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Abstract

Post-translational modification of histone proteins are known to play an important role in regulating chromatin structure. In
an effort to find additional histone modifications we set out to screen enzymes of the 2-oxoglutarate and Fe(II)-dependent
(2-OG-Fe(II)) dioxygenase family for activity towards histones. Here we show that the Schizosaccharomyces pombe 2-OG-
Fe(II) dioxygenase domain containing protein-2 (Ofd2) is a histone H2A dioxygenase enzyme. Using a combination of
peptide screening and alanine scanning substitution analysis, we identify an HxxLR motif in H2A as a substrate for Ofd2
activity. Transcriptional profiling indicates that Ofd2 regulates the repression of oxidative phosphorylation genes during
hypoxic stress. We show that Ofd2 is recruited to the 59 end of oxidative phosphorylation genes specifically during hypoxia
and that it uses its dioxygenase activity to regulate their transcription. Together, these data uncover a novel histone H2A
modifying activity involved in the regulation of gene expression during hypoxia.
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Introduction

In all eukaryotic cells DNA is organised into higher order

structures called chromatin. The histone octomer is the basic

subunit of chromatin and it comprises four core histone proteins

(H3, H4, H2A and H2B) around which DNA is wrapped. A

remarkable feature of histone proteins is that they are post-

translationally modified at many sites and at least eight classes of

such histone modifications have been characterised to date.

Importantly, it has been shown that these post-translational

modifications play critical roles in regulating chromatin associated

processes, such as DNA transcription, replication and repair

(reviewed in Kouzarides1).

The 2-OG-Fe(II) dioxygenase family of enzymes are widespread

in both bacteria and eukaryotes and catalyze a remarkable

diversity of reactions, which typically involve the oxidation of a

substrate using molecular oxygen (Figure 1A). Among this family

are enzymes involved in small molecule biosynthesis including

plant hormones and bacterial antibiotics [1,2,3]; hydroxylation of

amino acid side-chains such as proline and asparagine in hypoxia-

inducible factor proteins [4,5,6]; oxidative removal of methyl

groups from both alkylated nucleic acids and methylated histone

proteins [7,8,9]; and more recently hydroxylation of 5-methyl

cytosine in DNA [10]. Structural studies have revealed that 2-OG-

Fe(II) dioxygenases all contain a common ß-strand jelly-roll fold,

that is involved in coordinating a catalytically active iron-centre,

via a highly conserved HxD/E...H motif [11]. Sequence profile

searches have uncovered a large number of proteins, many of

which are largely uncharacterised, containing the same jelly roll

fold and putative iron centre, typical of 2-OG-Fe(II) dioxygenases

[12]. Given the known importance that histone post-translational

modifications play in regulating chromatin function, we decided to

conduct a screen of theses dioxygenase enzymes for activity with

histone proteins.

Results

Ofd2 possess histone H2A hydroxylase activity
To search for potential new dioxygenase enzymes that modify

histones we employed a radiolabeled CO2 capture assay initially

developed for collagen proline and lysine hydroxylases [13]. In this

assay candidate dioxygenase enzymes were bacterially expressed

and then incubated with calf thymus bulk histones (cBH) along

with [14C]-2-OG and the release of 14CO2 was monitored. Using

this assay we found that when the S. pombe protein Ofd2 was

incubated with cBH a substantial increase in CO2 levels was

detected, when compared to no substrate control (Figure 1C).

Sequence profile searches have revealed that Ofd2 belongs to the

AlkB like sub-family of 2-OG-Fe(II) dioxygenases [12] (Figure 1B).

The residues involved in iron binding are well conserved and have

been shown to be essential for activity of AlkB like enzymes [14].

To test if the dioxygenase domain of Ofd2 is required for activity

we mutated one of the iron coordinating histidine residues to an

alanine (Ofd2 H132A) and tested it for activity with cBH

(Figure 1C). The catalytic mutant Ofd2 H132A totally abolished

release of CO2 to background levels, confirming that the

dioxygenase domain was required for activity. The cBH comprise

the four core histones H3, H2A, H2B and H4. To determine
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Figure 1. Histone H2A dioxygenase activity. A) General reaction schematic for 2-OG-Fe(II) hydroxylases. R represents an amino acid sidechain. B)
ClustalW sequence alignmant of AlkB, Ofd2 and ALKBH1. The secondary structure B-strands for AlkB are dipicted as arrows. Residues in AlkB involved
in iron binding are boxed in red. Dark and light shading denote conserved and similar residues respectively. Species abbreviations: Ec Escherichia.coli;
Sp Schizosaccharomyces pombe; Hs Homo sapiens. C) Dioxygenase assay of Ofd2 and Ofd2 H132A iron binding mutant. Calf thymus bulk histone (cBH)

H2A Dioxygenase
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which of these core histones may be the target for Ofd2 we assayed

individually purified calf thymus histones with the CO2 capture

assay and found that the activity was associated with cH2A

(Figure 1C). When we assayed Ofd2 with recombinant H2A

(rH2A), increased release of CO2 was detected – however, unlike

cH2A much more rH2A was required in the reaction (Figure 1C).

