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Background
The use of liquid biopsies for cancer detection has garnered sig-
nificant traction over the past decade due to their minimal inva-
siveness and continually expanding list of detectable 
biomarkers.1-3 These tests are particularly valuable in clinical 
practice when tumor sampling is unavailable, inaccessible, or 
inappropriate. Current prostate cancer (PCa) screening prac-
tices heavily rely on the prostate-specific antigen (PSA)-based 
blood test which is known to result in a large number of false 
positives that may lead to unnecessary prostate biopsies and 
expose patients to additional risks. Furthermore, most of the 
prostate biopsies result in either benign or indolent pathologies 
which can increase risk of overdiagnosis or unnecessary treat-
ment warranting the development of new detection methods.4-7 
Several current liquid biopsy technologies have either capital-
ized on factors that are excreted by the tumor cells, such as cir-
culating tumor DNA (ctDNA) and extracellular vesicles (EVs), 
or on circulating tumor cells (CTCs) present in the peripheral 
blood (PB).8-10 In this study, we chose to focus not on the 
behavior of tumor cells themselves, but rather the response of 
the immune system to the presence or absence of the solid 
tumor as a means for detecting PCa.

The immune system is known to be intricately involved 
with tumor development and progression; this leads to the 

expansion and contraction of several immune cell populations 
over time in patients with cancer. For instance, myeloid-derived 
suppressor cell (MDSC) populations are known to expand in 
the PB, whereas effector CD8+ T lymphocytes tend to undergo 
higher rates of spontaneous apoptosis.11 With the recent devel-
opments in flow and mass cytometry, more and more cell 
parameters can now be measured simultaneously to monitor 
dozens of different immune cell populations from a single pre-
pared sample of blood. Traditionally, flow cytometry data are 
analyzed based on a Boolean gating strategy, or manual gating, 
established by an expert operator visualizing the cell popula-
tions in 2-dimensional (2D) dot plots. This laborious manual 
operator-driven analysis is well known to have various degrees 
of subjectivity and inconsistency between operators, especially 
with high-dimensional panels, that become further amplified 
with patient-dependent deviations in marker expression. 
Although there is much value to be gained from using these 
high-dimensional assays for immune monitoring, it has been 
difficult to implement them in a clinical setting for diagnostic 
use due to the inefficiency of traditional manual gating creating 
the need for more advanced software-based analysis.12,13

Machine learning (ML) is a subfield of artificial intelligence 
that focuses on computational methods, such as artificial neural 
network (ANNs), for automatically extracting patterns in raw 
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data.14 When used to make medical diagnostic predictions, 
ML can be more accurate than conventional techniques and 
can recognize complex, nonlinear relationships in input data 
that are too subtle for conventional analysis.14,15 Here, we 
investigated the use of ML to analyze flow cytometry data for 
prostate screening and prostate biopsy confirmatory applica-
tions that would aim to reduce the high number of men who 
undergo unnecessary prostate biopsies each year.4,16 We ini-
tially evaluated the counts of numerous myeloid and lymphoid 
cell populations using traditional manual gating to detect PCa 
followed by the implementation of a type of ANN that is par-
ticularly well adapted in pattern recognition and classification, 
called a pattern recognition neural network (PRNN). This was 
then used to create  two different types of binary classifier sys-
tems that use flow cytometry–based immunophenotyping. By 
using the immune system as an amplifier for PCa detection, 
this ML strategy integrated with flow cytometry data may cre-
ate a new type of classifier system separate from traditional 
flow cytometry analyses that may be easier to implement in the 
clinic in hopes to improve PCa detection.

Methods
Human samples

Anonymized PB samples (n = 279) were supplied through col-
laborative agreements with New Jersey Urology (Mt. Laurel and 
Voorhees, New Jersey) and MD Anderson Cancer Center at 
Cooper (Camden and Voorhees, New Jersey) and received at 
The Wistar Institute (Philadelphia, PA). The study was approved 
by the institutional review boards (IRBs) of MD Anderson 
Cancer Center at Cooper and The Wistar Institute; the Western 
IRB (WIRB) approved the study for New Jersey Urology. All 
subjects signed approved consent forms prior to collection. All 
blood samples were drawn into K2EDTA vacutainers (~10 mL) 
and shipped to The Wistar Institute for processing and analysis. 
Blood was procured from patients who either are undergoing an 
initial prostate core biopsy or have recently received one and 
have yet to receive treatment. All patients were either treatment 
naïve or last received treatment (chemotherapy, radiation ther-
apy, or immunotherapy) for another cancer type more than 
6 months prior to blood collection. Clinicopathological charac-
teristics are described in Table 1. Androgen receptor and metas-
tasis status were not evaluated. All samples were stored at 4°C 
before transport and evaluated within 36 hours after collection.

Peripheral blood samples from male healthy volunteers were 
procured on a voluntarily basis at The Wistar Institute with no 
selection process outside of standard exclusion criteria for blood 
donation. As such, all samples were considered to be from 
healthy individuals and written informed consent was obtained. 
All blood samples were drawn into K2EDTA vacutainers 
(~10 mL). Additional healthy donor samples were purchased 
from Zen-Bio, Inc. (Research Triangle Park, NC, USA). All 
samples were stored at 4°C and evaluated within 24 to 36 hours 
after collection to mimic patient sample storage conditions.

