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ABSTRACT
Hyaluronic acid (HA) is a naturally occurring biopolymer, with a remarkable wound healing 
property. Zinc-oxide non-eugenol is a material widely used for periodontal dressing in dentistry. 
However, it has been reported that zinc oxide non-eugenol is toxic to osteoblasts and fibroblasts. 
Hence, the present study aimed to evaluate the drug release and cytotoxicity of HA and zinc-oxide 
gels. Hydrogels of HA and zinc oxide were formulated with carbopol as a carrier. In vitro drug 
release was performed by UV spectrophotometry, dialysis, and vial bag methods. Cytotoxicity 
assessment of HA and zinc-oxide gels was performed in human periodontal ligament fibroblasts 
(HPdLF) and human gingival fibroblasts (hGFs). An inverted phase-contrast microscope was used 
to assess the morphological changes. At 24 and 48 hr, HPdLF cells showed the highest viability in 
0.1% low molecular weight-HA (LMW-HA) with a median value of 131.9, and hGFs showed the 
highest viability in 5% LMW-HA with a median of 129.56. The highest viability of HPdLF cells was 
observed in 5% high molecular weight-HA (HMW-HA), with a median value of 127.11. hGFs showed 
the highest viability in 1% HMW-HA with a median value of 97.99. Within the limitations of the 
present study, we concluded that LMW-HA is more efficient than HMW-HA. Both HPdLF and hGF 
cells showed complete cell morbidity with zinc-oxide hydrogels. Therefore, zinc oxide-based gels in 
concentrations as low as 9% could be toxic intraorally to soft tissues that harbor gingival and 
periodontal ligament fibroblasts.

ARTICLE HISTORY 
Received 15 November 2021  
Accepted 5 July 2022 

KEYWORDS 
Dressing; hydrogel; 
hyaluronic acid; molecular 
weight; periodontal surgery; 
wound healing; Zinc-oxide

Introduction

Bacterial infections, functional and physical forces in the 
oral cavity during periodontal surgery may affect healing 
[1]. Thus, in periodontal surgical procedures, ranging from 
minor, aesthetic surgeries, mucogingival corrections, and 
flap surgeries, protection of the wound area using 
a periodontal dressing material came into existence [2]. 
However, although used initially, the eugenol-based dres
sings are no longer employed due to their allergic reactions.

Hyaluronic acid (HA) is an innately occurring high 
molecular weight polysaccharide formed in the human 
body as a part of a natural wound healing mechanism. 
HA acts as an essential element of cell migration and 
proliferation, thus regulating tissue hydrodynamics [3]. 
In addition, it has ideal properties, such as non- 
immunogenicity and biocompatibility with human oral 
tissues. The essential cellular interactions of HA, with 
various mediators, including CD44, a receptor for HA- 
mediated motility (RHAMM), and intercellular adhesion 

molecule-1 (ICAM-1), make HA crucial during each stage 
of wound healing [4]. Moreover, the adjunctive use of 
HA demonstrated a significant improvement in the per
iodontal clinical parameters [5–8]. Recently, multi- 
dimensional studies conducted on HA-based biomem
branes [9], mouthwashes [10], local drug delivery [11], as 
a diagnostic marker of inflammation [12], in bone regen
eration [13], and as an adjunct in the management of 
peri-implantitis [14], can be attributed to its versatility.

Zinc oxide non-eugenol is a widely used material for 
periodontal wound dressings in dentistry. The antibacter
ial reaction from metal oxide and fatty acids acts as 
a barrier to protect wounds [15,16]. Topical zinc oxide 
was well known for its protective, astringent, and antisep
tic properties [15,16]. In addition, research on the use of 
zinc oxide incorporated in gauze demonstrated enhanced 
healing of leg ulcers in humans and acute wounds in 
experimental pigs [17]. Due to these beneficial properties, 
zinc oxide-based periodontal dressings have been widely 
used in phase-II therapy of periodontal management [18].
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Despite the usage, several in vitro studies have 
reported the high toxicity of zinc-oxide non-eugenol to 
osteoblasts and fibroblasts [19]. Studies revealed that 
the presence of rosin in zinc oxide non-eugenol dres
sings can trigger increased inflammatory reactions invol
ving polymorphonuclear neutrophilic leukocytes [20,21]. 
Furthermore, it was reported that zinc oxide-based dres
sings could cause inflammation in the applied area, 
thereby becoming inhibitory to the wound healing pro
cess up to 7 days following its application [21]. Hence, 
the need for research on newer and safe agents, such as 
HA as a substitute for zinc oxide-based periodontal sur
gical dressings, is of high clinical significance.

