
Recognizing software names in biomedical literature using
machine learning

Qiang Wei, Yaoyun Zhang, Muhammad Amith
The University of Texas Health Science Center at Houston, USA

Rebecca Lin,
Johns Hopkins University, USA

Jenay Lapeyrolerie
Baylor University, USA

Cui Tao, Hua Xu
The University of Texas Health Science Center at Houston, USA

Abstract

Software tools now are essential to research and applications in the biomedical domain. However,

existing software repositories are mainly built using manual curation, which is time-consuming

and unscalable. This study took the initiative to manually annotate software names in 1,120

MEDLINE abstracts and titles and used this corpus to develop and evaluate machine learning-

based named entity recognition systems for biomedical software. Specifically, two strategies were

proposed for feature engineering: (1) domain knowledge features and (2) unsupervised word

representation features of clustered and binarized word embeddings. Our best system achieved an

F-measure of 91.79% for recognizing software from titles and an F-measure of 86.35% for

recognizing software from both titles and abstracts using inexact matching criteria. We then

created a biomedical software catalog with 19,557 entries using the developed system. This study

demonstrates the feasibility of using natural language processing methods to automatically build a

high-quality software index from biomedical literature.

Keywords

biomedical literature; biomedical software; biomedical software index; named entity recognition;
natural language processing

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open
Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Corresponding author: Hua Xu, School of Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX 77030, USA. Hua.Xu@uth.tmc.edu.

Declaration of conflicting interests
The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this
article: Dr Xu and The University of Texas Health Science Center at Houston have research-related financial interests in Melax
Technologies, Inc.

HHS Public Access
Author manuscript
Health Informatics J. Author manuscript; available in PMC 2020 July 04.

Published in final edited form as:
Health Informatics J. 2020 March ; 26(1): 21–33. doi:10.1177/1460458219869490.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage

Introduction

Biomedical research is a data-intensive field. With the growth of advanced high-throughput

technologies, large amounts of biomedical data are being generated at an exponential rate.

Thus, software tools, which are used to manage, normalize and analyze data, become

essential for biomedical research and applications. As the ease of sharing data and therefore

reuse of data has amplified tremendously, there is immediate need to be able to utilize the

appropriate means for data analyses. This coupling of the data and the software tools is also

necessary for reproducibility of results from existing datasets, an essential step to build

further on interesting hypothesis and moving the field forward. To facilitate the

reproducibility of biomedical research and applications, software is an indispensable part in

the biomedical digital ecosystem for making biological objects Findable, Accessible,

Interoperable and Reusable (FAIR). Thus, it is critical to build a comprehensive, high-

quality software index for the biomedical domain.

Biomedical researchers have recognized the importance of software in the digital ecosystem,

and existing efforts have focused on building software repositories. For example,

Bioconductor is a collection of open-source tools for analysis of high-throughput genomic

data,1 BioJS provides tools for biological data visualization,2 and BioCatalogue is a

universal catalog of web services,3 to name a few. Moreover, to maintain a foundation of

sustainable updates and quality assurance of software repositories in the long term,4

community efforts have been spent on aggregating multiple existing software collections

into more unified, well-organized large-scale repositories. For example, OMICtools5 collect

web-accessible tools related to analysis of omics data. ELIXIR4 is the European

infrastructure for biological information charged with developing various resource and

software repositories. A recent repository of biomedical tools and resources, Aztec,6 hosts

software collected from publications, other indexes, user submissions and funding sources.

