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Background. The aim of this study was to investigate the mechanism of Listeria monocytogenes (Lm) pathogenicity and resist-
ance. In addition, the effect of existing treatment options against Lm were systematically evaluated.

Methods. Six Lm isolates were collected and antimicrobial susceptibility testing of 15 antibiotics were done. Subsequently, whole ge-
nome sequencing and bioinformatics analysis were performed. Biofilm formation was evaluated by crystal violet staining. Furthermore, 
the effect of meropenem, linezolid, penicillin, vancomycin, and trimethoprim/sulfamethoxazole were determined using the time-kill assay.

Results. Four sequence types (STs) were identified (ST1, ST3, ST87, ST451). Multivirulence-locus sequence typing results classi-
fied ST87 isolates into cluster. All isolates were resistant to fosfomycin and daptomycin with fosX and mprF. In addition, a total of 80 
virulence genes were detected and 72 genes were found in all 6 isolates. Seven genes associated with hemolysin were found in 26530 
and 115423. However, due to lack of one genomic island including virulence genes related to flagellar synthesis, isolate 115423 pro-
duced less biofilm than 5 other isolates. Although all isolates were susceptible to vancomycin, the in vitro time-kill assay showed that 
vancomycin monotherapy resulted in less than 2 log10 cerebrospinal fluid (CFU)/mL compared with the initial count. Trimethoprim/
sulfamethoxazole at serum or CFU concentrations had bactericidal effect against tested Lm strains at 24 hours.

Conclusions. ST87 clone was a typical prevalent ST in clinical Lm isolates in China. Trimethoprim/sulfamethoxazole might be 
greater potential therapeutic option against Lm infections.

Keywords.  bactericidal effect; resistance mechanism; trimethoprim/sulfamethoxazole; virulent factors.

Listeria monocytogenes (Lm) is one of the most serious foodborne 
diseases, including a noninvasive type and an invasive type of 
listeriosis. According to the World Health Organization data, 
the incidence of Lm infections is 0.1 to 10 cases per 1 million 
people per year depending on different countries and regions of 
the world [1]. Recent largest outbreak of listeriosis was reported 
in South Africa from January 2017 to March 2018 [2]. In 2014, 
the Centers for Disease Control and Prevention (CDC) surveil-
lance data showed that 23% of patients with invasive listeriosis 
died, and most isolates were from blood (81%) or cerebrospinal 
fluid (CSF) (13%) [3]. In China, no outbreak of listeriosis have 
been reported so far [4]. Therefore, the information on Lm in-
fections is limited among the Chinese population.

The key to the pathogenesis of Lm is associated with vir-
ulence factors [5]. The therapeutic guidelines for Lm are 
not evident based on randomized clinical trials due to scat-
tered cases in clinics. Antibiotics, as key factors influencing 
the prognosis, is a vital part of treatment. Ampicillin or 
penicillin (PEN) along with aminoglycosides are used as 
the first choice; however, these antibiotics delayed bacte-
ricidal activity in vitro at levels that are obtainable in the 
CSF [6–8]. Moreover, meropenem (MEM), linezolid (LNZ), 
vancomycin (VAN), and trimethoprim/sulfamethoxazole 
(TMP/SMX) had a favorable effect on Lm infections as 
well [9–11]. It is unfortunate that comprehensive evalu-
ation and comparison of therapy data are quite limited. 
Therefore, the aim of this study was to assess the genomic 
profiles of Lm and examined in vitro time-kill assays to as-
sess antibacterial effect.

