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Birth asphyxia is a significant global health problem, responsible for ~1.2 million 
neonatal deaths each year worldwide. Those who survive often suffer from a range of 
health issues including brain damage—manifesting as cerebral palsy (CP)—respiratory 
insufficiency, cardiovascular collapse, and renal dysfunction, to name a few. Although 
the majority of research is directed toward reducing the brain injury that results from 
intrapartum birth asphyxia, the multi-organ injury observed in surviving neonates is 
of equal importance. Despite the advent of hypothermia therapy for the treatment of 
hypoxic–ischemic encephalopathy (HIE), treatment options following asphyxia at birth 
remain limited, particularly in low-resource settings where the incidence of birth asphyxia 
is highest. Furthermore, although cooling of the neonate results in improved neurological 
outcomes for a small proportion of treated infants, it does not provide any benefit to the 
other organ systems affected by asphyxia at birth. The aim of this review is to summarize 
the current knowledge of the multi-organ effects of intrapartum asphyxia, with particular 
reference to the findings from our laboratory using the precocial spiny mouse to model 
birth asphyxia. Furthermore, we reviewed the current treatments available for neonates 
who have undergone intrapartum asphyxia, and highlight the emergence of maternal 
dietary creatine supplementation as a preventative therapy, which has been shown 
to provide multi-organ protection from birth asphyxia-induced injury in our preclinical 
studies. This cheap and effective nutritional supplement may be the key to reducing birth 
asphyxia-induced death and disability, particularly in low-resource settings where current 
treatments are unavailable.
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iNTRODUCTiON

Each year approximately four million neonates become seriously deprived of oxygen (O2) during 
birth (1). There are numerous obstetric complications that can lead to an asphyxic birth. These 
can be loosely defined as peripartum in nature, such as placental abruption, vasa praevia (a 
condition where fetal blood vessels cross the external orifice of the uterus and often rupture), or 
a hypoxic–ischemic event at birth (2, 3). This latter category includes uterine rupture, shoulder 
dystocia, cord prolapse, maternal cardiopulmonary arrest, and a difficult or prolonged delivery 
(4). This transient but potentially catastrophic deprivation of oxygen in the intrapartum period 
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FigURe 1 | illustrates the commonly accepted hypothesis for the two waves of energy failure and injury in the brain after asphyxia at birth.
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is thought to be directly responsible for 691,000 deaths and 
1.02 million stillbirths each year, making it the fifth most 
common cause of childhood deaths under 5  years (5–7). For 
those infants that do survive, the multi-organ damage that can 
ensue means the risk of developing severe life-long morbidities 
is high. Intrapartum asphyxia results in a burden of 42 million 
disability years (DALYs). To put this figure in context, this is 
twice the DALYs imposed by diabetes (8). Although it is a 
global issue, recent evaluations of the incidence of intrapartum 
asphyxia in high income countries, where adequate obstetric 
care is available during the peripartum period, have incidences 
ranging from 4.3 to 8.5% of term live births (9). This is in 
stark contrast to an incidence of around 23% in developing 
countries where women’s health care remains under-resourced 
and many women delivery at home, without professional  
assistance (10).

The unpredictable nature of the many obstetric complications 
that contribute to intrapartum asphyxia, in addition to the multi-
organ damage associated with intrapartum oxygen deprivation 
(11), presents a unique set of challenges to clinical and research 
professionals in their endeavor to implement effective treatments 
for intrapartum asphyxia. Despite the burden of intrapartum-
related neonatal deaths and morbidities, research investment 
into intrapartum asphyxia and associated morbidities remains 
low, potentially due to it being a condition that is most prevalent 
in low resource settings. When reviewing the research invest-
ment into neonatal deaths it is clear that this is an area hampered 
by the “10/90 gap,” meaning only 10% of research expenditure 
is directed toward 90% of the world’s global burden of disease 
(12). This should be of concern to the medical community, as the 
Millennium Development Goal to reduce the under-five mortal-
ity by two-thirds by 2015 was not achieved (7), and neonatal 
death is an increasing contributor to this category of childhood 
survival (13).

One cannot assume there will be a dramatic shift in research 
investment strategies. Hence, there is a clear need to consolidate 
our knowledge of the overall pathophysiology of intrapartum 
asphyxia; evaluate our current approaches to studying intra-
partum asphyxia; and develop targeted treatments, keeping in 
mind the limits on application of highly sophisticated medical 
interventions in low resource settings. In the following review, 
we discuss the effects of intrapartum asphyxia on the cer-
ebral, cardiovascular, cardiorespiratory, and musculoskeletal 
systems, including current treatment/management strategies 
and their limitations. We then provide an update on the pre-
clinical models available for research into intrapartum hypoxia 
and assess treatments considered in the pipeline for clinical  
translation.