Given the rapid growth of the number of new software tools in the biomedical domain, the

biomedical communities have recognized that manual curation and voluntary user

registration is inefficient for maintaining an up-to-date software collection. One emerging

direction is extracting software information from published articles automatically using

natural language processing (NLP)-based methods. As an assistance to manual curation,

Ozyurt et al.7 developed a tool to extract URLs from papers to screen resource candidates

for the Neuroscience Information Framework (NIF) Registry. Wang et al.6 also identified

public software repository URLs (e.g. GitHub) and used heuristic rules to extract software

names from publication titles if no URL is available. However, no systematic evaluation and

software recognition system was reported in their work so far.6 Duck et al. used dictionaries

and heuristic rules to extract biomedical databases and software names from the full text of

literature. In addition, a machine learning-based classifier was developed based on the

matched rules to further filter false-positive errors.8 However, modest performance was

obtained by their approach, with F-measures lower than 70%.8 Besides, the aim of their

research was to investigate the usage of biomedical databases and software across different

studies by checking their occurrences in literature, rather than building a software index for

the biomedical domain.8

Wei et al. Page 2

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In fact, the task of identifying software names from biomedical literature is not trivial, with

multiple variations and ambiguous expressions of software names.8 Besides, the auxiliary

software information such as operation systems and backend supporting computational tools

are also important for the configuration, implementation and practical application of

biomedical software. Aimed at building an automatic software recognition system for

practical use, in this study, we created a relatively large corpus with annotated software

names and used it to develop a high-performance machine learning–based software

recognition system. Multiple groups of features were applied, including common NLP

features, domain knowledge features of dictionaries, software name patterns and locations

and more advanced features of unsupervised word representations generated by deep-

learning-based methods from a large unlabeled biomedical literature corpus. We also

conducted a detailed analysis of the system’s errors and classified ambiguities between

software names and other biomedical entities, enabling future improvement. Furthermore,

we applied the automatic software recognition system on MEDLINE titles and generated a

catalog of biomedical software with 19,557 entries.

Materials and method

System overview

Figure 1 illustrates the study design for automated software extraction from biomedical

literature. First of all, a software corpus was built from literature in PubMed by manual

annotation, from which the software recognition system was developed. The software corpus

included 1120 abstracts and titles, in which software names are labeled. The corpus was

divided into training set and test set for developing software recognition system and

evaluation. The details of the software corpus were described in section “Dataset and

annotation”. Specifically, the software recognition problem was treated as a typical named

entity recognition (NER) task. First of all, a preprocessing step of sentence segmentation and

tokenization was performed to obtain all tokens of each abstract and title. Then, various

types of features were extracted for each token (details are in section “Software entity

recognition”). The sentences were then represented as sequential labels of B, I and O, and

each token of a sentence could be one of them (details are in section “Software entity

recognition”). The automated software recognition system included the machine-learning

model and rule-based post processing: (1) based on these features and sequential labels of

sentences in the training set, the machine-learning algorithm of conditional random fields

was used to generate the machine-learning model and (2) then some rules and patterns were

applied to further reduce errors generated by the model. We evaluated our system on the test

set. Finally, we use our system to generate a high software index on a large collection of

MEDLINE titles.

Dataset and annotation

The Medline collection of research articles were retrieved from PubMed with keywords of

“software,” “tool,” “toolkit” and “system” in the fields of title or abstract. The top 1120

abstracts with titles from the result list were used for annotation. A guideline was developed

to annotate software name manually. The longest noun phrase representing a software name

was labeled, which included the software name, its modifiers, abbreviation and version

Wei et al. Page 3

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

number. The software annotated in this study consists of both the core software as the main

topic of the article and auxiliary software related to its configuration environment. The

mentions of databases and general programming languages were excluded. The toolkit

CLAMP was used for annotation in this study.9 Figure 2 illustrates one example of

annotated biomedical literature for software names.

In total, the software corpus contained 1120 articles with annotated titles and abstracts. For

systematic evaluation of the generated software recognition system, two-thirds of the dataset

were randomly selected as the training set and the remaining one-third were used as the test

set.