HA is available in two forms [22]; a low molecular 
weight HA (LMW-HA) shows angiogenesis, whereas 
high molecular weight (HMW-HA) has an opposite 
action. The LMW-HA plays a role in signaling tissue 
damage and mobilizing immune cells. In contrast, the 
HMW-HA suppresses the immune response preventing 
excessive exacerbations of inflammation [4,23]. The dif
ferences in viscoelasticity were found to be the reason 
for antagonistic actions of LMW-HA and HMW-HA [24].

Unfortunately, the number of studies on wound healing 
benefits of HA are very scarce, and it is mostly used in either 
a gel or a liquid form. The most common concentrations 
used are 0.2, 0.8, and 1%, and they were also commercially 
formulated from HMW-HA. Studies that used LMW-HA 
variants are also limited. Gingigel, Hyadent, Hyalugel, 
Aminogam, and Klirich are a few commercially available 
products that are sparsely available and are of different 
concentrations formulated with HMW-HA. As a clinician, 
choosing these commercially available forms of HMW and 
LMW-HA for periodontal therapy needs more evidence. 
Therefore, the present study aimed to evaluate the 
in vitro drug release of HMW-HA and LMW -HA and com
pare their cytotoxicity with zinc oxide gels. The cytotoxicity 
assessment was performed using human periodontal liga
ment and gingival fibroblasts.

Materials and methods

The present study is a two-way factorial design. The 
study protocol is as per CRIS guidelines for in vitro stu
dies [25]. The study design is illustrated in Figure 1. The 
study groups are described in Table 1. 

Drug formulation

Preparation of gel base
Gel base was prepared using carbopol 940 (manufac
tured by Sigma-Aldrich) by soaking in water overnight. 
0.1% w/v concentration of carbopol gel was prepared 
with suitable dilution in water.

Hyaluronic acid (HA) gel
HA gel was prepared by dissolving an appropriate 
amount of HA in 0.1% w/v carbopol gel. The pH of the 
gel was adjusted to 7.0 using triethanolamine.

Zinc oxide gel
Zinc oxide gel was prepared by dissolving an appro
priate amount of zinc oxide in 0.1% w/v carbo
pol gel.

HMW-HA release study

Vial method
Gel was placed in a vial, and pH 7.4 phosphate buffer 
saline was added. The mixture was kept in a shaking 
incubator at 37 ± 2°C with 100 rpm. At a predetermined 
time interval, the sample was collected and centrifuged. 
We observed that HMW-HA settled down along with the 
Carbopol due to its high molecular weight, and no HA 
was present in the supernatant. So, we were not able to 
perform the release study for the prepared gels using 
HMW-HA.

Figure 1. Study design.
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LMW-HA release study

Dialysis bag method

The molecular weight of HA used was 8 kDa. The cut-off 
of the dialysis bag was 12 kDa. The sample was collected 
and centrifuged in a shaking incubator at 37 ± 2°C with 
100 rpm at a predetermined time interval.

Estimation of LMW-HA by UV spectrophotometry

Different concentrations of LMW-HA were prepared in 
water and analyzed using a UV spectrophotometer at 
a wavelength of 205 nm. The calibration curve was 
plotted as a function of absorbance Vs. LMW-HA con
centration. The samples of HA and zinc oxide hydrogels 
were sterilized by gamma irradiation (Gamma Chamber 
5000 of Cobalt 60 source) at a dose rate of 2.68 kGy/hr.