Histone H2A purified from calf thymus is known to contain many

different types of postranslational modifications, such as acetyla-

tion and methylation of lysine residues [31]. The increase in CO2

detected with cH2A over recombinant H2A may indicate that

Ofd2 targets an existing modified residue on cH2A or requires a

modified residue to recognise its substrate more efficiently.

Of all the human AlkB like homologs Ofd2 is closely related to

Alkbh1 (Figure 1B). To test if Alkbh1 also contains histone

dioxygenase activity we tested its activity with the CO2 capture

assay and found that when incubated with calf thymus bulk

histones (cBH) a substantial increase in CO2 levels was detected,

when compared to no substrate control (Fig. S1). Like Ofd2, when

we assayed individually purified calf thymus histones for activity

with the CO2 capture assay we found that Alkbh1 activity was also

associated with cH2A. When we mutated one of the iron binding

histidine residues to an alanine (Alkbh1 H228A) and tested it for

activity with cBH and cH2A the iron binding mutant totally

abolished release of CO2 to background levels, confirming that the

dioxygenase domain is required for activity. Taken together these

results suggest that both Ofd2 and Alkbh1 possess dioxygenase

activity towards histone H2A.

Identification of a H2A motif required for Ofd2
dioxygenase activity

We decided to identify the H2A substrate for Ofd2 using a

peptide library approach and a library comprising of 16 mer

peptides derived from H2A was synthesized (Table S7). To date

the removal of methylated residues in histones has been shown to

be carried out by two distinct classes of enzyme. The LSD1 (Lysine

specific demethylase 1) family was the first to be identified and can

remove methylation from lysine residues by an oxidative reaction

which uses flavin as a cofactor [15]. The second family contains a

Jumonji C (JmjC) domain and can remove methyl groups from

both lysine and arginine residues via a 2-OG-Fe(II) dependent

process [9,16]. To investigate if Ofd2 could potentially be a

histone demethylase we included in our peptide library all possible

combinations of methylated lysine and arginine residues, along

with unmodified peptides. This library consisting of 94 peptides

was then tested with Ofd2 using the CO2 capture assay. Using this

library we found that Ofd2 activity, as indicated by increase in

captured CO2, was detected in 8 peptides (C7-C12, D1-D2) out of

the 94 peptides assayed (Figure 2A). A closer examination of the 8

peptide sequences found with Ofd2 showed that they all mapped

to a common region within H2A, and were comprised of two 16

mer peptide backbones – 3 peptides contained methyl-arginine

and 1 was un-methylated (Figure 2B). Interestingly, levels of

captured CO2 were found to be similar for both the methylated

and un-methylated peptides within each peptide backbone,

suggesting that arginine methylation was neither required for,

nor a substrate of, Ofd2. In an effort to identify the site of

modification we carried out mass spectrometry analysis (as

described in material and methods). However, we could not

detect any mass change on any of the 8 peptides after Ofd2

treatment (data not shown). Currently it is unclear why Ofd2

dioxygenase activity cannot be detected by mass spectrometry.

One explanation could be that the dioxygenase activity with the

peptides is primarily uncoupled. In this scenario very little or no

product would be formed, because conversion of 2-OG to

succinate and CO2 occur without substrate oxidation. Analysis

of other 2-OG-Fe(II) dioxygenases, such as collagen prolyl-4-

hydroxylase [17] and E.coli AlkB [18], have also reported

uncoupled turnover. In these cases uncoupled turnover has been

suggested to be due to improper binding of the dioxygenase

enzyme to its substrate. It may also be that Ofd2 requires an

additional post-translational modification on H2A to correctly

bind to its substrate, which may indicate why Ofd2 is significantly

more active on cBH, then rH2A.