Software entity recognition

The recognition of software name is a typical NER problem in the area of NLP, which could

be viewed as a sequential labeling problem.10 Each token in the sentence can be represented

as one of “B,”“I” and “O” labels. “B” means the beginning of a software name, “I”

represents the other words in the software name and “O” represents words that are not inside

software names. In this way, the object of this task is converted into finding the hidden labels

for all tokens inside a sentence simultaneously (Figure 3).10

In this study, we used multiple types of features to recognize software name. In order to

better examine their effects on recognition of software name, they are classified into three

groups. The first group includes the most common NER features,11 such as word shape

feature, n-gram feature, prefix and suffix feature, sentence feature and part-of-speech

feature, which were used to build a baseline system. Moreover, we also investigated a group

of features derived from domain knowledge, as well as a group of word representation

features generated by unsupervised learning from biomedical literature text. All the features

are described in detail in the following. Table 1 showed an example of all extracted features

for the word WoMMBAT from Figure 2. Each type of feature had some specific features,

which were represented as “NAME=[VALUE]”.

Feature extraction

Basic features

Word shape feature: stemmed tokens and shapes of tokens. For example, the feature of

token “Medicine” is “medicin” and “Aaaaaaaa”.

N-gram feature: bi-grams and tri-grams representing the context of the token with a window

size of [−3,3].

Sentence feature: sentence attributes such as the length of the sentence, the POS-tag of the

beginning word and the ending punctuation.

Prefix–suffix feature: the first and last m (m = 1, 2, 3) characters of a token.

Domain knowledge features

Section feature: whether the token is inside the title or the abstract.

Wei et al. Page 4

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dictionary feature: a dictionary of software names collected from the AZTEC6 and

SourceForge12 was used to match candidate software names, which included 52,496

software names. Tokens and their bi-gram within windows size of [−2, 2] of the token will

be examined whether they are in the dictionary. If they are in the dictionary, the feature was

set to its semantic type in the dictionary, otherwise it was set to “TK”.

Orthographic feature: software names are typically formed by mixtures of characters with

uppercases, lowercases, digits and some specific punctuations (e.g., “-”). Regular expression

rules were used to capture the orthographic characteristics of tokens for candidate software

names and generate multiple features. If the token met one orthographic characteristics, the

feature of the token on this characteristics would be set to “TRUE”, otherwise it will be set

to “FALSE”.

Unsupervised word representation features

Word embedding feature: Word representation features were generated from a corpus of

unlabeled abstracts from PubMed. Specifically, we used word embeddings that produced a

distributional word representation for each word in an unlabeled corpus as a real-valued

vector using neural networks.13–15 First, we clustered tokens into 1000 groups based on the

similarity among their real-valued word embeddings and used the cluster labels as features

(word embedding feature, clustering). Moreover, we used the binarized word embedding

feature proposed in 2014 by Guo et al.16 (word embedding feature, discretization). The

intuition of the binarized embedding feature is to discretize the original real-valued matrix of

word embeddings15 and omit the insignificant dimensions. Thus, the less frequent terms are

generalized together with other syntactically/semantically relevant terms of higher

frequency.

Machine-learning method

The state-of-the-art machine learning–based algorithm of Conditional Random Fields (CRF)

is used for NER. Particularly, CRFsuite (http://www.chokkan.org/software/crfsuite/) was

used as the implementation of CRF. A java script was used to generate features mentioned

above for each word. We trained the CRF models using the training set. And by using

different combination of features, we obtained multiple models, which were used for

evaluating the effects of these features on the task. Then, we used these models to recognize

software names in the test set.

Rule-based post-processing

Some rules were applied to the output of the machine learning-based software recognition

model to fix obvious errors and further enhance the recognition performance:

1. Common patterns of software names were used to identify software entities,

especially in titles. Basically, common key words and patterns were used to

locate software names, as summarized in Table 2. Based on these patterns,

regular expressions were used to extract software names. For example, “GOAL”

is a software name in the title of “GOAL: a software tool for assessing biological

significance of genes groups.”

Wei et al. Page 5

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.chokkan.org/software/crfsuite/

2. Although a software name can occur multiple times in an abstract, some of the

mentions may be misrecognized due to the rare surrounding context. To address

this problem, we conducted a dictionary lookup by exact match in the abstract,

using the recognized entities as a lexicon. If there was a string that matched the

recognized entity, then the string was labeled as a new entity.