Cell isolation, preparation, and flow cytometry

Peripheral blood mononuclear cells (PBMCs) were isolated by 
centrifugation over a Ficoll-Paque PLUS (Fisher Scientific, 
Waltham, MA, USA) in a SepMate-15 (IVD) tube (Cat. 
#85415; STEMCELL Technologies, Vancouver, Canada) fol-
lowing manufacturer instructions. The PBMCs were washed 
2× using autoMACS rinsing solution with bovine serum albu-
min (Cat. #130-091-222 and #130-091-376; Miltenyi Biotec, 
Bergisch Gladbach, Germany) followed by residual RBC lysis 
using 1× eBioscience RBC lysis buffer (multispecies) (Cat. 
#00-4300-54; ThermoFisher, Waltham, MA, USA). The 
PBMCs were enumerated using a Countess II Cell Counter 
(ThermoFisher) and were resuspended in autoMACS solution 
to a cell density of 40 × 106 PBMCs/mL.

For all samples, 1 × 106 PBMCs/mL were stained for a 
myeloid cell and lymphoid cell panel in washing buffer using 
the antibodies described in Supplementary Table S1. Briefly, 
PBMCs were stained with antibodies for 15 minutes at 4°C in 
the dark followed by washing 2× using washing buffer. Cells 
were resuspended into washing buffer with DAPI (1:20 000; 
BD Biosciences, Franklin Lakes, NJ, USA) and with a mini-
mum of  100 000 live cell events (DAPI−) collected. All samples 
were acquired and analyzed on a BD LSR II flow cytometer 
running BD FACSDiva software. For the duration of the study, 
the same flow cytometry protocols and compensation matrices 
were used. All data were analyzed using FlowJo (BD Biosciences) 
or Kaluza (Beckman Coulter) analysis software.

Machine learning

Five ML algorithms were selected for classification perfor-
mance evaluation when classifying flow cytometry event data 
from 2 classes of patients. The ML algorithms were a shallow 
ANN with 3 hidden neurons and 4 support vector machine 
(SVM) variations: (1) linear SVM, (2) SVM with Gaussian 
kernel, (3) SVM with radial basis function (RBF) kernel, and 
(4) SVM with polynomial kernel. The ML algorithms were 
implemented in MATLAB (Version 9.6 R2019a), with the 
Deep Learning Toolbox (Version 12.1 R2019a), the Parallel 
Computing Toolbox (Version 7.0 R2019a), and the Statistics 
and Machine Learning Toolbox (Version 11.5 R2019a). 
Bayesian optimization was selected to optimize SVM hyperpa-
rameters and to select the number of neurons and learning rate 
of the ANN. The MATLAB fitcsvm() function was used to 
instantiate the SVM machines. The MATLAB patternnet() 
function was used to generate the shallow ANNs, and the 
trainscg() (scaled conjugate gradient backpropagation) func-
tion was used as the training algorithm for the MATLAB 
train() ANN training.

The values for the myeloid and lymphoid cell populations 
and age for each sample were then concatenated to create a 
single feature set for each sample. For both data sets, 10 differ-
ent combinations of groups were evaluated, and for each group 
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combination, a fixed number of samples from each class were 
selected at random for the training data set. The remainder of 
the samples were used for the final test, or holdout, set. Each 
ML algorithm was run 10 times on each of the 10 groups, and 
the averages of the 10 runs were averaged for each group of 
each data set. Finally, the results of all 10 groups were averaged 
together for evaluation.

HyperVOX implementation

To prepare the data, we developed a novel procedure called 
“hypervoxelation of cytometry events,” or HyperVOX, wherein 
each channel of the flow cytometry data set was used as an axis 
in a multidimensional space. Each Flow Cytometry Standard 
(FCS) file was imported into MATLAB (Version 9.6 R2019a) 
using the fca_readfcs() function, and each axis was divided into 
4 segments with each event being defined by its segment loca-
tion on each axis. These regions are referred to as hypervoxels. 
Each hypervoxel is a feature common to all samples, and the 
count of events which fall in a particular hypervoxel for each 

sample is the distinct numerical value for each feature for that 
sample. This does not use conventional manual gating.

In this study, two separate panels were used with HyperVOX 
implementation, each panel having a set number of flow param-
eters (f): a myeloid cell panel consisting of SSC-A, Lin(CD3/
CD19/CD56), CD11b, CD14, CD15, CD16, CD33, HLA-DR, 
and DAPI (f = 9) and a lymphoid cell panel consisting of SSC-A, 
CD3, CD4, CD8, CD19, CD56, and DAPI (f = 7); each panel 
contained a total number of hypervoxels calculated as 4 f. This 
resulted in a 9-dimensional array containing 49, or 262 144, 
hypervoxel locations for the myeloid cell panel, and a 7-dimen-
sional array containing 47, or 16 384, hypervoxels locations for 
the lymphoid cell panel. Each location in the 9- and 7-dimen-
sional arrays represented a position in the flow cytometry hyper-
space and contained the number of events indexed to that 
location. For each sample, 50 000 myeloid cell panel events were 
selected at random and used to populate the myeloid cell panel 
space hypervoxels, and 50 000 lymphoid cell panel events were 
selected at random and used to populate the lymphoid cell panel 
space hypervoxels. A count was then made of the number of 

Table 1. Clinicopathological characteristics of 156 patients with prostate cancer, 123 with benign prostate, and 99 male healthy donors.