To gain further insight into which residues were responsible for

Ofd2 dioxygenase activity we performed alanine scanning

substitutional analysis on peptide sequence C11 (Figure 2C). We

found that substitution of 13 of the 16 residues with alanine

showed similar percent activities to wild type C11 peptide

sequence, indicating that these residues were not essential for

Ofd2 activity. However, 3 residues did show significantly lower

activity when substituted with alanine. Histidine 7 and leucine 10

substitution reduced activity to approximately 20 percent of wild

type, while arginine 11 was reduced to near zero. The reduction in

activity suggest that these 3 residues are required for Ofd2 activity.

A similar substitutional scanning analysis conducted with peptide

C7 gave exactly the same result (Figure S2). Together, our data

uncover HxxLR as the minimal motif in H2A required for Ofd2

activity.

Increased hypoxic repression of oxidative
phosphorylation genes in Ofd2 deletion strain

To gain further insight into the function of histone H2A

dioxygenase activity we investigated the biological role of Ofd2.

Previous work has shown that another S. pombe 2-OG-Fe(II)

dioxygenase called Ofd1 is involved in the oxygen dependent

regulation of Sre1 protein levels in response to hypoxic stress [19].

Interestingly, like Ofd1, the Ofd2 gene had been shown to be

transcriptionally up-regulated by hypoxic stress [20] and we

therefore reasoned that Ofd2 might also be involved in the

regulation of hypoxia genes. To investigate this we created a

deletion strain of Ofd2 (Ofd2D) and used transcriptional profiling

microarray analysis to compare transcriptional profiles in wild type

(wt) and Ofd2D cells before and after 90 min hypoxia treatment.

The results can be found in Table S1. To identify potential genes

whose expression might be different between the two strains we

calculated the change in gene expression in hypoxic compared to

normal oxygen conditions (Table S1 +/- hypoxia), and plotted

these ratios as log2 values on a scatter plot (Figure S3). Using this

procedure we identified in total 25 genes whose expression were

increased (green squares) and 42 genes whose expression were

reduced (red squares) two fold or greater. Analysis of these genes

revealed that some of the genes previously identified as being

induced or repressed by low oxygen stress [20], were also induced

or repressed in our study (see Tables S2, S3, S4, S5). We applied a

threshold limit of 1.5 fold to the gene expression ratios of both the

induced and repressed genes to identify those responding

differently in the wt or Ofd2D strains (Figure S1 grey line). We

reasoned that any genes lying within this threshold limit would be

and individual histones H3, H2A, H2B and H4 and recombinant H2A (rH2A). Dioxygenase activity was evaluated with the CO2 capture assay using 1ug
of purified Ofd2 with 25ug cBH or 5ug of individual histones, except for ++ where 25ug was used. – indicate control reactions containing no
substrates. Data is presented as mean from 2 replicates. Error bars equal 1 standard deviation.
doi:10.1371/journal.pone.0029765.g001

H2A Dioxygenase
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Figure 2. Identification of a motif in H2A required for Ofd2 dioxygenase activity. A) Dioxygenase assay of Ofd2 with H2A peptide library.
Activity was evaluated with the CO2 capture assay using 1ug of purified Ofd2 with 6ug of peptide or 25ug of BSA (H11) and cBH (H12). For a list of
peptide sequences see Table S7. B) Alignment of peptide amino acid sequence of 8 postive peptides (C7-12, D1-2) from A with histone H2A
sequence. C) A HxxLR substrate motif for Ofd2. Alanine scanning analysis of peptide sequence C11 was evaluated with the CO2 capture assay using
1ug of Ofd2 with 6ug of peptide. Alanine substitutions are indicated in bold red. Data is from 2 replicates presented as a percent activity of captured
CO2 relative to unmodified C11 peptide. Error bars equal 1 standard deviation. Residues found to be essential for activity are highlighted above
peptide sequence.
doi:10.1371/journal.pone.0029765.g002
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considered to have similar expression between the two strains,

while any lying outside could be considered to be expressed

differently. For genes induced in low oxygen conditions, applying

this threshold limit revealed that all lay within this threshold.

Thus, we conclude that the induction of these genes occurs at a

relatively similar level in both the wt and Ofd2D strains.

However, a similar analysis of the repressed genes revealed that

8 out of the 42 lay outside the threshold limit (Figure S1 shaded

box). Interestingly, all 8 genes were more repressed in the

deletion strain (closer to the Ofd2D axis). A closer analysis of

these 8 genes reveals that 6 out of the 8 are involved in

mitochondrial electron transport and ATP synthesis – processes

that are associated with cellular energy production via oxidative

phosphorylation (Table 1).

