with a weight 0.64 over a weight of 0.36 for a
model including the linear category term. The preferred model for 4-aminophenol included a
linear term for co-culture category, with no interaction between co-culture category and con-
centration, smoothed or linear.

Graphics

Cyclophosphamide and ticlopedine exhibited separate trajectories for co-cultured and mono-
cultured fibroblasts (Fig 1). This indicates that the effect of increasing dose is different in co-
cultured and monoculture for these toxicants. For both toxicants, little toxic effect was seen in
monocultured fibroblasts, with approximately linear and level response to increasing concen-
trations. Co-cultured fibroblasts exhibited biphasic response, changing from a compensatory
response to a toxic response to cyclophosphamide at high concentrations. Co-culture and
monoculture exhibited identical trajectory patterns in both 4-aminophenol and paroxon, with
increasing toxic response at low concentrations. While maintaining identical trajectory pat-
terns, co-cultured fibroblasts exposed to 4-aminophenol exhibited an overall lower toxic
response than mono-cultured fibroblasts.

Comparison of GAMM to ANCOVA and ANOVA

AIC comparison of GAMM to mixed-effects ANCOVA and ANOVA, strongly selected the
non-linear GAMM for cyclophosphamide response (Fig 2). The standard method of compar-
ing categories with ANOVA rendered virtually no information when compared to ANCOVA
and GAMM (w; = 0.0). While ANCOVA captured the transition from compensatory to toxic
response with increasing concentration (Fig 2b), it still had very low information content when
compared to the GAMM (w; = 0.004), due to non-linearity in the response. A comparison of
residuals (Fig 3) indicated that variance was most uniform in the GAMM, when compared to
ANOVA and ANCOVA, which demonstrated a reduction in heteroscedasticity in the non-lin-
ear model.
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Fig 1. Comparison of mono and co-cultured dose-response trajectories in AlC-selected models for 4 compounds. A) 4—aminophenol exhibited
separate intercepts but equivalent slopes for mono-cultured fibroblasts (blue trace) and fibroblasts co-cultured with hepatocytes (red trace). B)
Cyclophosphamide exhibited separate trajectories for mono-cultured fibroblasts (blue trace) and fibroblasts co-cultured with hepatocytes (red trace). C)
Paroxon exhibited indistinguishable trajectories for mono-cultured fibroblasts and fibroblasts co-cultured with hepatocytes (purple trace). D) Ticlopedine
exhibited separate intercepts but equivalent slopes for mono-cultured fibroblasts (blue trace) and fibroblasts co-cultured with hepatocytes (red trace).

doi:10.1371/journal.pone.0152985.g001

Discussion

Selected models allow us to make clear conclusions about dose-response and its interaction
with the in vitro environment (co-culture vs. mono-culture) in those cases where almost all of
the AIC weight is attributed to the preferred model (w; =~ 1: Tables 1 & 2). Such clearly pre-
ferred models were the case with 4-aminophenol, and with cyclophosphamide exposures, but
model-selection for paroxon and ticlopedine dose-response was less clear. While paroxon, and
ticlopedine had models where AIC weights were higher than all other models, some support
for competing models of lesser preference remained.

The term for co-culture indicated that hepatocytes affected the overall level of response to
4-aminophenol, as would occur when toxicity is reduced by hepatic metabolism. In this case,
the shape of the dose-response curves were the same in co and mono-cultured environments,
but fluorescence was uniformly more suppressed in mono-culture (Fig 1A)

Interactions with smoothed terms in the case of cyclophosphamide demonstrated a complex
response to hepatic metabolites by fibroblasts in co-culture. Examination of the cyclophospha-
mide dose-response trajectory (Fig 1B), showed that fibroblast fluorescence was enhanced at
low doses in the presence of hepatocytes, and then suppressed strongly at high doses (red
trace). This suggests that a threshold, or compensatory process such as hormesis occurs, but
only when hepatocytes are present. Such effects are obscured unless non-linear models such as
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Fig 2. Comparison of A) GAMM, B) ANCOVA and C) ANOVA for cyclophosphamide. ANOCOVA and
ANOVA demonstrate insensitivity to the local maximum dose-response indicated by GAMM.

doi:10.1371/journal.pone.0152985.g002

GAMNMs are used to describe dose-response. Application of cyclophosphamide to fibroblasts
produced little effect when hepatocytes were not present (blue trace), so toxicity was attributed
to hepatic metabolites. The interaction terms were manifested in the divergent curvature of
these two traces.

While the preferred model for paroxon dose-response indicated no difference between co-
and mono-cultured fibroblasts, some lesser support for a competing model with a term for co-
culture remained (Table 2). Graphical comparison (Fig 4) exhibited barely perceptible differ-
ences between the two competing models, which explained the difficulty in selecting between
them with AIC.

A model with smoothed terms and linear interaction for co-culture was preferred for ticlo-
pedine dose-response, but a competing linear model with interaction term retained some sup-
port (Table 1). Graphical comparison of the competing models (Fig 5) showed that, while there
are differences between the competing models, curvature in the model with smoothed terms
(Fig 5A) is only strong at low doses. The linear model (Fig 5B) did reveal an interesting interac-
tion, showing diverging suppression of fluorescence between mono and co-cultured fibroblasts.
However, careful inspection of the more informative non-linear model indicates this interac-
tion is the result of an effect which occurs mostly at low doses, an effect that can’t be revealed
by the linear model.

A model-based approach allows formal inference, based on hypothesis tests or information
theoretic methods such as AIC, so has advantages over less-formal methods such as bar-plots
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Fig 3. Pearson residuals of A) GAMM, B) ANCOVA and C) ANOVA for cyclophosphamide dose-
response. GAMM exhibits a more even distribution of residuals than does ANCOVA or ANOVA (red trace).

doi:10.1371/journal.pone.0152985.g003
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Fig 4. Graphic comparison of alternative models for paroxon dose-response. The AIC preferred model (A, W; = 0.64) fails to distinguish mono from co-
cultured response (purple trace), while the less-preferred, yet still competitive model (B, W; = 0.36) exhibits a modest difference in intercepts (red vs. blue
trace).

doi:10.1371/journal.pone.0152985.g004
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Fig 5. Graphic comparison of alternative models for ticlopedine dose-response. The AIC preferred model (A, W; = 0.71) exhibits a non-linear response
for both mono and co-cultured fibroblasts, while the less-preferred, yet still competitive model (B, W; = 0.21) exhibits a linear response.

doi:10.1371/journal.pone.0152985.9005

and t-tests. Model interaction terms show when a difference in dose-response between treat-
ment categories, in our case mono vs. co-culture, can be inferred from data. GAMM:s have sev-
eral distinct advantages over traditional linear models, such as the probit-linked generalized
linear models that are familiar to toxicologists, when modeling in-vitro systems. GAMMs prop-
erly accommodate departures from independence that would otherwise result in psuedorepli-
cation, common within clinical and in vitro experimental designs. GAMM:s allow changes in
trend of response with increasing dose, resulting in a dose-response trajectory. Differences in
trajectory between treatment categories can be inferred by interaction terms. Data determine
the shape and modality of the curve with GAMMs, so curves are not confined to pre-deter-
mined forms. Local maxima apparent in the GAMM may reveal threshold effects or hormesis.
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