THe MULTi-ORgAN eFFeCTS OF 
iNTRAPARTUM ASPHYXiA

Characterization of brain injury following intrapartum asphyxia 
has been the focus of many basic science and clinical investiga-
tions. However, in a clinical retrospective study, Hankins et  al. 
(14) observed that for 70% of cases, low oxygen was not the 
direct cause of hypoxic–ischemic encephalopathy (HIE), but 
rather HIE was a condition that developed secondary to renal, 
hepatic, and cardiac dysfunction following birth asphyxia (14). 
While the brain is the obvious target of interventions to allay 
progressive damage arising from hypoxia, oxidative stress, and 
inflammation at birth, the need to protect other vital organs 
such as the heart, kidneys, lungs, and diaphragm has received 
much less attention. This is made pertinent by the fact that 
hypothermia has not been shown to offer protection to the many 
other organ systems affected by birth asphyxia (15, 16), and also 
from the plausible possibility that HIE arises secondarily to poor 
cardiorespiratory function in the minutes and hours after an 
asphyxic birth. These types of studies highlight the true nature 
of the global oxygen deprivation associated with birth asphyxia 
and the need to investigate all consequential injury.

Brain
The main clinical outcome observed in severely asphyxiated 
neonates is brain damage known as HIE. This varies in severity 
and can be categorized into one of three stages using the Sarnat 
method, which uses observations of the infant’s neuromuscular 
control, autonomic function, level of consciousness, the presence 
of seizures, and electroencephalographic recordings (15, 17). For 
infants surviving birth asphyxia and HIE in the neonatal period, 
the incidence of long-term poor neurological outcomes, includ-
ing mental and physical disability, seizures, and cerebral palsy 
(CP) is high (9).

At a cellular level, there are two phases or waves of brain injury 
following intrapartum asphyxia, as outlined in Figure 1 (18–23). 
The initial phase occurs during and immediately after the insult 
and is associated with global hypoxia. Delivery and resuscitation 
of the neonate then leads to apparent stabilization during the first 
few hours of life. However, there is a second wave of injury, which 
occurs from around 6 h after birth, and is associated with post-
hypoxic or post-ischemic hyperemia. This induces biochemical 
cascades such as synaptic excitotoxicity, oxidative stress, inflam-
mation, and cytotoxicity (18–20, 22).

Currently, the only effective treatment to reduce the adverse 
neurological outcomes following birth asphyxia is selective 
head or whole-body cooling initiated within 6  h of delivery 
(15). This is aimed at reducing or preventing the second wave 
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of injury to the brain and is thought to do so by reducing 
metabolic rate and ameliorating the oxidative stress that ensues 
(15). However, the need to stabilize the infant during the first 
few hours of life often delays the initiation of hypothermia, 
which significantly reduces the effectiveness of this treat-
ment strategy. Even without these necessary clinical delays, 
therapeutic hypothermia is not a wholly effective treatment. 
It has been reported that as many as 10 infants need to be 
treated to prevent one death or major disability (15, 24). 
Hypothermia has also been reported to have unwanted side 
effects such as sclerema neonatorum, hypovolemia, glucose 
instability, pulmonary hypertension, and multisystem organ 
damage if applied to unaffected neonates (16, 24, 25). Another 
major limitation of hypothermia as a treatment is that it is 
only properly deployable in tertiary health centers (8, 15, 26). 
However, simpler variants such as cold “hot” water bottles 
have been trialed in a resource-poor hospital in Uganda and 
shown to be a feasible approach (27). Efficacy of this treatment, 
however, is yet to be reported.

Cardiac Structure and Function
It is well accepted that the physiological response to hypoxia 
involves the redistribution of cardiac output to maintain perfu-
sion of vital organs, including the brain, adrenal glands, and the 
heart (28). However, despite the fact that blood supply to the 
heart is prioritized during a hypoxic event, both preclinical and 
clinical studies have reported deficits in cardiac function after 
birth asphyxia (11, 29, 30). With regard to the heart, newborns 
who survive intrapartum asphyxia fall into two broad catego-
ries: those who are severely ill, require urgent treatment and 
frequently die of heart failure during the immediate neonatal 
period; and those who do not have heart related complica-
tions and do not require cardiac support (14, 31). One study 
reported that of 46 cases of severe intrapartum asphyxia that 
resulted in the neonate developing HIE, 78% exhibited cardiac 
injury, diagnosed by elevated circulating cardiac enzymes and/
or the requirement of volume support for longer than 2 h after 
birth (14, 15, 17). Various other clinical pathologies have also 
been reported, including enlargement of the heart (18–23, 32), 
electrocardiogram abnormalities, signs of myocardial ischemia 
(18–20, 22, 29, 33), arrhythmias, dysfunction of the atrioven-
tricular valves, and sustained sinus bradycardia, as well as 
decreased ventricular contractility (11, 15, 29, 30). Hypotension 
is also a common problem encountered by neonatologists (15, 
30, 34–36), often requiring treatment by volume expansion or 
inotropic drugs (15, 24, 25).