NO. OF PATIENTS, %

 PROSTATE 
CANCER (N = 156)

BENIGN PROSTATE 
(N = 123)

MAlE hEAlThy 
DONORS (N = 99)

Age, y

 Median ± SD 68 ± 8.7 63 ± 8.1 53 ± 8.5

  40-49 8 (5.1) 8 (6.5) 31 (25.2)

  50-70 96 (61.5) 97 (78.9) 67 (54.5)

  >70 52 (33.3) 18 (14.6) 1 (0.8)

Gleason score

 6 (3 + 3) 59 (37.8)  

 7 (3 + 4, 4 + 3) 68 (43.6)  

 8 (4 + 4) 12 (7.7)  

 9 (4 + 5, 5 + 4) 16 (10.3)  

 10 (5 + 5) 1 (0.6)  

T stage

 T1c 105 (67.3)  

 T2a 8 (5.1)  

 T2c 1 (0.6)  

 Unknown 42 (26.9)  

Pathology

 Adenocarcinoma 156 (100)  

 Benign prostatic hyperplasia (BPh) 123 (100)  
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events falling within each hypervoxel which became the com-
mon feature between each sample. The populated multidimen-
sional hypervoxel spaces for each sample were then reshaped into 
column vectors with 4 f rows. After all samples were processed, 
the column vectors for each sample (n) were horizontally concat-
enated into a single array resulting in a matrix with dimensions 
of 4 f × n for each panel. To reduce computational time, we 
removed all hypervoxel regions that were found to have no cell 
events using null hypervoxel elimination. This reduced the num-
ber of hypervoxels for the myeloid cell and lymphoid cell panels 
to 36 720 and 8071, respectively.

Data augmentation

Flow cytometry data were augmented by taking advantage of 
the fact that substantially more events were measured for each 
sample than what were actually needed to populate the panel 
hyperspace. We used an augmentation factor of 20× by repeat-
edly selecting 50 000 events at random from each parent sam-
ple to generate 20 sibling samples. This had the additional 
benefit of using nearly all of the available event data as there 
was a negligible chance that any particular event would not be 
selected for multiple siblings.

Null hypervoxel elimination

To decrease the time for ANN training, a method to remove 
hypervoxels where no cell events are found was implemented. 
Only hypervoxels which had an event count of at least one 
event in any sample were retained for the hypervoxel feature set 
for ANN training downstream. This reduced the number of 
hypervoxels for the myeloid panel from 262 144 to 36 720 and 
for the lymphoid panel from 16 384 to 8071. The rows that 
corresponded to these empty hypervoxels were eliminated, 
resulting in a myeloid input array with dimensions of 36 720 
rows by the number of samples (n) columns, and a lymphocyte 
input array of 8071 rows by number of samples (n) columns. 
Each element in each array was the number of events that were 
counted for each hypervoxel in that sample.

Data set construction and PRNN synthesis and 
training

Prior to PRNN training, 3 data sets for training were first con-
structed: the myeloid cell data, the lymphoid cell data, and the 
corresponding age for each sample. The 3 data sets were con-
structed as matrices where each sample was identified by its 
column position within each of the 3 data sets. A target vector 
was also constructed that contained the true diagnosis status of 
each training sample. Next, a scaled conjugate gradient back-
propagation algorithm [trainscg()] was selected for PRNN 
training using the MATLAB Deep Learning Toolbox (Version 
12.1 R2019a). Hyperparameters were used and are described in 
Supplementary Table S2. Selection of the optimum hyperpa-

rameters is strongly dependent on the data set and was deter-
mined heuristically.

For PRNN training, 500 different networks were trained 
using the assembled data sets in 5 sets of 100 networks each. 
For each network trained, 80% of samples from each aug-
mented class of patients were randomly selected for training 
keeping the sibling samples grouped together. The remaining 
20% from each class were used for network validation. The 
classes were balanced during both the training and validation 
processes. All training used scaled conjugate gradient back-
propagation algorithms.

PRNN calibration and evaluation

After 500 networks were trained, the 3 best networks were cho-
sen based on their performance, or classification accuracy, based 
on an evaluation test group. The 3 networks with the highest 
accuracy when testing the evaluation test group were selected for 
the 3-network voting ensemble. These 3 networks formed an 
ensemble that voted on the classification of each sample in the 
group, and the classification result of the ensemble was taken to 
be the majority vote for each sample. Within the 3 networks in 
the ensemble, the network having the best sensitivity had its 
threshold adjusted to improve for sensitivity, the network having 
the best specificity had its threshold adjusted to improve for spec-
ificity, and the network having the best accuracy had its threshold 
adjusted to improve for accuracy. This resulted in a final ensemble 
of 3 networks that had the best ensemble classification based on 
sensitivity, specificity, and accuracy after threshold adjustments. 
For final evaluation, a holdout sample group, ie, samples that were 
not used for PRNN training, was tested followed by subsequent 
sensitivity and specificity analysis. An overview of the PRNN 
architecture is shown in Supplementary Figure S1.