Cytotoxicity assay

The human gingival fibroblasts (hGFs) and periodontal 
ligament cells (HPdLF) were cultured after procuring 
tissue fragments from the extracted tooth by the explant 
technique as described earlier in a study by Kwon et al. 
[18]. The cultured cells were stored in a MEM-alpha 
medium (HiMedia) and kept in a CO2 incubator. The 
dead, floating cells were removed by changing the 
media every two days. Then, the hGFs and HPdLF cells 
were exposed to the test and control agents. The mor
phological changes were observed using an inverted 
phase-contrast microscope and compared at 24, 48, 
and 72 hr. MTT assay was performed to evaluate the 
cytotoxicity, and it was matched between the following 
groups.

Statistical analysis

SPSS-22 software was used for statistical analysis. The 
Kruskal–Wallis test was used to analyze the effective 
concentration in the HA group. In addition, 
a comparison between all the different concentrations 
of HA for the viability of cells was performed for both 
hGFs and HPdLF at three different time points, i.e., 24 hr, 
48 hr, and 72 hr by using the Friedman test.

Results

In vitro drug release study

The drug release study was performed for LMW-HA using 
the dialysis bag method. The amount of drug released for 
0.1% LMW-HA was only 4 hr. After 4 hr timeline, no 
release was noted. All the other three concentrations of 

1%, 5%, and 10% showed drug release for 72 hr, and an 
increasing trend with time was noticed. The evaluation of 
in vitro release study results showed that 0.1% LMW-HA 
gel was released only at 1, 2, 3, and 4 hr, and there was no 
release of HA after 4 hr for 0.1% LMW-HA.

The other three concentrations released HA gel for up 
to 72 hr. There was an increase in drug release as the HA 
concentration increased from 1% to 10%. The release 
was recorded for up to 72 hr. Drug release patterns are 
illustrated in Figure 2.

Cell viability

Group A – zinc oxide gel

All the four concentrations of zinc oxide gel used, i.e., 
87%, 36%, 18%, and 9% (w/v), showed total cell mortality 
in both hGFs and HPdLF cells.

Group B – HA gel (Part 1 & 2)

At 24 and 48 hr, the LMW-HA group for HPdLF cells 
showed the highest viability at 0.1% with a median 
value of 131.9, and for hGFs, it was 5% with a median 
of 129.56. For the HMW-HA group, the highest viability 
for HPdLF cells with a median value of 127.11 was noted 
in 5% HMW-HA, and for hGFs cells, it was pointed out in 
1%, as they showed the highest viability with a median 
value of 97.99. The HMW-HA group of HPdLF cells and 
hGFs showed statistically significant results (p < 0005). 
At 72 hr, it was observed that LMW-HA for both HPdLF 
and hGFs, and HMW-HA HPdLF cells showed statistically 
significant results (p < 0.005). A detailed cell viability 
analysis of HMW-HA and LMW-HA groups at 24, 48 and 
72 hours is given in Table 4.

Figure 2. Drug release pattern of different concentrations of 
LMW-HA by UV spectrophotometry. (LMW-HA: Low molecular 
weight hyaluronic acid; UV: Ultraviolet).
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The analysis of the viability of HPdLF cells and hGFs at 
24 hr indicated that the highest percentage of viable 
HPdLF cells were observed in 0.1% LMW-HA and 5% 
HMW-HA. In the case of hGFs, the highest percentage 
of viable cells were found in 5% LMW-HA and 1% HMW- 
HA. The lowest percentage of viable cells in all the 
groups was 10%, suggesting it was ineffective for all 
the cells in both LMW and HMW variants (Table 2). The 
HMW-HA group of HPdLF cells and hGFs showed statis
tically significant results (p < 0005). The same pattern 
was noticed at 48 hr (Table 2).

