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Abstract

Software tools now are essential to research and applications in the biomedical domain. However, 

existing software repositories are mainly built using manual curation, which is time-consuming 

and unscalable. This study took the initiative to manually annotate software names in 1,120 

MEDLINE abstracts and titles and used this corpus to develop and evaluate machine learning-

based named entity recognition systems for biomedical software. Specifically, two strategies were 

proposed for feature engineering: (1) domain knowledge features and (2) unsupervised word 

representation features of clustered and binarized word embeddings. Our best system achieved an 

F-measure of 91.79% for recognizing software from titles and an F-measure of 86.35% for 

recognizing software from both titles and abstracts using inexact matching criteria. We then 

created a biomedical software catalog with 19,557 entries using the developed system. This study 

demonstrates the feasibility of using natural language processing methods to automatically build a 

high-quality software index from biomedical literature.
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Introduction

Biomedical research is a data-intensive field. With the growth of advanced high-throughput 

technologies, large amounts of biomedical data are being generated at an exponential rate. 

Thus, software tools, which are used to manage, normalize and analyze data, become 

essential for biomedical research and applications. As the ease of sharing data and therefore 

reuse of data has amplified tremendously, there is immediate need to be able to utilize the 

appropriate means for data analyses. This coupling of the data and the software tools is also 

necessary for reproducibility of results from existing datasets, an essential step to build 

further on interesting hypothesis and moving the field forward. To facilitate the 

reproducibility of biomedical research and applications, software is an indispensable part in 

the biomedical digital ecosystem for making biological objects Findable, Accessible, 

Interoperable and Reusable (FAIR). Thus, it is critical to build a comprehensive, high-

quality software index for the biomedical domain.

Biomedical researchers have recognized the importance of software in the digital ecosystem, 

and existing efforts have focused on building software repositories. For example, 

Bioconductor is a collection of open-source tools for analysis of high-throughput genomic 

data,1 BioJS provides tools for biological data visualization,2 and BioCatalogue is a 

universal catalog of web services,3 to name a few. Moreover, to maintain a foundation of 

sustainable updates and quality assurance of software repositories in the long term,4 

community efforts have been spent on aggregating multiple existing software collections 

into more unified, well-organized large-scale repositories. For example, OMICtools5 collect 

web-accessible tools related to analysis of omics data. ELIXIR4 is the European 

infrastructure for biological information charged with developing various resource and 

software repositories. A recent repository of biomedical tools and resources, Aztec,6 hosts 

software collected from publications, other indexes, user submissions and funding sources.

Given the rapid growth of the number of new software tools in the biomedical domain, the 

biomedical communities have recognized that manual curation and voluntary user 

registration is inefficient for maintaining an up-to-date software collection. One emerging 

direction is extracting software information from published articles automatically using 

natural language processing (NLP)-based methods. As an assistance to manual curation, 

Ozyurt et al.7 developed a tool to extract URLs from papers to screen resource candidates 

for the Neuroscience Information Framework (NIF) Registry. Wang et al.6 also identified 

public software repository URLs (e.g. GitHub) and used heuristic rules to extract software 

names from publication titles if no URL is available. However, no systematic evaluation and 

software recognition system was reported in their work so far.6 Duck et al. used dictionaries 

and heuristic rules to extract biomedical databases and software names from the full text of 

literature. In addition, a machine learning-based classifier was developed based on the 

matched rules to further filter false-positive errors.8 However, modest performance was 

obtained by their approach, with F-measures lower than 70%.8 Besides, the aim of their 

research was to investigate the usage of biomedical databases and software across different 

studies by checking their occurrences in literature, rather than building a software index for 

the biomedical domain.8
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In fact, the task of identifying software names from biomedical literature is not trivial, with 

multiple variations and ambiguous expressions of software names.8 Besides, the auxiliary 

software information such as operation systems and backend supporting computational tools 

are also important for the configuration, implementation and practical application of 

biomedical software. Aimed at building an automatic software recognition system for 

practical use, in this study, we created a relatively large corpus with annotated software 

names and used it to develop a high-performance machine learning–based software 

recognition system. Multiple groups of features were applied, including common NLP 

features, domain knowledge features of dictionaries, software name patterns and locations 

and more advanced features of unsupervised word representations generated by deep-

learning-based methods from a large unlabeled biomedical literature corpus. We also 

conducted a detailed analysis of the system’s errors and classified ambiguities between 

software names and other biomedical entities, enabling future improvement. Furthermore, 

we applied the automatic software recognition system on MEDLINE titles and generated a 

catalog of biomedical software with 19,557 entries.