Despite the observation of these functional issues, the 
immediate and long-term structural consequences of a hypoxic 
birth for the heart are not well understood, with only minimal 
histological data reported so far. One study reported abnormali-
ties including evidence of necrosis and phagocytosis, as well as 
the presence of contraction band necrosis [aggregated clumps 
of disorganized actin–myosin filaments (16, 24, 25, 37)] in the 
hearts of asphyxiated near-term lambs (8, 15, 26, 35). Human 
studies on non-surviving asphyxiated newborns have also 
reported the appearance of cardiac abnormalities (27, 32, 38), 
including right ventricular dilation, ventricular hypertrophy, 

persistent atrial shunting, and papillary muscle necrosis (39, 
40). Understanding how to provide this support is hampered by 
a distinct lack of experimental data on the structural and func-
tional effects of intrapartum asphyxia on the heart. Although 
there have been numerous studies documenting the long-term 
neurological outcomes for children who suffered asphyxia of 
varying severity during birth (11, 29, 30, 41–44), information 
regarding the cardiac outcomes for children with HIE and CP are 
not often reported. Furthermore, there appear to be no studies 
investigating the cardiovascular outcomes for those who suffered 
a mild to moderate hypoxic event at birth but who have no or 
little neurological disability. Consequently, there is a clear need 
for preclinical work using appropriate animal models that will 
enable these important issues to be investigated.

Renal Structure and Function
Acute kidney injury (AKI) is a syndrome characterized by a 
short period of loss of the kidney’s excretory function, leading 
to a reduced capacity to filter blood, maintain blood volume, 
electrolyte levels, and acid–base homeostasis (45). AKI is usually 
caused by factors external to the kidney itself. In the neonate, 
these include premature birth, sepsis, congenital heart malfunc-
tion, and intrapartum birth asphyxia (46, 47).

Acute kidney injury has long been recognized as an almost 
inevitable consequence of intrapartum asphyxia, due to the 
shunting of blood away from peripheral organs to maintain 
cerebral, cardiac, and adrenal perfusion during the episode 
of hypoxia, thereby reducing oxygen supply to the kidney (48, 
49). The renal parenchymal cells also have a limited capacity for 
anaerobic respiration and a high susceptibility to reperfusion 
injury (50). It is estimated that 50–72% of asphyxiated neonates 
with a 5 min Apgar score ≤6 will show signs of renal compromise 
(51), and studies have shown that AKI following birth asphyxia 
positively correlates with the risk of morbidity and mortality in 
asphyxiated newborns (11).

There are currently no FDA approved therapies that specifi-
cally target kidney damage after intrapartum asphyxia (52). Four, 
low sample number, randomized control trials have investigated 
the capacity for a single dose of theophylline, an adenosine recep-
tor antagonist, in the first hour after asphyxial birth to prevent 
the progression of AKI (53–57). These trials were proceeded by 
animal studies that identified the increase in adenosine as a result 
of hypoxemia and renal vasoconstriction as a key contributor to 
the pathogenesis of AKI (58, 59). The promising results from the 
initial trials have led to the Kidney Disease Improving Global 
Outcomes (60) guidelines to suggest a single dose of theophyl-
line to asphyxiated newborns (60); however, it is emphasized 
that theophylline has a narrow therapeutic window and must be 
well monitored as it can cause side effects, including tachycardia, 
hyperglycemia, vomiting, and seizures (61, 62). Experts in the 
field often agree that adequately powered, multicentre trials, that 
include assessment of long-term outcomes and theophylline as an 
adjunct to hypothermia are still required before the widespread 
adoption of this therapy (52, 57). Assessment of clinical data 
of babies who received hypothermia treatment alone following 
intrapartum asphyxia has concluded that the therapy does not 
reduce the rate or severity of AKI in these patients (63).
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For those newborns who are accurately diagnosed with AKI, 
a range of management strategies can be put in place to ensure 
that the poorly functioning kidney does not exacerbate injury in 
other organs, particularly the brain (3, 47). Post-asphyxia infants 
presenting with oliguric AKI are at significant risk of fluid reten-
tion and hyponatremia due to decreased sodium reabsorption in 
the proximal tubules (64, 65). With this is mind, there is clinical 
recommendation to limit fluid intake in newborns with AKI; 
however, this is controversial as there is a fine balance between 
maintaining sodium retention and causing dehydration or mal-
nutrition in these infants (3). Hyperkalemia is also of concern 
in newborns with AKI due to a poor capacity to produce urine 
and clear excess potassium from the blood. The withholding of 
fluids containing potassium and electrocardiographic monitor-
ing is recommended for these babies. Imbalances in calcium and 
magnesium are also common complications of AKI and need to 
be monitored in the neonatal period (65). While these clinical 
guidelines can improve patient outcomes, treatment strategies 
focused on minimizing and repairing kidney injury are still 
required to combat AKI and ensure the long-term renal health 
of these newborns.