Conversely, at 72 hr, it was noticed that HMW-HA had 
slightly varied results compared to the other two time
lines. The highest percentage of viable HPdLF and hGFs 
were found in 0.1% HMW-HA. LMW-HA showed similar 
results at 24- and 48-hr timelines, i.e., for HPdLF cells, 
0.1% was found to be effective and 5% for hGFs cells. 
The results of HPdLF and hGFs cells of LMW-HA and 
HPdLF cells of HMW-HA groups showed statistically sig
nificant results (p < 0.005). (Table 2)

The comparison of viability values within the groups 
at subsequent time intervals by the Friedman test 
showed statistically significant changes for HPdLF cells 
in 0.1% HMW-HA, which showed the highest viability 
percentage at all the timelines. 10% HMW-HA and LMW- 
HA showed the statistically significant (p < 0.005) least 
viability percentage for all the groups except HPdLF cells 
in 0.1% LMW-HA. (Table 3)

A comparison of viability among the groups using the 
Kruskal–Wallis test indicated that 10% of LMW-HA and 
HMW-HA had shown (statistically significant) almost 
negligible percentage of viable HPdLF cells and hGFs at 
all the three timelines of 24, 48, and 72 hr (Table 3).

Morphological changes

During the cytotoxicity assay, any changes in the mor
phology of HPdLF cells and hGFs were observed using 
an inverted phase-contrast microscope. The images of 
96-well microplates used for the assay are presented in 
Figure 3. The viable HPdLF and hGFs were observed as 
elongated, spindle-shaped cells, with fibroblastic mor
phology displaying proper plastic adherence character
istics. Notably, the zinc oxide group showed completely 
dead cells, which were observed as round or oval shaped 
and found floating as suspension in the media.

Discussion

The investigations that focused on drug release patterns 
of HMW and LMW-HA in vitro are limited. The present 
study is one of the few to evaluate the in vitro release of 

Table 1. Study groups.
Group A – Zinc Oxide Gels Group B – Hyaluronic acid Gels

I. 87% w/v (POSITIVE CONTROL) 
II. 36% w/v zinc Oxide gel. 
III. 18% w/v zinc Oxide gel. 
IV. 9% w/v zinc oxide gel.

Part 1 – HMW-HA
(1) 0.1%
(2) 1%
(3) 5%
(4) 10%
Part 2 – LMW-HA
(1) 0.1%
(2) 1%
(3) 5%
(4) 10%

(LMW-HA: Low molecular weight hyaluronic acid; HMW-HA: High molecular 
weight hyaluronic acid.)

Table 2. Comparison of viability values at different time intervals among different concentrations within the groups.
24 hr 48 hr 72 hr

Conc (%) Median (Min – Max) IQR p value Median (Min – Max IQR p value Median (Min – Max IQR P value

LMW-HA-HPDL 0.10 131.93(89.2 − 239.2) 130.5 0.8 103.41 (71.22–198.68) 99.44 0.4 134.68 (130.67 
142.59)

9.68 0.008*

1 125.47 (68.2–141.9) 57.65 95.04 (73.08–106.18) 25.96 67.83 (40.54–86.17) 38.01
5 116.74 (78.36–168.49) 78.86 112.74(91.22–119.39) 

93.65(78.45–108.39
23.45 95.65 (78.75–107.21) 25.54

10 107.65 (87.45–117.24) 24.72 28.16 93.5 (80.82–95.19) 11.05
LMW-HA-HGF 0.10 97.76 (56.95–162.17) 93.48 0.6 70.69 (51.3–81.95) 23.61 0.9 95.95 (57.86–115.95) 43.65 0.54

1 106.08 (60.89–150.93) 72.85 62.32 (57.77–104.8) 36.83 91.1 (57.61–112.93) 42.73
5 129.56 (52.59–158.23) 91.73 73.68 (52.21–115.14) 49.92 107.38 (72.18–134.43) 46.82

10 82.34 (55.0–99.2) 36.59 70.92 (49.83–85.09) 26.65 107.91 (87.81–130.76) 35.26
HMW-HA-HPDL 0.10 99.15 (81.06–111.33) 24.82 0.02* 99.15 (81.06–111.33) 24.82 0.02* 119.22 (104.51–141.96) 30.14 0.01*

1 109.39 (93.84–160.59) 51.49 109.39 (93.84–160.59) 51.49 77.22 (62.32–127.31) 50.77
5 127.11 (63.73–213.9) 114.38 127.11 (63.73–213.9) 114.38 88.61 (84.05–91.56) 6.05