Materials and method

System overview

Figure 1 illustrates the study design for automated software extraction from biomedical 

literature. First of all, a software corpus was built from literature in PubMed by manual 

annotation, from which the software recognition system was developed. The software corpus 

included 1120 abstracts and titles, in which software names are labeled. The corpus was 

divided into training set and test set for developing software recognition system and 

evaluation. The details of the software corpus were described in section “Dataset and 

annotation”. Specifically, the software recognition problem was treated as a typical named 

entity recognition (NER) task. First of all, a preprocessing step of sentence segmentation and 

tokenization was performed to obtain all tokens of each abstract and title. Then, various 

types of features were extracted for each token (details are in section “Software entity 

recognition”). The sentences were then represented as sequential labels of B, I and O, and 

each token of a sentence could be one of them (details are in section “Software entity 

recognition”). The automated software recognition system included the machine-learning 

model and rule-based post processing: (1) based on these features and sequential labels of 

sentences in the training set, the machine-learning algorithm of conditional random fields 

was used to generate the machine-learning model and (2) then some rules and patterns were 

applied to further reduce errors generated by the model. We evaluated our system on the test 

set. Finally, we use our system to generate a high software index on a large collection of 

MEDLINE titles.

Dataset and annotation

The Medline collection of research articles were retrieved from PubMed with keywords of 

“software,” “tool,” “toolkit” and “system” in the fields of title or abstract. The top 1120 

abstracts with titles from the result list were used for annotation. A guideline was developed 

to annotate software name manually. The longest noun phrase representing a software name 

was labeled, which included the software name, its modifiers, abbreviation and version 
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number. The software annotated in this study consists of both the core software as the main 

topic of the article and auxiliary software related to its configuration environment. The 

mentions of databases and general programming languages were excluded. The toolkit 

CLAMP was used for annotation in this study.9 Figure 2 illustrates one example of 

annotated biomedical literature for software names.

In total, the software corpus contained 1120 articles with annotated titles and abstracts. For 

systematic evaluation of the generated software recognition system, two-thirds of the dataset 

were randomly selected as the training set and the remaining one-third were used as the test 

set.

Software entity recognition

The recognition of software name is a typical NER problem in the area of NLP, which could 

be viewed as a sequential labeling problem.10 Each token in the sentence can be represented 

as one of “B,”“I” and “O” labels. “B” means the beginning of a software name, “I” 

represents the other words in the software name and “O” represents words that are not inside 

software names. In this way, the object of this task is converted into finding the hidden labels 

for all tokens inside a sentence simultaneously (Figure 3).10

In this study, we used multiple types of features to recognize software name. In order to 

better examine their effects on recognition of software name, they are classified into three 

groups. The first group includes the most common NER features,11 such as word shape 

feature, n-gram feature, prefix and suffix feature, sentence feature and part-of-speech 

feature, which were used to build a baseline system. Moreover, we also investigated a group 

of features derived from domain knowledge, as well as a group of word representation 

features generated by unsupervised learning from biomedical literature text. All the features 

are described in detail in the following. Table 1 showed an example of all extracted features 

for the word WoMMBAT from Figure 2. Each type of feature had some specific features, 

which were represented as “NAME=[VALUE]”.

Feature extraction

Basic features

Word shape feature: stemmed tokens and shapes of tokens. For example, the feature of 

token “Medicine” is “medicin” and “Aaaaaaaa”.

N-gram feature: bi-grams and tri-grams representing the context of the token with a window 

size of [−3,3].

Sentence feature: sentence attributes such as the length of the sentence, the POS-tag of the 

beginning word and the ending punctuation.

Prefix–suffix feature: the first and last m (m = 1, 2, 3) characters of a token.

Domain knowledge features

Section feature: whether the token is inside the title or the abstract.
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Dictionary feature: a dictionary of software names collected from the AZTEC6 and 

SourceForge12 was used to match candidate software names, which included 52,496 

software names. Tokens and their bi-gram within windows size of [−2, 2] of the token will 

be examined whether they are in the dictionary. If they are in the dictionary, the feature was 

set to its semantic type in the dictionary, otherwise it was set to “TK”.