To confirm our microarray observations we performed reverse

transcriptase and quantitative real-time polymerase chain reac-

tion (RT-qPCR) analysis on three oxidative phosphorylation

genes (cyc1, qcr8 and SPAC3A11.07) repressed during hypoxia and

two control genes (erg3 and hem1) which are induced (Figure 3A).

The results confirmed our microarray data. The repressed genes

cyc1, qcr8 and SPAC3A11.07 displayed greater repression in the

Ofd2D strains when compared to wt. In contrast, no difference

was observed between wt and Ofd2D strains for the induced

genes erg3 and hem13. Analysis of two additional Ofd2D strains

(SP13 and h90) showed similar results. Together with the

transcriptional profiling microarray analysis we conclude that in

S. pombe certain genes associated with oxidative phosphorylation

are more repressed during hypoxia treatment when Ofd2 is

deleted.

Oxygen sensing role for Ofd2 dioxygenase domain
To investigate further the role of Ofd2 in regulating hypoxic

gene expression we performed a time course experiment with wild

type and Ofd2D cells, where samples were collected 30, 60 and 90

mins after hypoxic treatment and mRNA levels for selected genes

were quantified by RT-qPCR (Figure 3B). In both wild type (black

line) and Ofd2D cells (red line) we observed relatively little

difference in mRNA levels for the induced (control) gene erg3, at all

time points after hypoxia treatment. This is in agreement with our

previous data, which showed no involvement of Ofd2 in affecting

hypoxia induced genes. For the oxidative phosphorylation genes,

cyc1, qcr8 and SPAC3A11.07, we observed a greater reduction in

mRNA expression of these genes at all time points in the Ofd2D
strain. More interestingly, 30 min after hypoxic treatment, where

relatively little or no reduced expression is seen in the wt strain, a

markedly greater reduced expression of these genes is observed in

the Ofd2D strain, suggesting that the Ofd2D strain is more

sensitive to hypoxic stress. Importantly, all these observations

could be rescued when a cDNA for Ofd2 was reintroduced back

into Ofd2D (Ofd2D +NT81 Ofd2), confirming that this effect is

specific to the Ofd2 gene.

To test if the H2A dioxygenase domain of Ofd2 is required for

Ofd2 activity we mutated the iron coordinating His residues to an

Ala (Ofd2H132A) and reintroduced this back into the Ofd2D
strain and re-tested hypoxia-induced gene expression (Figure 3B).

We found that like the Ofd2D strain (red line), the Ofd2H132A

mutant (purple line) mirrored both the early and reduced

expression of mRNA levels for cyc1, qcr8 and SPAC3A11.07. The

effect of the mutation was not due to aberrant protein stability as

similar protein levels were detected to that of non-mutated Ofd2

(Figure 3C). Collectively, these results suggest that during early

exposure of cells to hypoxia, Ofd2 may play a role in the sensing

process, inhibiting mRNA reduction until critical levels of oxygen

are reached and that this requires the activity of the Ofd2

dioxygenase domain.

Hypoxia dependant localisation of Ofd2 to repressed
genes

Our finding that Ofd2 possesses dioxygenase activity towards

histone H2A raised the possibility that Ofd2 may directly

regulate transcription. One way that transcriptional regulators

influence transcription is via binding to their chromatin targets

[21]. To test if Ofd2 exerts its effect in this way we assayed Ofd2

binding to oxidative phosphorylation genes using chromatin

immunoprecipitation (ChIP). Cells containing flag-tagged Ofd2

were cultured in the presence or absence of oxygen for 60 min

and Ofd2 immunoprecipitated DNA was quantified using

qPCR. When compared to a control immunoprecipitation

(IgG), Ofd2 was found to be enriched at the 59 region of each

Table 1. Significantlya hypoxia repressed genes in Ofd2D.