METHODS

Collection of Bacterial Strains

Six Lm isolates (23949, 26530, 34096, 112555, 115423, and 
117437) were collected from patients hospitalized at The First 
Affiliated Hospital, Zhejiang University School of Medicine. The 
bacterial species were identified with API Listeria (BioMérieux, 
Marcy l’Etoile, France).
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Antibiotic Susceptibility Test

The minimum inhibitory concentrations (MICs) for eryth-
romycin, levofloxacin, moxifloxacin, tetracycline, rifampin, 
amikacin, clindamycin, fosfomycin, PEN, MEM, LNZ, VAN, 
and TMP/SMX were determined by agar dilution method, 
and the susceptibility to tigecycline and daptomycin was tested 
by the broth dilution according to Clinical and Laboratory 
Standards Institute (CLSI) recommendations [12]. The control 
strain Streptococcus pneumoniae ATCC 49619 was included. 
The European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) breakpoint recommendations were chosen 
for erythromycin, PEN, MEM, VAN, and TMP/SMX. The 
results for other antibiotics were interpreted according to 
Staphylococcus spp by EUCAST criteria [13].

Genome Sequencing and Data Analysis

Genomic deoxyribonucleic acid (DNA) was extracted by 
QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). Whole 
genome sequencing was performed on the Illumina HiSeq 
PE150 platform at the Beijing Novogene Bioinformatics 
Technology Co., Ltd. All good-quality paired reads were as-
sembled using the SOAP de novo into several scaffolds. 
The pathogenicity was performed using Pathogen Host 
Interactions (PHI) [14]. The resistance genes and virulence 
genes were identified by VFDB (Virulence Factors Database) 
and ARDB (Antibiotic Resistance Genes Database) [15, 16]. 
The genomic island analysis was carried out using IslandPath-
DIOMB (https://github.com/brinkmanlab/islandpath). The 
sequencing data for Lm has been deposited at GenBank under 
the accessions numbers WJRX00000000, WJRY00000000, 
WJRZ00000000, JACXAW000000000, JACXAX000000000, and 
JACXAY000000000 (the data will be released after publication).

Multivirulence-Locus Sequence Typing Comparisons

Six Lm in the present study and 40 publicly available clinical Lm 
genomes (Supplementary Table 1) from China were analyzed by 
multivirulence-locus sequence typing (MVLST) using 6 genes 
(prfA, inlB, inlC, dal, clpP, and lisR) [17]. Multiple sequence 
alignments were performed using MEGA6 [18]. The resulting 
consensus tree was visualized and edited using the Interactive 
Tree of Life (iTOL) [19].

Anti-Biofilm Formation Testing

All isolates were inoculated into 96-well polystyrene microtiter 
plates containing brain-heart infusion medium and 3% (v/v) 
glucose for 24 hours, 48 hours, and 72 hours. After static incu-
bation, plates were washed with 0.9% saline and stained with 1% 
crystal violet (CV) for 20 minutes. The CV was then dissolved 

in absolute alcohol, and the absorbance was tested using a plate 
reader at 570 nm.

Time-Kill Assays

The bactericidal activity of 5 drugs (MEM, LNZ, PEN, VAN, 
and TMP/SMX) against 6 isolates was determined using the 
time-kill method described in the CLSI guidelines [20]. The 
following concentrations referring to human body pharma-
cokinetics (Supplementary Table 2) were used for serum and 
CSF concentrations: MEM 14.6  mg/L and 1.1  mg/L [21, 22], 
LNZ 4 mg/L and 1.8 mg/L [23], PEN 21 mg/L and 0.56 mg/L 
[24], VAN 13.32  mg/L and 10.64  mg/L [25], and TMP/SMX 
1.3/48.3 mg/L and 0.2/5.9 mg/L [26]. The time-kill assays were 
done and interpreted as described previously [22].

RESULTS

Antimicrobial Susceptibility and Sequence Types

Antimicrobial susceptibility tests demonstrated that 6 isolates 
were widely susceptible to clinically relevant antibiotics against 
Gram-positive bacteria, except for fosfomycin (MIC >128 mg/L) 
and daptomycin (MIC = 8 mg/L) (Table 1).

Five strains were isolated from blood and 1 strain, 26530, 
was isolated from CSF. Multilocus sequence typing revealed 
4 different sequence types (STs): (1) ST87 for isolates 23949, 
34096, and 117437, (2) ST3 for isolate 26530, (3) ST451 for iso-
late 112555, and (4) ST1 for isolate 115423, respectively. The 
MVLST based on 6 genes revealed 3 main clusters supported 
by bootstrap values of 97, 100, and 100, respectively. Cluster III 
contained all ST87 isolates (Figure 1).