Statistical analysis

Statistical analysis was performed using nonparametric 2-tailed 
Mann-Whitney U test. Receiver operating characteristic 
(ROC) curve and area under the curve (AUC) metrics were 
used to determine algorithm performance regarding sensitivity, 
specificity, positive predictive value (PPV), negative predictive 
value (NPV), and accuracy. All ROC curves, AUC, 95% confi-
dence intervals, and P values were calculated using GraphPad 
Prism 7 (GraphPad Software Inc.) or MATLAB software. 
Significance was determined at P < .05.

Results
Biomarker assay development: immunophenotyping 
differences of healthy, benign, and prostate cancer 
patients

We initially asked whether we could identify the existence of 
PCa based on using the manually gated counts of several immune 
cell populations. In particular, we were interested in measuring a 
group of heterogeneous myeloid cells called MDSCs which are 
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known to be key contributors in supporting tumor progression 
and tumor escape through their ability to suppress antitumor 
responses mediated through T-cell and natural killer (NK) cell 
activity.17,18 Peripheral blood mononuclear cells were isolated 
from the low-density cell layer of patient blood and were ana-
lyzed for MDSC counts using previously established gating cri-
teria. There are 3 main subpopulations of MDSCs and they are 
defined as follows: Lin(CD3/CD14/CD15/CD19/
CD56)−HLA-DR−CD33+ early-stage MDSCs (eMDSCs), 
CD14−CD11b+CD15+ polymorphonuclear MDSCs (PMN-
MDSCs), and CD14+HLA-DR−/lo monocytic MDSCs 
(M-MDSCs) (Supplementary Figure S2).19 Given that the 
commonly used method for separating normal neutrophils from 
PMN-MDSCs requires gradient centrifugation, there are limi-
tations that are unavoidable, such as activated neutrophils sepa-
rating with the low-density PBMC fraction or PMN-MDSCs 
passing through the gradient into the high-density fraction. This 
is further amplified with longer time periods between blood col-
lection and processing where normal PMNs are more likely to 
become activated during storage.20 We attempted to mitigate 
this by processing all samples using the same high-throughput 
centrifugation method within a set time frame of 20 to 36 hours 
after collection and transport. In addition, samples were ana-
lyzed for other cell populations such as CD14+ monocytes, clas-
sical (CD14++CD16−) and nonclassical (CD14−/loCD16++) 
monocytes and CD16−CD15+ PMNs as well as total CD3+ 
lymphocytes (CD19−CD3+), CD3+ T cells 
(CD19−CD56−CD3+), CD4+ T cells (CD3+CD56−CD4+), 
CD8+ T cells (CD3+CD56−CD8+), B cells (CD3−CD19+), 
and NK cells (CD3−CD56+), NK T cells (CD3+CD56+), 
CD4+ NKT cells (CD3+CD56+CD4+), and CD8+ NKT cells 
(CD3+CD56+CD8+) (Supplementary Figure S2).

The PBMC layers from 156 patients with PCa, 123 with 
benign prostate hyperplasia (BPH), and 99 male healthy 
donors (HDM) were quantified for their MDSC populations 
along with the other myeloid and lymphoid cell types men-
tioned above. Compared only with HDM, patients with PCa 
showed increases in eMDSC (P < .0001), CD14+ monocyte 
(P = .0216), classical monocyte (P = .0271), and NK cell 
(P < .0001) population percentages and decreases in nonclassi-
cal monocyte (P = .0314), CD3+ lymphocytes (P = .0007), T 
cells (P = .0011), CD4+ T cells (P = .0002), CD8+ T cell 
(P = .0368), NKT cell (P = .0123), CD4+ NKT cell (P = .0005), 
CD8+ NKT cell (P = .0041), and B cell (P < .0001) population 
percentages (Figure 1A to P). Compared only with BPH, 
patients with PCa only showed decreases in M-MDSC 
(P = .0083) and CD4+ NKT cell (P = .0009) population per-
centages. For BPH compared only with HDM, patients with 
BPH showed increases in eMDSC (P < .0001), M-MDSC 
(P = .0003), CD16− PMN (P = .0064), CD14+ monocyte 
(P = .0015), classical monocyte (P = .0008), and NK cell 
(P = .0051) population percentages with only a decrease in the 
B-cell (P = .01) population percentage.

Given that MDSC populations have been shown to be pre-
sent in higher numbers in patients with cancer, we wanted to 
determine whether their gated counts could be used as an 
effective tool for detecting PCa.21-24 The AUCs using the 
gated population percentage of live cells for eMDSCs, PMN-
MDSCs, and M-MDSCs between HDM and patients with 
PCa were found to be 0.6791 (95% confidence interval [CI]: 
0.6109-0.7472), 0.5178 (95% CI: 0.4457-0.5900), and 0.5473 
(95% CI: 0.4745-0.6201), respectively (Figure 1Q). The AUCs 
for all other measured populations based on gated percentage 
of live cells were determined, and CD14+ monocytes, CD16− 
PMN, CD3+ lymphocytes, CD3+ T cells, CD4+ T cells, NKT 
cells, CD4+ NKT cells, CD8+ NKT cells, NK cells, and B cells 
were found to have AUCs greater than 0.6—all values greater 
than what was found for the PMN-MDSC and M-MDSC 
populations (Supplementary Table S3).