Functional category and gene Name Description Fold change +/2hypoxiab

wt Ofd2D

Oxidative phosphorylation

SPCC191.07 cyc1 cytochrome c 0.24 0.15

SPAC3A11.07 - NADH dehydrogenase 0.33 0.17

SPBC13E7.04 atp16 F1-ATPase delta subunit 0.47 0.30

SPAC1782.07 qcr8 ubiquinol-cytochrome-c reductase complex subunit 7 0.55 0.35

SPBP4H10.08 qcr10 ubiquinol-cytochrome-c reductase complex subunit 0.60 0.36

SPCC613.10 qcr2 ubiquinol-cytochrome-c reductase complex core protein 0.63 0.41

Cellular iron ion homeostasis

SPBC4F6.09 str1 siderophore-iron transporter 0.51 0.30

Mitochondrial translation

SPBC409.22c - mitochondrial translation elongation factor G 0.70 0.44

aThreshold of 1.5 fold (see Figure S1).
bPresented as average change in gene expression in hypoxia over expression in normal oxygen conditions.
doi:10.1371/journal.pone.0029765.t001
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of the three oxidative phosphorylation genes previously identi-

fied as Ofd2 regulated (Figure 4A–C). For each gene, binding of

Ofd2 was dependant on hypoxia, as cells cultured in normal

oxygen conditions did not ChIP significant amounts above the

control IgG. In addition, and in agreement with our previous

observations that Ofd2 is not involved in the regulation of

induced genes, Ofd2 was not found to be enriched at the

hypoxically induced erg3 gene (Figure 4D). Together, these data

suggest that Ofd2 acts directly at the 59 region of the oxidative

phosphorylation genes to regulate their repression in response to

low oxygen stress.

Discussion

Our screen for histone dioxygenase enzymes has uncovered

Ofd2 as a novel histone H2A dioxygenase enzyme. By using a

combination of peptide screening and alanine scanning substitu-

tion analysis we have found an HxxLR motif in H2A that is a

substrate for Ofd2. Using transcriptional profiling microarray

analysis we then went on to show that Ofd2 is involved in

regulating the repression of oxidative phosphorylation genes under

hypoxia conditions. We also demonstrate that in cells either

deleted for Ofd2, or containing a catalytically inactive Ofd2

dioxygenase domain, the decrease of expression levels of oxidative

phosphorylation genes is more rapid, when challenged with

hypoxia. Thus, our results identify Ofd2 as a novel histone H2A

dioxygenase enzyme involved in the regulation of gene expression

during hypoxia.

The exact modification of H2A by Ofd2 remains to be

determined. Previous members of the 2-OG-Fe(II) dioxygenase

family have been shown to act on protein substrates and to

catalyse both hydroxylation of amino acids, such as proline

[22] and lysine [23] in collagen, as well as to demethylate

methylated amino acids, such as methyllysine in histone

proteins [9]. Our analysis did not find evidence of demethyl-

ation occuring in our peptide library screen. Although, we

cannot rule out the possibility that in certain other circum-

stances, Ofd2 may catalyse a demethylation reaction, these data

suggest that Ofd2 catalyses hydroxylation of an amino acid

residue. The HxxLR motif that we identified most likely

contains the site of hydroxylation. Interestingly, out of these

three amino acid residues, hydroxylation of arginine has been

described in proteins extracted from the adhesive plaque and

foot of marine mussels [24].

Finally, we show that Alkbh1, a mammalian protein closely

related to Ofd2, is also a histone H2A dioxygenase enzyme. In a

gene deletion study by Pan et al., [25] Alkbh1-/- mice displayed

impaired placental trophoblast lineage differentiation. Alkbh1 was

shown to interact with Mrj, an essential placental protein that

recruits class II histone deacetylases to repress transcription during

placental development. Therefore, it would seem that H2A

dioxygenase activity, catalysed by Ofd2 and Alkbh1, share a

common functional role in regulating gene expression.

Methods

Strains and plasmids
The following S. pombe strains were used: 972 (h-), SP13 (h-

leu1-32), h90 (leu1-32 ade6-210 ura4-D18), DL1003 (h- Ofd2D-
KAN), DL1016 (h-90 leu1-32 ade6-210 ura4-D18 Ofd2DKAN),

DL1020 (h-, leu1-32, Ofd2DKAN), DL1023 (h-, leu1-32 Ofd2D-
KAN ::leu1+pREPNT81-Flag-Ofd2), DL1024 (h- leu1-32 Ofd2D-
KAN ::leu1+ pREPNT81-Flag-Ofd2H132A). Standard methods

and techiques for fission yeast genetic manipulations were

employed [26]. Plasmids containing the Ofd2 gene were generated

by inserting genomic fragments generated by PCR into

pREPNT81 [27] and pET30a (Novagen) to generate N-terminal

flag tagged Ofd2 (pREPNT81-Flag-Ofd2) and hexa-histidine

tagged Ofd2 (pET30a-His-Ofd2) respectively. The alkbh1 plasmid

pET15b-His-ABH1 has been previously described [28]. Mutation

of histidine 132 in Ofd2 and 228 in Alkbh1to alanine was carried

out using the QuickChange site-directed mutagenesis kit (Strata-

gene) to generate plasmids pREPNT81-Flag-Ofd2H132A,

pET30a-His-Ofd2H132A and -His-ABH1 H228A. All cloning

and mutagenesis were verified by sequencing.