3. Additional dictionaries of programming languages were used to filter out false-

positive software names.

Experiments and evaluation

In this study, we started with a baseline system that implemented common features including

bag-of-word, word shape information, morphological information and part of speech (POS).

We also used a software name recognition system bioNerDS as baseline.17 The bioNerDS

aimed to recognize database and software mentions in literature, which had the same goal as

us. The bioNerDS was a rule-based system that first used dictionary lookup to recognize

software names and then used some patterns to recognize software names not in dictionary.

The system was developed on a set of 30 full-text articles and tested on two sets of 25 and 5

full-text articles, respectively, which had a lenient F1 score of 0.63 and 0.91 on two test sets.

Then, we evaluated the effects of domain knowledge-based features and unsupervised word

representation features. Features in different groups were added to the feature set

incrementally to examine their impact on the performance of the system. Finally, in the post-

processing step, rules were applied to the prediction from the machine-learning model.

The performance of micro-averaged precision, recall and F-measure evaluated by exact and

inexact match was reported. In the exact match, the predicted entity has the same offset as

that in the Gold standard set; while in the inexact match setting, the prediction and the Gold

standard annotation have at least an overlap in their offsets. Besides, as mentioned in the

“Materials and method” section, both biomedical software as the core target of this study

and software related to its configuration environment were recognized by our automatic

system. We examined the performance of the systems for recognizing all the annotated

software, as well as only recognizing biomedical software, that is, the core target, separately.

Since most of the biomedical software names have their first occurrence in the titles, the

performance of our systems on software recognition from titles was also reported.

We further applied the software recognition system with the optimal performance to a large

collection of MEDLINE titles to generate a high-quality software index. In total, 117,546

MEDLINE titles were retrieved from PubMed using the software keywords as queries.

Results

Table 3 shows the performance of the software recognition system on the test set. The

baseline system bioNerDS had a lower F-measure of 23.69% for exact match and 49.05%

for inexact match. The performance of inexact match was much higher than that of exact

match may be because their definition of software name was not exactly the same as ours.

The model with baseline feature yielded an F-measure of 68.57% for exact match and

77.99% for inexact match, with very low recalls (59.38% for exact match and 67.54% for

Wei et al. Page 6

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

inexact match). Surprisingly, using the dictionary of software names collected from existing

repositories did not have much influence on the performance, whereas the orthographic and

section features increased the performance consistently. Since software names in the

dictionary were mainly collected from general domain and the size of the dictionary was not

very large, only a few software names in our corpus were covered by it. Besides, software

names are usually composed of all upper letters or some words with the initial letter

capitalized and usually occur at the beginning of titles. Therefore, for software names not

present in the dictionary, the orthographic and section features are more helpful. By adding

discrete word representation features, the recall (exact: 60.32% vs 63.82%; inexact: 68.92%

vs 73.31%) and F-measure (exact: 68.93% vs 70.73%; inexact: 78.76% vs 81.24%) were

increased significantly, with slight sacrifice of precision (exact: 80.40% vs 79.31%; inexact:

91.86% vs 91.10%). Furthermore, the clustering-based word representation features

improved the performance of both the precision and recall. Among all the rules used in the

post-processing step, the rule (2) contributed the most to increase the recall (exact: 65.32%

vs 72.20%; inexact: 75.36% vs 87.79%). Finally, the post-processing step boosted the recall

(exact: 64.59% vs 71.53%; inexact: 73.81% to 87.07%) and achieved the optimal F-measure

of 86.35% for inexact match.

The performance of our systems on software recognition from titles is reported in Table 4.

Overall, the improvements of performance followed similar trends as in Table 3, by adding

different features incrementally. Notably, the optimal performance of recognizing

biomedical software from the titles was much higher than recognizing all types of software

from the abstracts, with an F-measure of 80.84% for exact match and 91.79% for inexact

match, respectively.