Several studies have indicated that as the tumor progresses 
there is an increase of MDSCs found in circulation.21-24 On 
grouping patients with PCa by Gleason scores, we generally did 
not observe this with the only exception being between Gleason 
score 6 (G6) and Gleason score 7 (G7) for PMN-MDSCs 
(Figure 2). More interestingly, there was a trend for M-MDSC 
levels to decrease with tumor progression, and unexpectedly, 
patients with BPH had a higher median level of M-MDSCs 
than patients with PCa albeit not statistically significant. There 
also seemed to be more trends observed within the other mye-
loid and lymphoid cell populations than within the MDSCs 
themselves. These differences can be better visualized when the 
calculated median population values for each cell type from 
BPH, G6 PCa, G7(3 + 4) PCa, G7(4 + 3) PCa, and >G7 PCa 
patients are normalized to the respective HDM median popu-
lation values (Figure 3A). Collectively, the myeloid cell popula-
tions showed an increase in levels compared with HDM for all 
patient groups; on the contrary, lymphoid cell populations over-
all showed decreasing levels as prostate pathologies progressed. 
Exceptions to this were the nonclassical monocyte and NK cell 
populations. When the PCa patient populations are normalized 
to the patients with BPH, these differences become less clear 
and generally trend downward as Gleason score increases 
(Figure 3B). Furthermore, when the AUCs were calculated 
based on Gleason score grouping for each MDSC population, 
only the eMDSC population achieved AUC values greater than 
0.6 for all Gleason scores (Gleason 6 AUC = 0.6927, 95% CI: 
0.6069-0.7763; Gleason 7 AUC = 0.6552, 95% CI: 0.5713-
0.7390; Gleason >7 AUC = 0.7074, 95% CI: 0.6091-0.8057) 
(Supplementary Figure S3). In addition, when the AUCs for 
the MDSC populations were calculated for comparing patients 
with PCa to patients with BPH, all AUC values were found to 
be within 0.5 to 0.6 except for M-MDSCs (AUC = 0.6035; 
95% CI: 0.5352-0.6717) and CD4+ NKT cells (AUC = 0.6332; 
95% CI: 0.5681-0.6982) (Supplementary Table S4). Overall, 
these AUCs and data as a whole demonstrate a rather weak 
potential for using individual gated cell counts as a viable 
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diagnostic tool for PCa detection from healthy males or patients 
with BPH.

Using ML models to classify PCa from manually gated 
counts. Because the individual gated cell counts failed to dem-
onstrate adequate diagnostic potential, we evaluated all of the 
manually gated cell population counts using conventional ML 
models allowing us to incorporate all cell populations together 
rather than focusing on specific populations of interest, such as 
MDSCs. There are many choices of learning models to use in 
supervised ML when the task is inferring a classification func-
tion from labeled training data. Here, we chose 5 common ML 
algorithms: a shallow ANN, a linear SVM, an SVM with a 
Gaussian kernel, an SVM with a RBF kernel, and an SVM 
with a polynomial kernel. To evaluate these models, we 
designed two different data sets that mimic clinically relevant 
diagnostic tests: a PCa screening test and a prostate biopsy 
confirmatory test.

First, we wanted to determine the accuracies of each model 
when evaluated as a PCa screening test. The two classes for the 
labeled training data and prediction were HDM and patients 
with PCa of all Gleason scores. For training, 67 HDM and 97 
patients with PCa were used followed by 32 HDM and 54 
patients with PCa for testing and performance evaluation. 
Using the gated counts as input data to these five ML models, 

the models had accuracies between 72.8% and 73.3% with an 
overall average accuracy of 73.2% (Supplementary Table S5). 
These accuracies are higher than any accuracies based on ROC 
analysis of the individually manually gated cell counts for each 
cell population of interest.

Next, we wanted to determine the accuracies for each model 
when evaluated as a prostate biopsy confirmatory test. Here, 
the classes for the labeled training data and prediction were 
stratified based on disease state and predicting high-risk PCa 
or the need for medical intervention. Patients with a Gleason 
score of 6 are considered to have clinically insignificant disease, 
whereas patients with a Gleason score of 7 or higher are con-
sidered to have clinically significant diseases that may require 
subsequent medical intervention. Patients with BPH and a 
Gleason score 6 PCa (BPH/G6) were grouped together into a 
first class, whereas all patients with a Gleason score of 7 or 
higher (⩾G7) PCa were grouped together into a second class. 
For training, 41 BPH/G6 (30 BPH; 11 G6) patients and 43 
⩾G7 PCa patients were used, whereas 72 BPH/G6 (61 BPH; 
11 G6) and 53 ⩾G7 PCa patients were used for testing and 
performance evaluation. All five models resulted in accuracies 
between 55.4% and 57.8% using gated counts (Supplementary 
Table S5). As with the manual gating, these models have their 
limitations and still rely on operator experience for the manual 
gating analysis. These results had us ask how we retain this 