Furthermore, an episode of AKI in the neonatal period has 
also been linked to an increased risk of developing chronic 
kidney disease (CKD) later in life (66, 67). A recent prospec-
tive study by Mammen et  al. (68) of 126 patients diagnosed 
with neonatal AKI aimed to assess the incidence, and risk of 
developing CKD in the 1–3 years after AKI. They also aimed to 
determine if the stage/severity of AKI at first presentation was 
a determinant of the development of CKD later in life. They 
found that 10.3% of their follow-up patients presented with 
CKD in the 1–3  years after AKI, as defined by the presence 
of albuminuria and/or decreased GFR (≤60 ml/min/1.73 m3). 
Severity of AKI (stage 3 AKI) was a potential predictor of CKD 
(P = 0.08). It should be noted that 24% of the patient popula-
tion in this study were neonates, and these cases made up the 
majority of the AKI stage 3 population (median age 0.3 years). 
In addition to those who presented with CKD, 46.8% of follow-
up patients were described as being at risk of developing CKD, 
based on a mildly reduced GFR, presence of hypertension 
and/or hypofiltration (68). The clinical recommendation 
arising from these studies is that, regardless of the severity 
of AKI, neonatal and pediatric patients should be monitored 
regularly for signs of long-term kidney damage and dysfunc-
tion, and not just in the period immediately after the episode 
of AKI. As early CKD is often silent, these studies strengthen 
the need to develop biomarkers of CKD following AKI (69). 
While treatment of neonatal AKI remains hindered by poor 
diagnostic techniques and the lack of a firm understanding of 
what molecular and structural changes occurs in the neonatal 
kidney following an asphyxic insult, a focus on prevention of 
injury rather than recovery may thus be a beneficial approach 
to develop treatments for neonatal AKI.

Diaphragm and the initiation of Breathing
Term neonates take their first breaths by creating a sub-atmos-
pheric intrathoracic pressure as high as −80  mmHg, which is 
essential for the clearance of lung liquid, thus facilitating lung 

aeration and the formation of the functional residual capacity 
(FRC) (70–72). However, asphyxiated neonates are often unable 
to produce the pressures necessary to achieve this and therefore 
require resuscitation and subsequent mechanical ventilation (11, 
33, 71). Some work has been targeted at understanding the effect 
of intrapartum asphyxia, together with the effects of mechanical 
ventilation, on the lungs. Clinical studies have reported patholo-
gies such as hemorrhagic pulmonary edema (73) and pulmonary 
hypertension (33).

However, despite the crucial role it plays in lung aeration, FRC 
formation and the initiation of breathing at birth, the respiratory 
musculature has been essentially overlooked. Some recent studies 
have investigated the effect of different suboptimal fetal environ-
ments on the diaphragm, concluding that intrauterine inflam-
mation caused significant impairment of diaphragm contractility 
in the fetal sheep (74, 75). The same group has also reported a 
decrease in contractility in the fetal diaphragm after maternal 
steroid administration (76). As for asphyxia at birth, preterm 
birth usually also results in the neonate requiring ventilatory 
support, perhaps also a result of poor diaphragm function in this 
respiratory insufficiency.

The mechanical effort associated with breathing after birth is 
high due to the high compliance of the chest wall and the relatively 
low compliance of the fluid-filled lung, and it is assumed that the 
muscle fibers of the diaphragm must be relatively resistant to 
fatigue. As the fetal respiratory system prepares for the transition 
gas exchange, the diaphragm muscle fibers undergo important 
biochemical and phenotypic changes to deal with this change in 
workload; for many species, including humans, these significant 
maturational changes occur in utero. During this time, biochemi-
cal and histochemical changes show there is a significant fast-to-
slow fiber type transition, together with substantial muscle fiber 
hypertrophy, which begins in the immediate neonatal period 
and continues postnatally (14, 31, 77, 78). This highlights the 
perinatal period as a time when activity plays a crucial role in 
the functional maturation of the diaphragm, suggesting potential 
vulnerability during this time should an event arise which could 
cause damage to the diaphragm musculature and interrupt this 
crucial transition. Mechanical ventilation, which is known to pro-
voke atrophy-like changes to diaphragm muscle fibers in adults 
(79), is therefore a significant intervention for preterm and term 
neonates.