Protein expression and purification
Expression plasmids encoding hexa-histidine tagged full length

and iron binding mutant Ofd2 and alkbh1 were transformed into

BL21 Codon plus (Statagene). To induce expression, cultures were

grown at 37uC to OD600 = 0.6 and IPTG was added to a final

concentration of 0.5 mM and incubation continued for 1 hr.

Harvested cells were then broken by French press in lysis buffer

(25 mM Tris-HCl pH 8.0, 300 mM NaCl, 0.1% Triton-X-100,

0.5 mM ß-mercaptoethanol, 5 mM imidazole, protease inhibi-

tors). Lysates were clarified by centrifugation at 12,0006g for

20 min at 4uC, then loaded onto a Ni-NTA agarose column

(Qiagen). The resin was washed 36 with 20 column volumes of

wash buffer (25 mM Tris-HCl pH 8.0, 300 mM NaCl, 0.5 mM ß-

mercaptoethanol, 20 mM imidazole). Bound proteins were then

eluted in wash buffer containing 250 mM imidazole. Purified

proteins were then dialysed into storage buffer (25 mM Tris-HCl

pH 8.0, 150 mM NaCl, 0.5 mM DTT, 5% glycerol).

Histone proteins and peptides
Calf thymus bulk histones and individual calf thymus histone

H3, H2A, H2B and H4 were purchased from Roche. Recombi-

nant H2A was from Upstate. Peptides were synthesized by the

peptide synthesis service, Cancer Research UK. The sequences of

the peptides are listed in Table S7.

CO2 capture assay
Hydroxylation activity was determined radiochemically by

measuring hydroxylation dependent release of [14C]CO2 as

previously described [13]. Standard assay conditions comprised

40 ml reactions containing, 30 mM Hepes pH7.5, 90 mM 2-

oxoglutarate, 10 mM [1-14C]2-oxoglutarate (PerkinElmer Life

Figure 3. Role for Ofd2 dioxygenase domain in oxygen sensing. A) Three yeast strains (972, SP13 & h90) that were wt and deleted for Ofd2
(Ofd2D) were cultured for 90 min at both normal oxygen and hypoxia conditions. Total RNA samples were then prepared and mRNA levels of 3
repressed genes (cyc1, qcr8 & SPAC3A11.07) and two induced genes (erg3 & hem13) were quantitated by RT-qPCR. Expression levels were then
normalised to act1 and the fold change in expression levels of hypoxia over normal oxygen conditions were plotted as relative hypoxia mRNA. Data
are the mean from 3 replicate qPCR. Error bars equal 1 standard deviation. B) Hypoxia time course analysis of mRNA levels for 3 repressed and 1
induced gene in wild type (wt), Ofd2D, Ofd2D rescued (Ofd2D+NT81 Ofd2) and iron binding mutant rescued (Ofd2D+NT81 Ofd2H132A) strains. At 0,
30, 60 and 90 min after hypoxia treatment total RNA samples were prepared and mRNA levels were quantitated by RT-qPCR and normalised to act1.
Expression levels at each time point were then plotted relative to the levels at time 0. Data are the mean from 2 replicate qPCR. Error bars equal 1
standard deviation. B) Western blot analysis of 25 mg of whole cell extracts of NT81 Ofd2 and NT81 Ofd2H132A strains at various time points after
hypoxia treatment with anti-flag and anti actin antibodies.
doi:10.1371/journal.pone.0029765.g003

H2A Dioxygenase
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Figure 4. Ofd2 localises to repressed genes during hypoxia. A strain containing flag tagged Ofd2 was grown under hypoxic or normal oxygen
conditions for 60 min. Chromatin immunoperciitation was then performed using anti-flag or anti mouse IgG as indicated. Binding to various
amplicons in 3 repressed genes. (A–C) and 1 induced gene (D) was assayed using qPCR. Bound DNA is plotted relative to input DNA. Data are the
mean from 2 replicate qPCRs. Error bars equal 1 standard deviation. Location of amplicons in each gene is depicted above each graph and arrows
indicate 59 end of gene.
doi:10.1371/journal.pone.0029765.g004
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Sciences), 4 mM ascorbate, 250 mM (NH4)2Fe(SO4)2, purified