10 50.52 (40.32–59.91) 15.41 50.52 (40.32–59.91) 15.41 59.87 (50.68–61.94) 8.82
HMW-HA-HGF 0.10 87.62 (46.8–132.9) 70.89 0.03* 87.62 (46.8–132.9) 70.89 0.03* 105.76 (75–136.73) 59.08 0.25

1 97.99 (89.39–104.17) 11.41 97.99 (89.39–104.17) 11.41 80.71 (71.69–87.79) 13.3
5 91.68 (57.78–106.6) 39.65 91.68 (57.78–106.6) 39.65 78.58 (67.51–84.66) 15.64

10 22.36 (17.9–33.31) 11.83 22.36 (17.92–33.31) 11.83 65.21 (57.23–91.78) 26.87

P value calculated using Kruskal–Wallis test; *Significant 
(LMW-HA: Low molecular weight hyaluronic acid; HMW-HA: High molecular weight hyaluronic acid; HPdLF: Human periodontal ligament 

fibroblasts; hGFs: Human gingival fibroblasts)
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LMW-HA. Quantification of HMW-HA was difficult due to 
its high molecular weight and complex molecular 

structure [26]. In the present study, quantification of 
HMW-HA posed similar difficulties. Observations from 
the cell-based study revealed exciting findings regarding 
the selective action and efficacy of LMW-HA and HMW- 
HA on HPdLF and hGF cells.

In Group A, 87%, 36%, 18%, and 9% (w/v) of the 
samples used were zinc oxide-based hydrogels. We had 
chosen 87% and 36% (w/v) concentrations from the exist
ing evidence of commercially available zinc oxide-based 
periodontal packs [27]. The other two concentrations 
were selected by reducing the least available concentra
tion to half, making it 18% and 9%, respectively. It was 
noticed that there was a complete cell death in both 
HPdLF cells and hGFs. Hence, we diluted the sample in 
a 1:100 ratio as described previously, resulting in total cell 
mortality [28]. These results strongly correlate with the 
present study as many other studies on the toxicity of zinc 
oxide on human cell lines, questioning the use of zinc 
oxide in commercially available periodontal dressings 
used on periodontal surgical wounds [29,30].

At the 24-hr timeline, for HPdLF cells, LMW-HA showed 
viabilities in the following order: 0.1%>1%, then, 5%>10%, 
suggesting 0.1% to be more effective and 10% to be least 
effective. This finding indicates that 0.1% has a physical 
property, suitable for HPdLF cells, which might have 
favored the proliferation of cells. On the other hand, HMW- 
HA gels showed viabilities differently, i.e., 5%>1%>0.1% 
>10%. These trends in viability indicate that the most 
effective concentration is 5% HMW-HA for HPdLF cells. 

Table 3. Comparison of the viability values within the groups at 
subsequent time intervals.

Variables 0.10% 1.00% 5% 10%

LMW-HA PDL 0.77 0.17 0.17 0.47
HGF 0.36 0.36 0.36 0.039*

HMW-HA PDL 0.039* 0.17 0.17 0.039*
HGF 0.47 0.36 0.36 0.018*

P value calculated using Friedman test; *Significant (LMW-HA: Low molecu
lar weight hyaluronic acid; HMW-HA: High molecular weight hyaluronic 
acid; HPdLF: Human periodontal ligament fibroblasts; hGFs: Human gingi
val fibroblasts)

Table 4. Comparison of cell viability between the LMW-HA and 
HMW-HA groups.