The diaphragm is highly susceptible to hypoxic injury, pos-
sibly because it has a very high-energy demand. Hypoxia has also 
been reported to significantly reduce the diaphragm’s resistance 
to fatigue (14, 80–83). The mechanisms leading to this outcome 
are poorly understood; however, acidosis interferes with the 
ability of skeletal muscle to replenish ATP stores, as well as reduc-
ing the capacity of muscle fibers to utilize ATP (84). Similarly, 
systemic acidosis is associated with the upregulation of protein 
degradation pathways and result in significant structural damage 
and functional deficits in many different skeletal muscles (85–87). 
In the adult diaphragm, hypoxia reduces the ability of fibers to 
produce ATP using aerobic pathways, thus increasing reliance on 
anaerobic pathways including glycolysis and creatine phosphate 
degradation, a switch that has been implicated in the appearance 
of muscle fatigue (88–90). Hypercapnia causes structural and 
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functional deficits in skeletal muscle, with a study by Shiota et al. 
(91) reporting significant reductions in functional performance 
and fatigue resistance, as well as alterations in the relative propor-
tions of the different muscle fibers present in the diaphragm, and 
in other skeletal muscles.

Furthermore, as mentioned previously, the immense increase 
in ROS and RNS (reactive oxygen and nitrogen species, respec-
tively) that follow hypoxic events results in significant oxidative 
stress at a cellular level. This is particularly deleterious for the 
diaphragm, which generates high levels of oxidants due to the 
continuous contractile activity of this highly oxidative muscle 
(88, 89, 92). Oxidative stress has been reported to increase 
protein degradation in skeletal muscle (93, 94), and therefore 
this could have significant negative effects for the newborn dia-
phragm as it undergoes the essential structural and biochemical 
changes associated with parturition and the onset of gaseous 
ventilation.

eFFeCT OF PeRiNATAL HYPOXiA ON 
SKeLeTAL MUSCLe AND iTS 
iMPLiCATiONS FOR CP

The body is composed of almost 40% skeletal muscle, and this 
tissue is not only essential for locomotion, but also plays an 
important role in the metabolism of proteins and amino acids 
for various organ systems (93). Hypoxia in adult skeletal muscle 
increases production of ROS, which increases the degradation 
of myofibrillar structural proteins (93). Exposure to hypobaric 
hypoxia in adults reduces maximal force production and muscle 
endurance as assessed by static handgrip contractions (95). Acute 
hypoxia increases oxidative stress and reduces mitochondrial 
function in mouse skeletal muscle (96), and structurally, hypoxia 
causes severe muscle atrophy (97). Hypobaric hypoxia results in 
a significant reduction in muscle mass and muscle fiber cross-
sectional area (CSA) (97).

Given the obvious susceptibility of the skeletal muscle to 
hypoxic damage, the possibility that deficits in skeletal muscle 
function could be contributing to the functional motor deficits 
observed in survivors of intrapartum asphyxia with CP should not 
be overlooked. As discussed previously, CP is the most common 
deleterious morbidity associated with birth asphyxia. It is a condi-
tion characterized by hypotonia in the neonate (98), and children 
with CP often suffer from a range of neuromuscular disabilities 
including deficits in motor coordination, gait abnormalities and, 
in severe cases, upper and lower limb spasticity (99–101), and 
reductions of muscle endurance and peak power of the arms and 
legs, even in children with mild CP (102). A small study reported 
significant reductions in lower limb mass in children with CP 
(103); however, investigations into the structural changes in these 
muscles are lacking.

A large body of work has been dedicated to the development 
of treatments for the muscular symptoms of CP; for example, the 
use of botulinum toxin A injection to treat limb muscle spastic-
ity, which has been shown to improve movement for children 
with lower limb spasticity (104–106). While the body of opinion 
would be that most of the muscle disability arises secondarily 

from damage to central pathways governing motor activity, the 
direct effects of mild to moderate intrapartum asphyxia on the 
axial muscles obviously require further consideration.

PReCLiNiCAL MODeLS OF BiRTH 
ASPHYXiA

A major issue faced by researchers and clinicians focusing their 
efforts on understanding the effects of birth asphyxia is the avail-
ability of an appropriate research model. Conventional altricial 
laboratory rodents such as mice and rats are commonly used to 
study the biochemical and pathological changes within the gray 
and white matter regions of the brain following intrapartum 
asphyxia. However, use of these species poses significant limita-
tions due to the immaturity of their offspring at the time of birth. 
Therefore, any findings regarding tissue damage or alterations in 
normal organ development following a hypoxic episode at birth 
must be interpreted with caution. These would not be considered 
as appropriate models to study damage to peripheral organs such 
as the kidney after intrapartum asphyxia.