Ofd2,Ofd2 H132A, alkbh1 or alkbh1 H228A and substrates as

indicated. For each set of assays two stocks were made, one total

volume 20 ml contained substrate, the second contained purified

enzyme and all other reagents. Assays were started by the

addition of 20 ml freshly prepared enzyme stock to the substrate

stock. To recover [14C]CO2 a strip of Whatman 3 MM filter

paper pre soaked in 30 mM calcium hydroxide was immediately

inserted into the neck of the tube and the tube sealed. The assays

were then incubated at 37uC for 60 min. Upon reaction

completion, filter strips were removed, air dried, treated with

scintillant and then counted for radioactivity in a scintillation

counter. For screening the peptide library in Figure 2A the above

conditions were adapted to a 96 well micro titre plate as

previously described [29].

Cell culture
Strains were grown at 30uC with shaking to exponential phase

(OD = 0.5) in yeast extract media containing 2% glucose (YES)

plus supplements (225 mg/ml each of histidine, leucine, adenine,

lysine and uracil). Hypoxic (,1% O2) growth conditions were

maintained using the AnaeroGen system (Oxoid), as per the

manufacturer’s instructions. For experiments using strains carrying

the pREPNT81 vector, cells were first grown overnight in

Edinburgh minimal media without leucine. The next day cells

were transferred to YES media plus supplements and grown for 3

population doublings to OD = 0.5 before beginning hypoxia

treatment.

Microarray experiments
Exponentially growing cultures of wt (972) and Ofd2D

(DL1003) were cultured in normal oxygen or hypoxic conditions

for 90 min. Cells were harvested at 4uC and total RNA was

isolated and purified using the RNeasy Mini Kit (Qiagen) in-

conjunction with the RNase-Free DNase Set (Qiagen) to remove

genomic DNA as per manufacturer’s instructions. Five micro-

grams of total RNA from two independent experiments were then

pooled and mRNA levels were quantified by Roche NimbleGen

using the S. pombe 72K array service. Table S6 lists information

on the target genes included on the array. Normalised gene

expression values for each sample are provided in Table S1 as

array duplicates. Log2 values, scatter plot graphing and

calculations for thresholding were all carried out using Microsoft

Excel. The microarray data (MIAME compliant) has been

deposited at GEO (www.ncbi.nlm.nih.gov/geo/) accesion num-

ber GSE31236.

Reverse transcriptase and quantitative PCR analysis
Total RNA was isolated as above. For each sample total RNA

was processed to cDNA using the SuperScript III First-Strand

synthesis system (Invitrogen) and oligo(dT) as per the manufac-

turer’s instructions. Quantitaive PCR analysis was then carried out

using the SYBR-green PCR mix (Applied Biosystems) with

20pmol primers on a ABI 7300 machine. The Pfaffl method was

used to calculate changes in mRNA levels [30]. Primer pairs are

listed in Table S8.

Protein whole cell extracts
For each sample 26107 cells were resuspended in 250 ml lysis

buffer (50 mM Tris-HCl pH8.0, 150 mM NaCl, 2 mM EDTA,

1% NP-40, 0.1% SDS and protease inhibitors) and boiled for

5 minutes. Then 250 ml of glass beads were added and cells

broken by vortexing at 4uC.

Chromatin Immunoprecipitation
Cells were cultured under normal oxygen or hypoxia conditions

as stated, then DNA protein complexes were cross-linked by

addition of formaldehyde to a concentration of 1% for 30 min at

4uC. Crosslinking was blocked with the addition of 100 mM

glycine and cells were then washed once with ice cold PBS. Cells

(16108) were resuspended in 500 ml FA lysis buffer (50 mM

Hepes-KOH pH7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton-

X-100, 0.1% sodium deoxycholate, 0.1% SDS and protease

inhibitors) and lysed by vortexing with glass beads at 4uC. Beads

were removed and lysed extracts were sonicated with a Biorupter

(Cosmo Bio) for 2610 min (setting high: 30 s on, 30 s off) on ice.

Sonicated extracts were clarified by centifugation at 13,0006g for

10 min at 4uC. Cleared lysates were diluted with 5 mls of RIPA

buffer (50 mM Tris-HCl pH8.0, 150 mM NaCl, 2 mM EDTA,

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and protease

inhibitors) and 50 ml was removed to serve as input sample.