Figure 3. heat map of the normalized median percentages for all myeloid and lymphoid cell populations. The numbers in the heat map represent the 

normalized percentage values to either hDM or patients with BPh. Increases in value are shaded in red and decreases in value are shaded in blue. (A) 

Median percentage values of all cell populations from BPh, G6 PCa, G7(3 + 4) PCa, G7(4 + 3) PCa, and >G7 PCa patients normalized to their respective 

hDM cell population value. (B) Median percentage values of all cell populations from G6 PCa, G7(3 + 4) PCa, G7(4 + 3) PCa, and >G7 PCa patients 

normalized to their respective BPh cell population value. BPh, benign prostatic hyperplaisa; PCa, prostate cancer; hDM, male healthy donors; G6, 

Gleason score 6; G7(3 + 4), Gleason score 7 (primary Gleason score 3 + secondary Gleason score 4) PCa; G7 (4 + 3), Gleason score 7(primary Gleason 

score 4 + secondary Gleason score 3) PCa; >G7, Gleason score >7. 
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information in a way that does not introduce operator subjec-
tivity (ie, does not involve manual gating) and reduces preproc-
essing time while still incorporating all of the collected events 
and numerous relationships. This led us to develop a new 
method of processing flow cytometry data to be used in ML 
algorithms, specifically ANNs, in a way that minimized subjec-
tivity while using all available information found within the 
FCS data file.

Using PRNNs to analyze flow cytometry data. Pattern recogni-
tion neural networks (PRNNs) are a type of ANN that are well 
adapted in pattern recognition and classification. Typically, 
they take the form of multiple densely connected layers of arti-
ficial neurons, wherein the strength of each interconnection 
between neurons is weighted by the amount “learned” during 
the initial network training. For ANNs to be effective, data 
inputs must share a common feature across all data sets. In 
imaging applications of ANNs, this common feature is typi-
cally a pixel (for 2D images) or a voxel (for 3D images) and 
have been used for diagnosing cancer from pathology slides 
and computed tomographic images.25-28 Conceptually, for flow 
cytometry data, no such thing exists; rather, there is only a 
common feature, ie, fluorescence and scatter channel values, 
across all cells within a single sample itself and not between 
each separate sample. To address this, we developed an approach 
called “hypervoxelation of cytometry events” (HyperVOX) to 
transform flow cytometry data into a useable data format to be 
used with PRNNs as described in the “Methods” section. 
Briefly, this method is based on converting unique event chan-
nel values into a common feature space that can serve as inputs 
for ML algorithms. We partitioned each parameter range into 
4 distinct regions of interest (ROIs) and enumerated the num-
ber of events that fell within each specific ROI. When all 
parameter ranges are combined, we call the resulting multidi-
mensional ROIs “hypervoxels”—each with a unique address in 
the newly created multidimensional space that each have their 
own hypervoxel counts; this is akin to pixels or voxels found in 
digital images (Supplementary Figure S4). These hypervoxel 
counts then served as the inputs into the ML algorithm. This 
generated 262 144 hypervoxels for the 9-parameter myeloid 
cell panel and 16 384 hypervoxels for the 7-parameter lym-
phoid cell panel. To reduce computational time, a known limi-
tation, we removed all hypervoxel regions that were found to 
have no (null) cell events. This reduced the number of hyper-
voxels for the myeloid cell and lymphoid cell panels to 36 720 
and 8071, respectively.

ANNs are notorious for requiring large training sets for 
robust and efficient classifications.29 Given the difficulty and 
costs for generating large data sets from patient samples in 
clinical studies, we implemented an augmentation algorithm to 
increase our effective training set sample size by a factor of 20. 
Briefly, for each sample, 50 000 events were selected at random 
20 times to generate a set of 20 different, but related, sibling 
samples; this process also ensured that the same number events 