Large precocial models are much more useful in this regard 
as their advanced stage of development at the time of birth 
closely mimics the human physiological response to intrapartum 
asphyxia [see review in Ref. (107)]. Indeed, understanding peri-
natal brain injury following a hypoxic–ischemic insult was highly 
advanced by classic studies by Meyer et  al. in the non-human 
primate in the 1970s (108). There is a particular ethical dilemma 
in the use of non-human primates, and the cost of experimenta-
tion in these species means the study of all neurological disorders 
in non-human primates is not always appropriate; however, they 
continue to be used of gain insight into the neurological outcomes 
of intrapartum asphyxia (109). There has also been extensive work 
conducted investigating the effect of birth asphyxia on the brain 
using both sheep and pigs. In sheep, we and others have developed 
and characterized a clinically relevant model of HIE in the near-
term lamb (110–112), and Miller and colleagues use this model to 
investigate potential rescue therapies using melatonin and stem 
cells (113–116). Another group has used the newborn piglet to 
investigate the neurological effects of intrapartum asphyxia (117, 
118), the effects of cooling (119) and to explore potential early 
biomarkers of neuronal injury (120). However, these animals are 
expensive, difficult to house and long-term studies, looking at the 
life course effect of HIE require many years.

The need for an appropriate small animal model to investi-
gate the systemic effects of an asphyxial birth and the testing of 
potential interventions is met to some extent by using the spiny 
mouse (Acomys cahirinis). This is a precocial rodent native to the 
deserts of Africa and Middle East, where after a relatively long 
gestation (39 days) the neonate has completed organogenesis of 
major organ systems (121–124), and are fully furred, mobile and 
have open eyes.

Unlike other rodents, the brain of the spiny mouse is rela-
tively well myelinated at birth (125), and the brain growth spurt 
in this species occurs in the days just prior to birth; this is later 
in gestation than the guinea pig, monkey, and sheep, but earlier 
than the rat and rabbit, and prior to birth as in the human. 
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In addition, this species has a hormone profile similar to the 
human, with the adrenal gland producing cortisol as its major 
circulating glucocorticoid instead of corticosterone as seen in 
most rodents. The fetal spiny mouse adrenal gland is also able 
to synthesis the steroid dehydroepiandrosterone, making the 
spiny mouse perhaps one of few rodents to have a fetal-placental 
unit where the fetal adrenal–hepatic–placental axis plays an 
important role in fetal brain development during gestation, 
as it does in higher primates, including humans (124, 126). 
Finally, one of the unique intrauterine developmental aspects 
of the spiny mouse is the completion of nephrogenesis (the 
formation of the filtering units in the kidney) before birth in 
this species (121). This makes the study of renal hemodynamics 
in the early neonatal period, and the study of insults on the 
kidney at birth in the spiny mouse particularly relevant to the 
human situation.

A model of near-term intrapartum asphyxia has been 
produced in the spiny mouse and is characterized by global 
acidemia, hypoxemia, and increased plasma lactate (127). In this 
model, it was noted that animals that did not survive the insult 
(~40%) exhibited abnormal gasping behavior and were unable 
to establish breathing. It was therefore proposed that the respira-
tory muscles may be involved in this failure, and the status of the 
diaphragm was assessed (127). This study revealed significant 
structural and functional deficits in the diaphragm 24  h after 
birth (127). This was characterized by muscle fiber atrophy, with 
a 20% decrease in CSA of all three major muscle fiber types 
and a 27% reduction in calcium (Ca2+)-activated force (127) as 
assessed in skinned single muscle fibers. There was an increase 
in the expression of two pro-atrophic genes—Atrogin-1 and 
MuRF-1. It is therefore reasonable to assume that these deficits 
may be contributing to respiratory failure in these animals and 
thus the high mortality rate observed in this model. Since those 
initial studies, the spiny mouse model of intrapartum asphyxia 
has been used to describe molecular, structural, and functional 
alternations in the neonatal brain and diaphragm, kidney, 
gonads, and skeletal musculature, and assess the therapeutic 
potential of the antioxidant melatonin and intracellular energy 
buffer creatine (127–135).