Orthographic feature: software names are typically formed by mixtures of characters with 

uppercases, lowercases, digits and some specific punctuations (e.g., “-”). Regular expression 

rules were used to capture the orthographic characteristics of tokens for candidate software 

names and generate multiple features. If the token met one orthographic characteristics, the 

feature of the token on this characteristics would be set to “TRUE”, otherwise it will be set 

to “FALSE”.

Unsupervised word representation features

Word embedding feature: Word representation features were generated from a corpus of 

unlabeled abstracts from PubMed. Specifically, we used word embeddings that produced a 

distributional word representation for each word in an unlabeled corpus as a real-valued 

vector using neural networks.13–15 First, we clustered tokens into 1000 groups based on the 

similarity among their real-valued word embeddings and used the cluster labels as features 

(word embedding feature, clustering). Moreover, we used the binarized word embedding 

feature proposed in 2014 by Guo et al.16 (word embedding feature, discretization). The 

intuition of the binarized embedding feature is to discretize the original real-valued matrix of 

word embeddings15 and omit the insignificant dimensions. Thus, the less frequent terms are 

generalized together with other syntactically/semantically relevant terms of higher 

frequency.

Machine-learning method

The state-of-the-art machine learning–based algorithm of Conditional Random Fields (CRF) 

is used for NER. Particularly, CRFsuite (http://www.chokkan.org/software/crfsuite/) was 

used as the implementation of CRF. A java script was used to generate features mentioned 

above for each word. We trained the CRF models using the training set. And by using 

different combination of features, we obtained multiple models, which were used for 

evaluating the effects of these features on the task. Then, we used these models to recognize 

software names in the test set.

Rule-based post-processing

Some rules were applied to the output of the machine learning-based software recognition 

model to fix obvious errors and further enhance the recognition performance:

1. Common patterns of software names were used to identify software entities, 

especially in titles. Basically, common key words and patterns were used to 

locate software names, as summarized in Table 2. Based on these patterns, 

regular expressions were used to extract software names. For example, “GOAL” 

is a software name in the title of “GOAL: a software tool for assessing biological 

significance of genes groups.”
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2. Although a software name can occur multiple times in an abstract, some of the 

mentions may be misrecognized due to the rare surrounding context. To address 

this problem, we conducted a dictionary lookup by exact match in the abstract, 

using the recognized entities as a lexicon. If there was a string that matched the 

recognized entity, then the string was labeled as a new entity.

3. Additional dictionaries of programming languages were used to filter out false-

positive software names.

Experiments and evaluation

In this study, we started with a baseline system that implemented common features including 

bag-of-word, word shape information, morphological information and part of speech (POS). 

We also used a software name recognition system bioNerDS as baseline.17 The bioNerDS 

aimed to recognize database and software mentions in literature, which had the same goal as 

us. The bioNerDS was a rule-based system that first used dictionary lookup to recognize 

software names and then used some patterns to recognize software names not in dictionary. 

The system was developed on a set of 30 full-text articles and tested on two sets of 25 and 5 

full-text articles, respectively, which had a lenient F1 score of 0.63 and 0.91 on two test sets. 

Then, we evaluated the effects of domain knowledge-based features and unsupervised word 

representation features. Features in different groups were added to the feature set 

incrementally to examine their impact on the performance of the system. Finally, in the post-

processing step, rules were applied to the prediction from the machine-learning model.

The performance of micro-averaged precision, recall and F-measure evaluated by exact and 

inexact match was reported. In the exact match, the predicted entity has the same offset as 

that in the Gold standard set; while in the inexact match setting, the prediction and the Gold 

standard annotation have at least an overlap in their offsets. Besides, as mentioned in the 

“Materials and method” section, both biomedical software as the core target of this study 

and software related to its configuration environment were recognized by our automatic 

system. We examined the performance of the systems for recognizing all the annotated 

software, as well as only recognizing biomedical software, that is, the core target, separately. 

Since most of the biomedical software names have their first occurrence in the titles, the 

performance of our systems on software recognition from titles was also reported.

We further applied the software recognition system with the optimal performance to a large 

collection of MEDLINE titles to generate a high-quality software index. In total, 117,546 

MEDLINE titles were retrieved from PubMed using the software keywords as queries.

Results

Table 3 shows the performance of the software recognition system on the test set. The 

baseline system bioNerDS had a lower F-measure of 23.69% for exact match and 49.05% 

for inexact match. The performance of inexact match was much higher than that of exact 

match may be because their definition of software name was not exactly the same as ours. 