were used for each sample to eliminate any potential bias that 
could be dependent event counts. We subsequently trained 500 
PRNNs using the assembled data sets as described in the 
“Methods” section. For the PCa screening test training data set, 
data from 50 HDM and 50 patients with PCa (10 G6, 30 G7, 
and 10 ⩾G8) were used for PRNN training with 80% used for 
the training data set and the remaining 20% used for the vali-
dation data set. Samples from 17 HDM and 47 PCa (20 G6, 
19 G7, and 8 ⩾ G8) patients were used to construct the PRNN 
evaluation testing group. Here, the top 3 networks for highest 
accuracy were selected and used for the 3-network voting 
ensemble. Following this, all the samples used for network 
training, validation, and evaluation are used for threshold cali-
bration. Each of the 3 networks are optimized with one selected 
for sensitivity, one selected for specificity, and one for accuracy. 
Finally, a holdout sample data set with 32 HDM and 59 PCa 
patient samples were used to evaluate the classifier perfor-
mance. The NN classified 28 out of 32 HDM and 57 out of 59 
PCa samples correctly resulting in a sensitivity of 96.6% (95% 
CI: 88.3-99.6), specificity of 87.5% (95% CI: 71.0-96.5), PPV 
of 93.4% (95% CI: 85.1-98.2), and NPV of 93.3% (95% CI: 
78.1-98.2) (Table 2). On Gleason score stratification, the NN 
classified 27 out of 28 G6, 18 out of 19 G7, and 11 out of 11 
>G7 samples were classified correctly (Figure 4A). The ROC 
curve analysis produced an AUC of 0.9656 (95% CI: 0.9202-1) 
(Figure 4B). We also used this same training algorithm for the 
prostate biopsy confirmatory testing set. Here, samples from 50 
BPH/G6 (25 BPH and 25 G6) and 50 >G6 PCa (36 G7 and 
14 ⩾G8) patients were used for the training set and 22 BPH/
G6 (11 BPH and 11 G6) and 22 >G6 PCa (13 G7 and 9 
⩾G8) patients were used for the evaluation testing set. The 
holdout sample data set consisted of 110 BPH/G6 PCa (87 
BPH; 23 G6) patients and 25 >G6 PCa (19 G7 and 6 ⩾G8) 
patients. The NN classified 47 out of 110 BPH/G6 and 23 out 
of 25 >G6 samples correctly resulting in a sensitivity of 92.0% 
(95% CI: 74.0-99.0), specificity of 42.7% (95% CI: 33.3-52.5), 
PPV of 26.7% (95% CI: 23.0-30.8), and NPV of 95.9% (95% 
CI: 85.9-98.9) (Table 2). The NN classified 38 out of 87 BPH, 
9 out of 23 G6, 17 out of 19 G7, and 6 out of 6 >G7 samples 
correctly (Figure 4C). The subsequent ROC analysis produced 
an AUC of 0.7242 (95% CI: 0.6259-0.8225) (Figure 4D). 
Given the number of men who undergo prostate biopsies each 
year, these data suggest a potential utility for this assay to have 
a great impact on the reducing the number of men who undergo 
unnecessary prostate biopsies each year.

Discussion
There is a clinical need for the development of new method-
ologies to more accurately detect PCa due to the limitations of 
current methods, such as the PSA blood test. As PSA is organ-
specific and not disease-specific, it is common to see men with 
elevated PSA values undergo a prostate biopsy with as much as 
70% of those men having no prostate malignancy.30,31 Recent 
developments in liquid biopsy technologies have enabled 
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Table 2. Sensitivity and specificity results for prostate cancer screening and prostate biopsy confirmatory tests using a neural network to analyze 
hypervoxelated flow cytometry data.

TEST STATISTIC VAlUE 95% CI INTERVAl

Prostate cancer 
screening

Sensitivity 96.61% 88.29-99.59

Specificity 87.50% 71.01-96.49

Positive predictive value 93.44% 85.05-98.21

Negative predictive value 93.33% 78.08-98.21

Accuracy 93.41% 86.20-97.54

AUC 0.9656 0.9202-1

Prostate biopsy 
confirmatory

Sensitivity 92.00% 73.97-99.02

Specificity 42.73% 33.34-52.52

Positive predictive value 26.74% 23.04-30.81

Negative predictive value 95.92% 85.94-98.91

Accuracy 51.85% 43.09-60.53

AUC 0.7242 0.6259-0.8225

Abbreviations: AUC, area under the curve; CI, confidence interval.

Figure 4. Neural network analysis of hypervoxelated flow cytometry data of hold out samples for patients with PCa versus hDM and PCa versus BPh. 

(A) Percentages of correctly classified samples from hDM (n = 32), G6 PCa (n = 29), G7(3 + 4) PCa (n = 10), G7(4 + 3) PCa (n = 9), G8 PCa (n = 4) and G9 

PCa (n = 7) and (B) ROC curve for NN analysis for holdout samples of patients with PCa versus hDM. (C) Percentages of correctly classified samples 

from BPh (n = 87), G6 PCa (n = 23), G7(3 + 4) PCa (n = 2), G7(4 + 3) PCa (n = 17), G8 PCa (n = 2) and G9 PCa (n = 4) and (D) ROC curve for NN analysis 

for holdout samples of patients with PCa versus BPh. G6, Gleason score 6 PCa; G7 (3 + 4), Gleason score 7 (primary Gleason score 3 + secondary 

Gleason score 4) PCa; G7(4 + 3), Gleason score 7 (primary Gleason score 4 + secondary Gleason score 3) PCa; G8, Gleason score 8 PCa; G9, 

Gleason score 9 PCa. BPh, benign prostatic hyperplasia; hDM, male healthy donors; NN, neural network; PCa, prostate cancer; ROC, receiver 

operating characteristic.
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improvements in early detection, prediction of prognosis, and 
monitoring of disease progression, relapse, and treatment 
responses for a variety of cancer types.32 While most of these 
methods primarily use extracellular factors, such ctDNA, EVs, 
or CTCs, none have used flow cytometry–based immunophe-
notyping analyzed by ANNs to detect a solid tumor.

In recent years, there have been significant advances in the 
field of flow and mass cytometry that have made it possible to 
measure up to 40 different intracellular and extracellular mark-
ers from each cell within a single sample preparation. These 
advancements have led to an expanding array of computational 
tools that aid in the interpretation and visualization of this 
high-dimensional and complex cytometry data; numerous 
techniques, such as Spanning-tree Progression Analysis of 
Density-normalized Events (SPADE); t-distributed stochastic 
neighbor embedding (t-SNE); cluster identification, charac-
terization, and regression (CITRUS); and PhenoGraph, have 
been developed using advanced computational methods to try 
and minimize the pitfalls of standard manual gating analyses 
while encouraging discovery and improving efficiency.33,34 
However, these techniques have yet to be incorporated effec-
tively into clinical practice.