These preclinical studies have contributed significantly to our 
knowledge of the longer-term impact of intrapartum asphyxia. 
Some of the key findings to date include neurological injury 
being associated with mitochondrial derangement in the cortical 
subplate, thalamus, and piriform cortex (133) and significant 
behavioral deficits in tests that assess movement and motor 
coordination (132). Furthermore, when the same animals were 
placed in an open field on postnatal day 1, and their movement 
was recorded, asphyxia pups traveled less distance, spent more 
time immobile, and made significantly fewer jumps (132). These 
observations suggested that these animals may have significant 
deficits in neuro-motor activity.

These observations were further characterized with studies 
aimed at directly investigating the potential effects of intrapartum 
asphyxia on the skeletal muscle. At 24 h of age, as was observed in 
the diaphragm, all three muscle fiber types showed significantly 
reduced size. This deficit persisted until at least 1 month of age 
in males, along with a significant reduction in the proportion of 

type I fibers and a corresponding increase in type IIb/d fibers 
(135). Additionally, the neonatal gastrocnemius muscle was 
functionally assessed ex vivo and, akin to the diaphragm, exhib-
ited reduced fatigue resistance in male offspring (128, 135). It is 
apparent that the skeletal muscle is indeed significantly affected 
in the immediate neonatal period following asphyxia at birth, and 
these deficits are persisting into at least early adulthood in our 
model. Therefore, it is not unreasonable to assume that the same 
may be the case for human infants who survive birth asphyxia.

Finally, the first rodent model of neonatal AKI secondary to 
intrapartum asphyxia has been developed in the spiny mouse. 
Neonatal AKI was confirmed by a twofold increase in mRNA 
expression of Ngal, an early marker of kidney injury, and plasma 
and urinary electrolyte imbalances 24  h after insult (128). 
Assessment of kidney structure following intrapartum asphyxia 
also showed significant levels of damage and immaturity, across 
the renal cortex, medulla, and renal papillae. At 1 month of age, 
male intrapartum asphyxia offspring had a permanent loss of 
nephrons. Compensatory hypertrophy of remaining nephrons 
was apparent in this cohort, but despite this, at 3 months of age 
(young adult), GFR in male asphyxia offspring was significantly 
lower than controls (136). It is of interest that cardiac structure 
and function in spiny mouse neonates was unaltered by intra-
partum asphyxia. Clinically, while cardiovascular dysfunction is 
observed in some survivors of intrapartum asphyxia, the effects 
on the heart are heterogenous. Therefore, the absence of an effect 
in surviving spiny mouse pups after asphyxia is perhaps not 
surprising.

CURReNT TReATMeNT STRATegieS FOR 
iNTRAPARTUM ASPHYXiA

When it comes to managing the risk of a hypoxic event at birth, 
the main issue faced by clinicians is the unpredictable nature of 
intrapartum asphyxia. Most often, it is not until the woman is 
in labor that obstetricians become fully aware that the fetus is 
at risk, and by this stage there is little they can do other than to 
deliver the baby as quickly as possible. Furthermore, apart from 
hypothermia, which as previously discussed has limited success, 
there are no other effective treatments for preventing the two 
waves of energy failure that ensues following an asphyxic birth.

A number of antenatally applied treatments that aim to prevent 
intrapartum hypoxic brain damage have been proposed and include 
the use of ascorbic acid, tetrahydrobiopterin, phenobarbital, 
N-acetylcysteine (NAC), xenon, and argon. However, these have 
either provided disappointing results (ascorbic acid and xenon), 
require specialized ventilatory equipment (xenon and argon), 
revealed unfavorable safety profiles (NAC), or, while showing 
promise (e.g., allopurinol, melatonin, and argon), currently lack 
full clinical evaluation, including their capacity to target hypoxic 
injury in organs other than the brain. Pharmacokinetically, all 
of these agents have a short duration of action and cannot be 
expected to provide a benefit lasting through birth into neonatal 
life unless their administration continues throughout the entire 
ante-, intra-, and postpartum periods.

The gold standard would be a safe treatment that could be 
administered maternally before birth to provide protection in the 
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event of a hypoxic episode during labor. Such a treatment should 
be cheap and easily administered so that it could be made avail-
able in the areas where the incidence of birth asphyxia is highest. 
It must also have the capacity to minimize the initial energy 
failure that occurs at the time of the insult, as well as having 
potent antioxidant capabilities to reduce the oxidative stress that 
ensues in the period immediately after birth. This would reduce 
or prevent the second wave of energy failure and oxidative stress 
and prevent the multi-organ injury that results. It will also need 
to be benign should intrapartum hypoxia not arise.