Time intervals Concentrations Chi-Square value p value

24 hr 0.10% 1.985 0.575
1% 1.963 0.580
5% 1.875 0.599

10% 13.125 0.004*
48 hr 0.10% 7.743 0.052

1% 1.875 0.599
5% 6.684 0.083

10% 10.891 0.012*
72 hr 0.10% 6.296 0.098

1% 2.713 0.438
5% 5.382 0.146

10% 11.272 0.010*

*Significant 
(LMW-HA: Low molecular weight Hyaluronic acid; HMW-HA: High molecular 

weight Hyaluronic acid; HPdLF: Human periodontal ligament fibroblasts; 
hGFs: Human gingival fibroblasts)

Figure 3. 96-Well microplates used for cytotoxicity with all the experimental groups.
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This could be because of the mucoadhesive property of 
high molecular weight, which can stay longer with the 
HPdLF cells.26

hGFs exhibited the viability to LMW-HA in the 
order of 5%>1%>0.1%>10% and to HMW-HA in the 
order of 1%>5%>0.1%>10%. Hence, the effective 
concentrations of LMW-HA and HMW-HA for hGFs 
were 5% LMW-HA and 1% HMW-HA, respectively. It 
can be inferred that the liquid-type consistency of 
5% LMW-HA and 1% HMW-HA is favourable for the 
survival and proliferation of hGFs, unlike the HPdLF 
cells. In all the groups, 10% concentration was 
observed to be ineffective with the lowest viability 
percentage. This ineffectiveness of 10% HA gel can 
be attributed to the rheological properties of HA. 
This was in correlation with previous studies on the 
rheological properties of HA [26,31–36]. The infer
ences of viability at 24 hr are similar as observed 
at 48 hr of the study, with minor differences at 
72 hr.

The effectiveness of LMW-HA over HMW-HA could be 
related to its immunoregulatory property, which is usually 
noticed at the sites of inflammation. LMW-HA is formed 
from enzymatic degradation of HMW-HA. LMW-HA pro
motes the production of immune mediators thereby stimu
lating an immune response. This could enhance wound 
healing better than the high molecular weight variant 
[37]. Hence, it is observed that LMW-HA showed better 
viability percentages than HMW-HA in both HPdLF cells 
and hGFs, which needs to be confirmed in further large- 
scale randomized clinical trials.

A similar pattern of gamma irradiation was performed 
to prepare LMW-HA and found that it showed statisti
cally significant benefits of wound healing in vitro on 
human skin cell lines [32].

In another randomized placebo-controlled clinical 
trial, there were no statistically significant benefits of 
HA-applied sites after surgery compared to placebo 
sites [36]. This may be because the effective form 
that could induce the proliferation of cells was not 
used. A randomized controlled trial studied the effi
cacy of HA wound dressings and compared them to 
povidone-iodine. Wound healing assessments were 
conducted using the Bates Jensen wound assess
ment tool. They have concluded that HA-based 
wound dressings accelerated the rate of granulation 
tissue formation and thereby wound healing as com
pared to povidone-iodine [38]. In a recent study 
conducted in diabetic rats, an injectable multifunc
tional hydrogel based on dopamine-grafted HA and 
phenyl boric acid-grafted methylcellulose was fabri
cated for promoting the repair of diabetic wounds. It 

was concluded that HA-based hydrogels possessed 
great potential in chronic wound dressings [39]. 
Another study in a large skin wound model used 
a biofunctional hydrogel in which mesenchymal 
stem cell-derived small extracellular vesicles were 
incorporated into the injectable hyaluronic acid 
hydrogel and found that they induced immunomo
dulatory effects, thereby leading to a scarless wound 
healing [40].

Conclusion

After a comprehensive analysis of the results, we could 
arrive at a conclusion that

(1) The effective concentration of HMW-HA for hGFs 
is found to be 1%. Above 1% concentration is 
inhibitory to hGF cells.

(2) The effective concentration of HMW-HA for HPdLF 
cells is found to be 5%.

(3) The effective concentration of LMW-HA for hGFs is 
found to be 5%.

(4) The effective concentration of LMW-HA for HPdLF 
cells is found to be 0.1%

(5) LMW-HA is found to be more effective than HMW- 
HA in both HPdLF cells and hGFs.

(6) The mortality of both HPdLF cells and hGFs in 
vitro to concentrations even as low as 9% of zinc 
oxide- based gels have shown to be very toxic. 
Hence, exposing this material intraorally to soft 
tissues that harbor gingival and periodontal liga
ment fibroblasts is questionable.
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