Immunoprecipitation was carried out with 1 ml of lysate and 1 mg

anti-flag monoclonal antibody (Sigma) or 1 mg mouse IgG (Sigma),

overnight at 4uC. Next day pre-blocked protein A/G beads (GE

healthcare) were added. After a 1 hr incubation at 4uC protein A/

G bead complexes were pelleted and washed 36with wash buffer

(50 mM Tris-HCl pH8.0, 150 mM NaCl, 2 mM EDTA, 1% NP-

40, 0.1% SDS) and 16 with wash buffer plus 500 mM NaCl.

Bound DNA was eluted with 200 ml of elution buffer (100 mM

NaHCO3, 1%SDS) for 15 min at 30uC. For input samples make

up to 200 ml with elution buffer. Cross-linking was then reversed

by incubating at 65uC for 5 hrs. The DNA was then purfied using

the Qiagen PCR purification spin kit following the manufacturer’s

instructions. DNA amounts were then quantified by real-time

PCR using SYBR-green PCR mix (Applied Biosystems) and ABI

7300 machine. For each amplicon a standard curve made up of

tenfold dilutions of input DNA sample were used to calculate the

amount of DNA in each corresponding immunopercipitated

sample. Primer pairs are listed in Table S8.

Mass spectrometry analysis of Ofd2-peptide reactions
Reactions were carried as described for CO2 capture assay

except using non radioactive 2-oxoglutarate, 1ug of peptide and 1–

10 mg of purified Ofd2. For mass spectrometry 0.5 ml of reaction

samples were mixed with 1.5 ml of matrix solution (10 mg ml-1 -

cyano-4-hydroxycinnamic acid in 50% (v/v) aqueous acetonitrile

containing 0.1% (v/v) trifluoroacetic acid) and dried onto a

MALDI target plate. Each sample spot was washed with 5 ul of

0.2% (v/v) heptafluorobutyric acid in water, dried, and analyzed

on a Waters TofSpec2E MALDI mass spectrometer. Data were

collected using a 500 MHz detector in reflectron mode.

Calibration was three point between matrix ions and 1-31thioester

peptide (1+ and 2+ charge states). The mass of 1–31thioester was

checked independently as correct using internal standards of

substance P and oxidized bovine insulin B chain. Calibration and

m/z determination was carried out from centroid data. To rule

out that components in the reaction were affecting the ability to

detect mass changes, reaction samples were also cleaned up with

C18 ZipTip (Millipore) as per manufacturers instructions and then

analysed.

Supporting Information

Figure S1 Alkbh1 is a histone H2A dioxygenase. Dioxy-

genase activity was evaluated with the CO2 capture assay using

1 mg of purified Alkbh1 with 25 mg calf thymus histones (cBH) or

5 mg of individual histones. Alkbh1 H228A ia an iron binding

mutant. – indicate control reactions containing no substrate. Data
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is presented as mean from 2 replicates. Error bar equals 1 standard

deviation.

(TIF)

Figure S2 Substitutional analysis of peptide sequence
C7. Substitutional analysis of peptide sequence C7 with the CO2

capture assay using 1 mg of Ofd2 with 6 mg of peptide. Alanine

and glycine substitutions are indicated in red. Data is from 2

replicates presented as a percent activity of captured CO2 relative

to unmodified C7 peptide. Error bars equal 1 standard deviation.

(TIF)

Figure S3 Hypoxia gene expression analysis of Ofd2
deletion strain. Scatter plot analysis of fold change in gene

expression after hypoxic treatment plotted as log2 values in wt

against Ofd2Dstrain. Blue squares represent genes whose expres-

sion change was less than 2 fold in both strains. While green and

red squares represent genes whose expression increased or

decreased 2 fold or greater, in one or both strains. The gray line

represents a threshold limit of 1.5 fold above and below values

where the induced or repressed fold change for both wt and Ofd2

would be the same. Shaded box contain repressed genes that lie

outside the threshold limit.

(TIF)

Table S1 Array data set for all genes.
(XLS)

Table S2 Greater than 2 fold hypoxically upregulated
genes in wt strain.
(XLS)

Table S3 Greater than 2 fold hypoxically down-regulat-
ed genes in wt strain.
(XLS)

Table S4 Greater than 2 fold hypoxically upregulated
genes in Ofd2 deletion strain.
(XLS)

Table S5 Greater than 2 fold hypoxically down-regulat-
ed genes in Ofd2 deletion strain.
(XLS)

Table S6 Information on the microarray target genes.
(XLS)

Table S7 Peptide library.
(DOC)

Table S8 Quantitative PCR primer sets.
(DOC)
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