Finally, our optimal system extracted 19,557 software names from 18,409 titles of 4636

journals. A prototype version of the generated biomedical software index can be accessed at

https://sbmi.uth.edu/ccb/resources/biomedicalSoftware.htm.

Discussion

Biomedical software is one of the critical and fundamental resources for biomedical research

and applications. This study created a corpus of software from biomedical literature by

manual annotation and built automatic software recognition systems based on it. Our best

system achieved an F-measure of 91.79% for recognizing the biomedical software in titles

and an F-measure of 86.35% for recognizing both biomedical software and the auxiliary

software in its configuration environment in titles and abstract, demonstrating the feasibility

of using machine learning-based methods to build high-quality software repositories

automatically for the biomedical domain. To the best of our knowledge, this is the first

attempt to build practical software recognition systems for the biomedical domain.

In order to further improve our software recognition systems, we manually analyzed the

current prediction errors and summarized the major reasons as listed in Table 5: (1) The

main causes of false-positive errors are that some biomedical concepts have similar

orthographic characteristics or similar surrounding contexts as the software names. For

example, the AD in example (a) is the abbreviation of Alzheimer’s disease, and the SMAT80

Wei et al. Page 7

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sbmi.uth.edu/ccb/resources/biomedicalSoftware.htm

in example (b) is actually a substitution matrix for protein alignment. Similar to software

names, they are also composed of upper letters and digits. Another challenge is caused by

the similar context of some expressions with software names (such as in example (c)), which

cannot be handled by our current features. In fact, there are multiple types of non-software

concepts bearing similar orthographic characteristics or contexts as software names. As

illustrated in Figure 4, biological concepts account for 32% and biomedical method names

account for 22% of such errors. One possible solution is to employ additional dictionaries of

these types of concepts to remove false positives. Besides, the complex syntactic structures

of sentences are another cause for false-positive cases. In example (d), the sentence contains

the word “algorithm,” indicating that related entities are not software names. However, our

system failed to recognize the parallel structure among “TSP”, “k-TSP”, “TST” and

“DIRAC” currently. Pattern-based rules or syntactic features need to be added in the future

to resolve such type of errors. (2) For false-negative errors, lack of sufficient context

(example (e)) and rare patterns of context (examples (f)–(i)) are the two major causes.

Despite the fact that some contexts contain words or syntactic structures that can help to

indicate the presence of software names, these diverse patterns have relatively low

frequencies in the corpus, and as a result, they are poorly modeled by the machine-learning

algorithm. Enlarging the training corpus may help to increase the coverage of effective

features in the next step.

Our systems had a much higher performance evaluated by inexact match than by exact

match (F-measure: 70.94% vs 86.35%). One possible reason could be that our current

guideline required annotating the longest noun phrase of software names, which include

articles, adjectives and other modifiers. The system may have only labeled the software

names without modifiers. For example, in the sentence “… and computer-assisted

PredictAD tool.,” the noun phrase “computer-assisted PredictAD tool” is annotated as the

complete software name. However, only “PredictAD tool” was recognized as the software

name by our system, which already contained the key information for retrieving the software

from biomedical resources. Therefore, we argue that inexact matching could be reasonable

in software recognition and the current system has achieved a performance that would be

useful for practical applications. Furthermore, we may further expand the scope of inexact

match by using semantic types and synonyms in the hierarchical structures of existing

ontologies to catch the most informative part of predictions.

There are several limitations to our work. Currently, we only used a short list of keywords to

retrieve literature of biomedical software from PubMed. An expanded keyword set will be

used to enrich the corpus in the next step, in order to cover more software types and diverse

features for a more robust software recognition system. Besides, additional domain

knowledge and patterns-based features can be employed to further enhance the software

recognition performance. Amith et al. developed an ontology-driven method to recognize

software names.18 In their work, a corpus of 185 titles and abstracts was used, which was

insufficient to build machine learning-based models. The performance of the proposed

ontology-driven method (F-measure: 0.53) also did not reach the requirement for practical

applications, due to the limited coverage of the employed ontology for the large amount of

software names and patterns in biomedical literature. Similarly, the reason why the baseline

system bioNerDS had a lower recall (recall: 0.39; F-measure: 0.49) was potential that the