The model with baseline feature yielded an F-measure of 68.57% for exact match and 

77.99% for inexact match, with very low recalls (59.38% for exact match and 67.54% for 
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inexact match). Surprisingly, using the dictionary of software names collected from existing 

repositories did not have much influence on the performance, whereas the orthographic and 

section features increased the performance consistently. Since software names in the 

dictionary were mainly collected from general domain and the size of the dictionary was not 

very large, only a few software names in our corpus were covered by it. Besides, software 

names are usually composed of all upper letters or some words with the initial letter 

capitalized and usually occur at the beginning of titles. Therefore, for software names not 

present in the dictionary, the orthographic and section features are more helpful. By adding 

discrete word representation features, the recall (exact: 60.32% vs 63.82%; inexact: 68.92% 

vs 73.31%) and F-measure (exact: 68.93% vs 70.73%; inexact: 78.76% vs 81.24%) were 

increased significantly, with slight sacrifice of precision (exact: 80.40% vs 79.31%; inexact: 

91.86% vs 91.10%). Furthermore, the clustering-based word representation features 

improved the performance of both the precision and recall. Among all the rules used in the 

post-processing step, the rule (2) contributed the most to increase the recall (exact: 65.32% 

vs 72.20%; inexact: 75.36% vs 87.79%). Finally, the post-processing step boosted the recall 

(exact: 64.59% vs 71.53%; inexact: 73.81% to 87.07%) and achieved the optimal F-measure 

of 86.35% for inexact match.

The performance of our systems on software recognition from titles is reported in Table 4. 

Overall, the improvements of performance followed similar trends as in Table 3, by adding 

different features incrementally. Notably, the optimal performance of recognizing 

biomedical software from the titles was much higher than recognizing all types of software 

from the abstracts, with an F-measure of 80.84% for exact match and 91.79% for inexact 

match, respectively.

Finally, our optimal system extracted 19,557 software names from 18,409 titles of 4636 

journals. A prototype version of the generated biomedical software index can be accessed at 

https://sbmi.uth.edu/ccb/resources/biomedicalSoftware.htm.

Discussion

Biomedical software is one of the critical and fundamental resources for biomedical research 

and applications. This study created a corpus of software from biomedical literature by 

manual annotation and built automatic software recognition systems based on it. Our best 

system achieved an F-measure of 91.79% for recognizing the biomedical software in titles 

and an F-measure of 86.35% for recognizing both biomedical software and the auxiliary 

software in its configuration environment in titles and abstract, demonstrating the feasibility 

of using machine learning-based methods to build high-quality software repositories 

automatically for the biomedical domain. To the best of our knowledge, this is the first 

attempt to build practical software recognition systems for the biomedical domain.

In order to further improve our software recognition systems, we manually analyzed the 

current prediction errors and summarized the major reasons as listed in Table 5: (1) The 

main causes of false-positive errors are that some biomedical concepts have similar 

orthographic characteristics or similar surrounding contexts as the software names. For 

example, the AD in example (a) is the abbreviation of Alzheimer’s disease, and the SMAT80 
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in example (b) is actually a substitution matrix for protein alignment. Similar to software 

names, they are also composed of upper letters and digits. Another challenge is caused by 

the similar context of some expressions with software names (such as in example (c)), which 

cannot be handled by our current features. In fact, there are multiple types of non-software 

concepts bearing similar orthographic characteristics or contexts as software names. As 

illustrated in Figure 4, biological concepts account for 32% and biomedical method names 

account for 22% of such errors. One possible solution is to employ additional dictionaries of 

these types of concepts to remove false positives. Besides, the complex syntactic structures 

of sentences are another cause for false-positive cases. In example (d), the sentence contains 

the word “algorithm,” indicating that related entities are not software names. However, our 

system failed to recognize the parallel structure among “TSP”, “k-TSP”, “TST” and 

“DIRAC” currently. Pattern-based rules or syntactic features need to be added in the future 

to resolve such type of errors. (2) For false-negative errors, lack of sufficient context 

(example (e)) and rare patterns of context (examples (f)–(i)) are the two major causes. 

Despite the fact that some contexts contain words or syntactic structures that can help to 

indicate the presence of software names, these diverse patterns have relatively low 

frequencies in the corpus, and as a result, they are poorly modeled by the machine-learning 

algorithm. Enlarging the training corpus may help to increase the coverage of effective 

features in the next step.