In this article, we present the basis for a new liquid biopsy 
technique using the flow cytometry immunophenotyping of 
myeloid and lymphoid cell populations analyzed using PRNNs. 
Specifically, we describe two relevant data sets to determine the 
sensitivity and specificity of using this new method for PCa 
screening and prostate biopsy confirmatory testing. In most 
clinical studies, manually gated cell population percentages or 
counts are used to determine whether specific cell populations 
could be used as potential diagnostic biomarkers. One popula-
tion that has received significant attention over the past decade 
as a potential biomarker is MDSCs. Several studies using flow 
cytometry have demonstrated that MDSC accumulation cor-
relates to disease progression and can be indicative of overall 
patient outcomes while being found at lower levels in non–
tumor-bearing individuals.21-24 In addition, studies have shown 
that levels of MDSCs can possibly predict responses to 
immune-checkpoint blockade therapy.35,36

Although MDSCs have been favored as a potential diag-
nostic biomarker for cancer detection, our data set demon-
strates that MDSCs have limited utility as a viable diagnostic 
tool when only analyzed using manual gating. In fact, several 
other cell types had better potential with greater AUCs than 
the three MDSC populations in both data sets (Supplementary 
Tables S3 and S4). This led us to use ML models, including 
ANNs, to incorporate all manually gated cell population per-
centages together into a final predictor. The results did improve, 
but inherently, manual gating excludes large amounts of infor-
mation through its Boolean logic hierarchy and does not ade-
quately capture the holistic relationship between all the cell 
markers at once. Using our HyperVOX method, we were able 
to transform the original flow cytometry data set into one that 

can preserve some of these complex and vital relationships 
while mitigating the loss of information.

Machine learning has been used in medical diagnostics for 
detecting skin abnormalities with image recognition and in 
cardiology by helping to analyze electrocardiograms to better 
detect cardiovascular events.37-41 When we used PRNN analy-
sis on our screening data set, the signal between healthy male 
individuals and biopsy-confirmed patients with PCa had a 
large separation (AUC = 0.9656). Most of the cancers 
(n = 57/59; sensitivity = 98.3%) were classified correctly with 
only 2 misclassified—one Gleason score 6 PCa and one 
Gleason score 7 PCa—while correctly classifying all men with 
Gleason score 8 or higher PCa disease (n = 11). Currently, the 
traditional cutoff PSA value of 4 ng/mL results in a 75% sensi-
tivity for PCa detection with only a 40% specificity.42 Using 
our method, we far outperform this traditional use of the PSA 
test with sensitivities and specificities of 96.6% and 87.5%, 
respectively, demonstrating potential utility for this type of test 
in the clinic, but further study is needed.

The prostate biopsy confirmatory data set was designed to 
classify patients that would be at lower risk for a prostate 
pathology not requiring immediate medical intervention, such 
as BPH or indolent disease (Gleason score 6 PCa), from those 
that would, such as Gleason score 7 PCa or higher. There are 
many prostate biopsies performed each year in the United 
States with the majority occurring after a PSA test has been 
conducted; a large proportion of these biopsies return benign 
findings or Gleason score 6 PCa where medical intervention 
would not be necessarily recommended. Using the PRNN, 
there was a meaningful albeit less dramatic separation between 
the BPH/G6 and higher Gleason score cancers (AUC = 0.7242). 
This decrease in performance is most likely due to more simi-
larities in the signal between BPH and PCa—both prostate 
pathologies—than between a healthy male and PCa (Figure 3). 
We expected the presence of the precancerous atypical small 
acinar proliferation (ASAP) and high-grade prostatic intraepi-
thelial neoplasia (HGPIN) pathologies to increase the likeli-
hood of a patient with BPH to be classified as PCa. Interestingly, 
it was found to not have an impact as out of the 49 patients 
with BPH misclassified, only 8 were positive for HGPIN, 6 for 
ASAP, and 5 for both. More data will be needed to fully under-
stand the relationship of these precancerous pathologies and 
their resulting signal.

Conclusions
We have presented data to support a novel liquid biopsy test to 
detect PCa in a pre-biopsy population. Although our screening 
data set was able to achieve high levels of sensitivity (97%) and 
specificity (88%), the more clinically relevant problem of how 
to reduce the number of unnecessary prostate biopsies was 
more difficult to investigate. Currently, there are no screening 
tools that can differentiate between PCa and a benign prostate 
condition but given the large number of men who undergo 
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prostate biopsies each year in the United States, this study 
demonstrates potential utility for our method to still have a 
substantial impact on reducing the number men who unneces-
sarily receive them each year while ensuring those that need 
biopsies still receive one (92% sensitivity). A second study is 
currently underway where more cell surface markers are being 
included to improve upon the separation between PCa and 
BPH, along with the use a cell-fixative blood collection tube to 
enhance sample stability and marker expression during trans-
port. We hope in the near future to determine whether this 
type of assay will provide clinicians with an additional tool to 
use when deciding the best clinical pathway for their patient 
through a clinical validation and utility study.
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