Wei et al. Page 8

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

bioNerDS was a rule-based system, and the rules developed on training set of limited

journals cannot cover patterns in both of their and our test sets. In future, we will develop a

system that combines machine learning–based methods and ontology-driven methods for

potential improvement of performance. Moreover, we will extend our work to extract

additional metadata of software from other structured fields in MEDLINE and linked

software portals (e.g. GitHub), such as journal names, author and funding information,

official website, functions of software and so on, to build a software repository with

comprehensive information for the biomedical research community. We will create a

repository of biomedical software that can update software from multiple sources

automatically using our software recognition system, to assist researchers with an efficient

access to the most updated software resources.

Conclusion

Biomedical software is one of the critical and fundamental resources for biomedical research

and applications. This study takes the initiative to create a corpus of software from

biomedical literature and build automatic software recognition systems based on it. The

promising performance of the systems indicates the feasibility of building high-quality

software repositories automatically for the biomedical domain.

Acknowledgements

We thank Dr Jun Xu and Jingqi Wang for their valuable assistance.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of
this article: This project was supported by BioCADDIE: Biomedical and healthCAre Data Discovery and Indexing
Engine center (NIH 1U24HL126126-01) and the UTHealth Innovation for Cancer Prevention Research Training
Program and its Summer Intern Program (Cancer Prevention & Research Institute of Texas grant no. RP160015).

References

1. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 2004; 5(10): R80. [PubMed: 15461798]

2. Gómez J, García LJ, Salazar GA, et al. BioJS: an open source JavaScript framework for biological
data visualization. Bioinformatics 2013; 29(8): 1103–1104. [PubMed: 23435069]

3. Bhagat J, Tanoh F, Nzuobontane E, et al. BioCatalogue: a universal catalogue of web services for
the life sciences. Nucleic Acids Res 2010; 38: W689–W694. [PubMed: 20484378]

4. Ison J, Rapacki K, Ménager H, et al. Tools and data services registry: a community effort to
document bioinformatics resources. Nucleic Acids Res 2015; 44: D38–D47. [PubMed: 26538599]

5. Henry VJ, Bandrowski AE, Pepin A-S, et al. OMICtools: an informative directory for multi-omic
data analysis. Database 2014; 2014: bau069.

6. Wang W, Bleakley B, Ju C, et al. Aztec: a platform to render biomedical software findable,
accessible, interoperable, and reusable, 2017, https://arxiv.org/abs/1706.06087

7. Ozyurt IB, Grethe JS, Martone ME, et al. Resource Disambiguator for the web: extracting
biomedical resources and their citations from the scientific literature. PLoS ONE 2016; 11(1):
e0146300. [PubMed: 26730820]

8. Duck G, Nenadic G, Filannino M, et al. A survey of bioinformatics database and software usage
through mining the literature. PLoS ONE 2016; 11(6): e0157989. [PubMed: 27331905]

Wei et al. Page 9

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1706.06087

9. Soysal E, Wang J, Jiang M, et al. CLAMP—a toolkit for efficiently building customized clinical
natural language processing pipelines. J Am Med Inform Assoc 2018; 25: 331–336. [PubMed:
29186491]

10. Cho H-C, Okazaki N, Miwa M, et al. Named entity recognition with multiple segment
representations. Inf Process Manag 2013; 49(4): 954–965.

11. Tang B, Feng Y, Wang X, et al. A comparison of conditional random fields and structured support
vector machines for chemical entity recognition in biomedical literature. J Cheminform 2015; 7:
S8. [PubMed: 25810779]

12. Van Antwerp M and Madey G. Advances in the sourceforge research data archive. In: Workshop
on public data about software development (WoPDaSD) at the 4th international conference on
open source systems, Milan, 2008, https://flosshub.org/sites/flosshub.org/files/srda2008.pdf

13. Collobert R and Weston J. A unified architecture for natural language processing: deep neural
networks with multitask learning In: Proceedings of the 25th international conference on machine
learning, Helsinki, 5–9 7 2008, pp. 160–167. New York: ACM.