Our systems had a much higher performance evaluated by inexact match than by exact 

match (F-measure: 70.94% vs 86.35%). One possible reason could be that our current 

guideline required annotating the longest noun phrase of software names, which include 

articles, adjectives and other modifiers. The system may have only labeled the software 

names without modifiers. For example, in the sentence “… and computer-assisted 

PredictAD tool.,” the noun phrase “computer-assisted PredictAD tool” is annotated as the 

complete software name. However, only “PredictAD tool” was recognized as the software 

name by our system, which already contained the key information for retrieving the software 

from biomedical resources. Therefore, we argue that inexact matching could be reasonable 

in software recognition and the current system has achieved a performance that would be 

useful for practical applications. Furthermore, we may further expand the scope of inexact 

match by using semantic types and synonyms in the hierarchical structures of existing 

ontologies to catch the most informative part of predictions.

There are several limitations to our work. Currently, we only used a short list of keywords to 

retrieve literature of biomedical software from PubMed. An expanded keyword set will be 

used to enrich the corpus in the next step, in order to cover more software types and diverse 

features for a more robust software recognition system. Besides, additional domain 

knowledge and patterns-based features can be employed to further enhance the software 

recognition performance. Amith et al. developed an ontology-driven method to recognize 

software names.18 In their work, a corpus of 185 titles and abstracts was used, which was 

insufficient to build machine learning-based models. The performance of the proposed 

ontology-driven method (F-measure: 0.53) also did not reach the requirement for practical 

applications, due to the limited coverage of the employed ontology for the large amount of 

software names and patterns in biomedical literature. Similarly, the reason why the baseline 

system bioNerDS had a lower recall (recall: 0.39; F-measure: 0.49) was potential that the 
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bioNerDS was a rule-based system, and the rules developed on training set of limited 

journals cannot cover patterns in both of their and our test sets. In future, we will develop a 

system that combines machine learning–based methods and ontology-driven methods for 

potential improvement of performance. Moreover, we will extend our work to extract 

additional metadata of software from other structured fields in MEDLINE and linked 

software portals (e.g. GitHub), such as journal names, author and funding information, 

official website, functions of software and so on, to build a software repository with 

comprehensive information for the biomedical research community. We will create a 

repository of biomedical software that can update software from multiple sources 

automatically using our software recognition system, to assist researchers with an efficient 

access to the most updated software resources.

Conclusion

Biomedical software is one of the critical and fundamental resources for biomedical research 

and applications. This study takes the initiative to create a corpus of software from 

biomedical literature and build automatic software recognition systems based on it. The 

promising performance of the systems indicates the feasibility of building high-quality 

software repositories automatically for the biomedical domain.
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Figure 1. 
Study design for automated software recognition from biomedical literature.
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Figure 2. 
An example of annotated biomedical literature for software names.
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Figure 3. 
An example of BIO representation of software names.

Wei et al. Page 13

Health Informatics J. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Distribution of types of concepts misrecognized as software names.
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Table 1.

Example of features for developing machine-learning model.

Feature type Feature values

Word shape feature StemWord=[wommbat], WordShapel=[AaAAAAA], …

N-gram feature …, TRIGRAM0=[present+wommbat+(], …, BIGRAM-2=[we+present], …, BIGRAM0=[wommbat
+(] …, BIGRAM2=[work+memori] …

Sentence feature SentFeaLen=[6+], SEN_STARTWITH_ENUM=[FALSE], …

Prefix-suffix feature Prefix1=[W], Prefix2=[Wo], Prefix3=[WoM], …, Suffix1=[T]

Section feature Section=[ABSTRACT]

Software name dictionary feature DictFeaUNI-1=[TK], DictFeaUNI-0=[TK], DictFeaUNI+1=[TK],…

Orthographic feature RegCAPSMIX=[TRUE], RegEND_PUNCTATION=[FALSE], RegHAS_CAP=[TRUE], 
RegIS_DASH=[FALSE], …

Word embedding feature (clustering) EB_0=[NEU], EB_1=[NEU], EB_2=[NEU], EB_3=[NEU], EB_4=[POS], EB_5=[NEU], …

Word embedding feature (discretization) DLFeaUNI-1=[642], DLFeaUNI-0=[N], DLFeaUN+1=[382], …
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Table 2.