Elsewhere, we have proposed that antenatally administered 
creatine can provide the fetus and neonate with an additional 
pool of anaerobic energy during severe hypoxia, and it is a 
treatment that will provide protection not only to the brain 
but also to the other major organs that often damaged by 
“oxygen starvation” at birth (137). Creatine, as phosphocreatine, 
provides a phosphate group for the anaerobic regeneration of 
ATP from ADP (138). This system is crucial in maintaining 
intracellular energy homeostasis, serving as both a spatial and 
temporal energy buffer in cells with high and fluctuating energy 
demands such as striated muscle and neurons of the central 
nervous system (139). In addition to this role, it is also known 
to have other important properties. The conversion of creatine to 
phosphocreatine utilizes a proton, reducing intracellular acidity 
and thus maintaining acid–base balance (140). It has also been 
reported to have antioxidant properties in studies investigating 
the effect of hypoxia on the skeletal muscle (140, 141) and brain 
(133). These studies hypothesized that increasing total intracel-
lular creatine before birth (creatine  +  phosphocreatine) would 
protect the fetus from the damaging effects of birth asphyxia by 
providing an additional, anaerobic source of ATP when oxidative 
phosphorylation fails due to the hypoxic insult. The antioxidant 
properties of creatine could also act to reduce the oxidative stress 
associated with the global hypoxia–ischemia that ensues. Using 
our spiny mouse model of birth asphyxia, we have shown that 
supplementing the maternal diet with 5% creatine monohydrate 
for a period of 19 days before delivery, caused significant creatine 
loading in the fetal brain, heart, kidney, liver, and diaphragm 
muscle (127, 131). These studies also reported a significant 
reduction in neonatal mortality rate after birth asphyxia (127, 
131) and was protective for the brain (133), diaphragm (127), 
kidney (128, 136), and axial skeletal muscles (134, 135).

Despite these interesting and promising results, to date there 
have been no clinical studies investigating the potential for 
creatine to prevent birth asphyxia-induced injury. However, this 
was the subject of a recent review in which the limited amount 
of data available was highlighted (142). A full Cochrane has also 
been published (142); however, due to the lack of data for human 
pregnancy, this brought to light the need for clinical translation of 
this potentially life-saving treatment. If antenatally administered 
creatine proves to be effective and safe, it would be a cheap and 
readily available prophylactic treatment that could be recom-
mended to all pregnant woman as a safeguard in the event of 
intrapartum hypoxia and neonatal asphyxia, thus reducing the 
high mortality, morbidity, and financial burden associated with 
this common and devastating event, in much the same way that 
folate supplementation has prevented neural tube defects. In the 

1960s, Smithells and Hibbard discovered that women who gave 
birth to children with serious birth defects, notably neural tube 
defects, had evidence of impaired folate status. Some 30  years 
later, randomized controlled trials showed that they were right, 
and folate supplementation was effective at protecting against 
neural tube defects (143). In addition to our extensive evidence 
from animal studies that support a benefit for the fetus of 
increasing tissue creatine content above normal levels, we have 
recently shown that women who deliver small babies have lower 
urine creatine concentrations (144), suggesting that inadequate 
creatine availability may impact fetal growth. We are currently 
testing this hypothesis in a large prospective cohort of low risk 
pregnant women.

SUMMARY

Reducing the under-five mortality rate by two-thirds by 2015 
was a Millennium Development Goal that unfortunately was 
not achieved (7). While advancements in obstetric monitoring 
and therapies such as hypothermia have helped reduce the rate 
of intrapartum-related brain damage and death significantly 
in the last decade, more needs to be done to address problems 
associated with the more extensive (multi-organ) compromises 
that may affect these infants. This has significant economical and 
emotional burdens that have not been adequately addressed and 
is of particular relevance for developing countries where medical 
resources may be limited. Severe hypoxia at birth is essentially a 
cardiorespiratory problem, and while brain damage has received 
the most attention, the global nature of the hypoxic–ischemic 
insult and myriad of biochemical disruptions that follow cause 
significant injury to many organ systems, as outlined in this 
review. Year 2016 marks the beginning of new global Sustainable 
Development Goals, with the aim to have the “Under-5” mortal-
ity rate below 25 per 1,000 live births by 2030 (145). As we embark 
on this new period it is important that we engage in preclinical 
and clinical studies designed to directly address the multi-faceted 
outcomes of intrapartum asphyxia. Careful consideration to 
appropriate animal models is required to ensure that the limited 
resources invested in this research provide the maximum, and 
most relevant, outcomes that further our understanding of injury 
to all the major organ systems in the neonates. The development 
of adjuncts to hypothermia and new therapies should be carefully 
considered for their applicability in the developing world if we 
are to truly combat the global burden of intrapartum asphyxia. 
Furthermore, experimentally, we are duty-bound to provide evi-
dence for the effectiveness of new therapies beyond the neonatal 
period, i.e., into infancy, childhood, and the adult stages of life.
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