14. Mnih A and Hinton GE. A scalable hierarchical distributed language model In: Advances in neural
information processing systems, Vancouver, BC, Canada, 2009, pp. 1081–1088, https://
papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf

15. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space,
2013, https://arxiv.org/abs/1301.3781

16. Guo J, Che W, Wang H, et al. Revisiting embedding features for simple semi-supervised learning.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), Doha, Qatar, 25–29 10 2014, pp. 110–120. Stroudsburg, PA: Association for
Computational Linguistics.

17. Duck G, Nenadic G, Brass A, et al. bioNerDS: exploring bioinformatics’ database and software use
through literature mining. BMC Bioinformatics 2013; 14: 194. [PubMed: 23768135]

18. Amith M, Zhang Y, Xu H, et al. Knowledge-based approach for named entity recognition in
biomedical literature: a use case in biomedical software identification In: International conference
on industrial, engineering and other applications of applied intelligent systems, Arras, 27–30 6
2017, pp. 386–395. Cham: Springer.

Wei et al. Page 10

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://flosshub.org/sites/flosshub.org/files/srda2008.pdf
https://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
https://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
https://arxiv.org/abs/1301.3781

Figure 1.
Study design for automated software recognition from biomedical literature.

Wei et al. Page 11

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
An example of annotated biomedical literature for software names.

Wei et al. Page 12

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
An example of BIO representation of software names.

Wei et al. Page 13

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Distribution of types of concepts misrecognized as software names.

Wei et al. Page 14

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 15

Table 1.

Example of features for developing machine-learning model.

Feature type Feature values

Word shape feature StemWord=[wommbat], WordShapel=[AaAAAAA], …

N-gram feature …, TRIGRAM0=[present+wommbat+(], …, BIGRAM-2=[we+present], …, BIGRAM0=[wommbat
+(] …, BIGRAM2=[work+memori] …

Sentence feature SentFeaLen=[6+], SEN_STARTWITH_ENUM=[FALSE], …

Prefix-suffix feature Prefix1=[W], Prefix2=[Wo], Prefix3=[WoM], …, Suffix1=[T]

Section feature Section=[ABSTRACT]

Software name dictionary feature DictFeaUNI-1=[TK], DictFeaUNI-0=[TK], DictFeaUNI+1=[TK],…

Orthographic feature RegCAPSMIX=[TRUE], RegEND_PUNCTATION=[FALSE], RegHAS_CAP=[TRUE],
RegIS_DASH=[FALSE], …

Word embedding feature (clustering) EB_0=[NEU], EB_1=[NEU], EB_2=[NEU], EB_3=[NEU], EB_4=[POS], EB_5=[NEU], …

Word embedding feature (discretization) DLFeaUNI-1=[642], DLFeaUNI-0=[N], DLFeaUN+1=[382], …

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 16

Table 2.

Summary of rules for post processing.

Description

Patterns (a)The string that is at the beginning of a title and followed by a colon, hyphen and so on could be a software name.

(b)The string has a pattern of “the * software | package | library | tool | toolkit | bundle | browser” could be a software name.

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 17

Table 3.

Performance of software name recognition from biomedical literature (%).