Summary of rules for post processing.

Description

Patterns (a)The string that is at the beginning of a title and followed by a colon, hyphen and so on could be a software name.

(b)The string has a pattern of “the * software | package | library | tool | toolkit | bundle | browser” could be a software name.
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Table 3.

Performance of software name recognition from biomedical literature (%).

Precision Recall F-measure

Baseline system bioNerDS Exact 31.52 18.98 23.69

Inexact 65.25 39.29 49.05

Baseline feature Exact 81.12 59.38 68.57

Inexact 92.27 67.54 77.99

Domain knowledge feature

 Dictionary feature Exact 81.07 59.43 68.59

Inexact 92.20 67.59 78.00

 Orthographic feature Exact 80.78 59.93 68.81

Inexact 92.15 68.37 78.50

 Section feature Exact 80.40 60.32 68.93

Inexact 91.86 68.92 78.76

Word representation feature

 Discrete word embedding feature Exact 79.31 63.82 70.73

Inexact 91.10 73.31 81.24

 Clustering of word embedding feature Exact 79.84 64.59 71.41

Inexact 91.22 73.81 81.60

 Post-processing: rule (1a) Exact 79.28 64.76 71.29

Inexact 91.24 74.53 82.04

 Post-processing: rule (1b) Exact 78.78 65.32 71.42

Inexact 90.90 75.36 82.40

 Post-processing: rule (2) Exact 69.65 72.20 70.90

Inexact 84.69 87.79 86.21

 Post-processing: rule (3) Exact 70.36 71.53 70.94

Inexact 85.64 87.07 86.35

Each type of feature was added into the software recognition system incrementally.
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Table 4.

Performance of software name recognition from titles of biomedical literature (%).

Precision Recall F-measure

Baseline system bioNerDS

Exact 38.73 21.47 27.63

Inexact 76.88 42.77 54.96

Baseline feature

Exact 90.91 70.51 79.42

Inexact 97.11 75.32 84.84

Domain knowledge feature

 Dictionary feature

Exact 90.98 71.15 79.86

Inexact 96.72 75.64 84.89

 Orthographic feature

Exact 87.27 74.68 80.48

Inexact 94.38 80.77 87.05

 Section feature

Exact 86.19 74.04 79.66

Inexact 93.66 80.45 86.55

Word representation feature

 Discrete word embedding feature

Exact 88.89 76.92 82.47

Inexact 95.19 82.37 88.32

 Clustering of word embedding feature

Exact 87.41 77.88 82.37

Inexact 94.24 83.97 88.81

 Post-processing: rule (1a)

Exact 84.25 78.85 81.46

Inexact 94.18 88.14 91.06

 Post-processing: rule (1b)

Exact 84.25 78.85 81.46

Inexact 94.18 88.14 91.06

 Post-processing: rule (2)

Exact 81.23 80.45 80.84

Inexact 92.23 91.35 91.79

 Post-processing: rule (3)

Exact 81.23 80.45 80.84

Inexact 92.23 91.35 91.79

Each type of feature was added into the software recognition system incrementally.
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Table 5.

Reasons and examples of false-positive and false-negative errors in software recognition from biomedical 

literature.

Error type Reasons Examples

False positive Similar orthographic 
characteristics

(a) Predicting AD conversion: comparison between prodromal AD guidelines and 
computer-assisted PredictAD tool.

(b) Similarly, one of the SMAT80 detected proteases was predicted to be a rhomboid 
protease.

Similar context (c) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/
Illumina FASTQ variants.

Complex syntactic structure (d) One family of algorithms that has proven useful for disease classification is based on 
relative expression analysis and includes the Top-Scoring Pair (TSP), k-Top-Scoring Pairs 
(k-TSP), Top-Scoring Triplet (TST) and Differential Rank Conservation (DIRAC) 
algorithms.

False negative Lack of context Rare pattern (e) The time consumption was as following: at analysis by CAMI, …

(f) The purpose of this work is to introduce the reader to an Addin implementation, 
Decom.

(g) RESULTS: A Perl script package called emerencia is presented.

(h) MSDB also contains other two subprograms: SWR, which is …, and SWP, which is ….

(i) A thorough user’s guide is available within T4.

AD: Alzheimer’s disease; MSDB: Microsatellite Search and Building Database; SWR: search within results; SWP: sliding window plot.
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