Precision Recall F-measure

Baseline system bioNerDS Exact 31.52 18.98 23.69

Inexact 65.25 39.29 49.05

Baseline feature Exact 81.12 59.38 68.57

Inexact 92.27 67.54 77.99

Domain knowledge feature

 Dictionary feature Exact 81.07 59.43 68.59

Inexact 92.20 67.59 78.00

 Orthographic feature Exact 80.78 59.93 68.81

Inexact 92.15 68.37 78.50

 Section feature Exact 80.40 60.32 68.93

Inexact 91.86 68.92 78.76

Word representation feature

 Discrete word embedding feature Exact 79.31 63.82 70.73

Inexact 91.10 73.31 81.24

 Clustering of word embedding feature Exact 79.84 64.59 71.41

Inexact 91.22 73.81 81.60

 Post-processing: rule (1a) Exact 79.28 64.76 71.29

Inexact 91.24 74.53 82.04

 Post-processing: rule (1b) Exact 78.78 65.32 71.42

Inexact 90.90 75.36 82.40

 Post-processing: rule (2) Exact 69.65 72.20 70.90

Inexact 84.69 87.79 86.21

 Post-processing: rule (3) Exact 70.36 71.53 70.94

Inexact 85.64 87.07 86.35

Each type of feature was added into the software recognition system incrementally.

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 18

Table 4.

Performance of software name recognition from titles of biomedical literature (%).

Precision Recall F-measure

Baseline system bioNerDS

Exact 38.73 21.47 27.63

Inexact 76.88 42.77 54.96

Baseline feature

Exact 90.91 70.51 79.42

Inexact 97.11 75.32 84.84

Domain knowledge feature

 Dictionary feature

Exact 90.98 71.15 79.86

Inexact 96.72 75.64 84.89

 Orthographic feature

Exact 87.27 74.68 80.48

Inexact 94.38 80.77 87.05

 Section feature

Exact 86.19 74.04 79.66

Inexact 93.66 80.45 86.55

Word representation feature

 Discrete word embedding feature

Exact 88.89 76.92 82.47

Inexact 95.19 82.37 88.32

 Clustering of word embedding feature

Exact 87.41 77.88 82.37

Inexact 94.24 83.97 88.81

 Post-processing: rule (1a)

Exact 84.25 78.85 81.46

Inexact 94.18 88.14 91.06

 Post-processing: rule (1b)

Exact 84.25 78.85 81.46

Inexact 94.18 88.14 91.06

 Post-processing: rule (2)

Exact 81.23 80.45 80.84

Inexact 92.23 91.35 91.79

 Post-processing: rule (3)

Exact 81.23 80.45 80.84

Inexact 92.23 91.35 91.79

Each type of feature was added into the software recognition system incrementally.

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 19

Table 5.

Reasons and examples of false-positive and false-negative errors in software recognition from biomedical

literature.

Error type Reasons Examples

False positive Similar orthographic
characteristics

(a) Predicting AD conversion: comparison between prodromal AD guidelines and
computer-assisted PredictAD tool.

(b) Similarly, one of the SMAT80 detected proteases was predicted to be a rhomboid
protease.

Similar context (c) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/
Illumina FASTQ variants.

Complex syntactic structure (d) One family of algorithms that has proven useful for disease classification is based on
relative expression analysis and includes the Top-Scoring Pair (TSP), k-Top-Scoring Pairs
(k-TSP), Top-Scoring Triplet (TST) and Differential Rank Conservation (DIRAC)
algorithms.

False negative Lack of context Rare pattern (e) The time consumption was as following: at analysis by CAMI, …

(f) The purpose of this work is to introduce the reader to an Addin implementation,
Decom.

(g) RESULTS: A Perl script package called emerencia is presented.

(h) MSDB also contains other two subprograms: SWR, which is …, and SWP, which is ….

(i) A thorough user’s guide is available within T4.

AD: Alzheimer’s disease; MSDB: Microsatellite Search and Building Database; SWR: search within results; SWP: sliding window plot.

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

	Abstract
	Introduction
	Materials and method
	System overview
	Dataset and annotation
	Software entity recognition
	Feature extraction
	Basic features
	Word shape feature:
	N-gram feature:
	Sentence feature:
	Prefix–suffix feature:

	Domain knowledge features
	Section feature:
	Dictionary feature:
	Orthographic feature:

	Unsupervised word representation features
	Word embedding feature:

	Machine-learning method
	Rule-based post-processing
	Experiments and evaluation

	Results
	Discussion
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