Antibiotic Resistance Mechanism of Listeria monocytogenes

The resistant genes fosX, mprF, vanZ, norB, and vgaALC were 
identified in all isolates. The gene fosX conferred intrinsic re-
sistance to fosfomycin in Lm. MprF was linked to daptomycin 
resistance. VanZ was associated with glycopeptide antibiotics 
resistance, whereas all isolates were susceptible to vancomycin. 
NorB and VgaALC belonged to the efflux pump complex. The 
genes fosX, mprF, and vanZ were in the same contig. In addi-
tion, vanZ and mprF were downstream genes of fosX (Figure 2). 
Furthermore, site-specific DNA recombinase and gene related 
to DUF3883 domain-containing protein were found in the up-
stream of fosX in 26530.

Characteristics of Pathogenicity

There are 4 PHI phenotypes, including hypervirulence, loss of 
pathogenicity, reduced virulence, and unaffected pathogenicity. 
The gene gshF (PHI:3652) mutant led to a loss of pathogenicity 
phenotype in 23949, 26530, 34096, and 112555. The majority 
of phenotypes are reduced virulence. In addition, deletion of 2 
more genes, cadA (PHI:7386) and cadC (PHI:7387), in isolate 
26530 resulted in a reduced-virulence phenotype as well.

https://github.com/brinkmanlab/islandpath
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab177#supplementary-data
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There were 80 virulence genes detected and 72 genes were 
found in all 6 isolates (Supplementary Table 3). All isolates were 
positive for 26 genes participating in the structure (flaA-E, flaG, 

flaK, flaL, fliD-F, fliH, fliI, and fliS), biosynthesis (flhA, flhB, flhF, 
and fliP-R), and motor switch (fliG, fliM, lmo0693, lmo0698, 
lmo0700, and motA) of flagella. The other virulence genes were 

Table 1. Minimum Inhibitory Concentrations of 15 Antimicrobial Agents Against 6 Lm

Antibiotics 23949 26530 34096 112555 115423 117437

Penicillina 0.5 0.5 0.5 2 0.5 0.5

Meropenema 0.25 0.25 0.25 0.25 0.5 0.5

Erythromycina 0.125 0.125 0.125 0.25 0.125 0.125

Levofloxacinb 1 0.5 1 1 1 1

Moxifloxacinb 0.5 0.25 0.5 0.5 0.5 0.5

Tetracyclineb 0.5 0.5 0.5 0.5 0.25 0.25

Linezolidb 1 1 1 2 0.5 1

Vancomycina 1 1 1 0.5 0.25 1

Rifampinb 0.03 0.03 0.03 0.125 0.125 0.125

Daptomycinb 8 8 8 8 8 8

Tigecyclineb 0.25 0.25 0.25 0.5 0.25 0.25

Amikacinb 2 2 2 2 2 8

Trimethoprim-sulfamethoxazolea 0.0625/1.1875 0.0625/1.1875 0.0625/1.1875 0.016/0.304 0.032/0.608 0.008/0.152

Clindamycinb 0.5 0.5 0.5 0.25 0.25 2

Abbreviations: Lm, Listeria monocytogenes.
aBreakpoints for Lm.
bBreakpoints for Staphylococcus spp due to missing breakpoints for Lm.
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Figure 1. Unrooted maximum likelihood tree of 46 clinical Listeria monocytogenes isolates from China based on multivirulence-locus sequence typing comparisons.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab177#supplementary-data
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primarily involved with chemotaxis, protease, internalin, and 
metabolism, playing an important role in adhesion, invasion, 
inhibition of innate immune response, and autophagy evasion. 
It is of note that 8 genes (inlJ, llsB, llsD, llsG, llsH, llsP, llsX, and 
llsY) were found in 26530 isolated from CSF and 115423 iso-
lated from blood, 7 of which were associated with hemolysin.

Biofilm Formation

The tendency of biofilm formation increased with the time 
in all isolates (Supplementary Figure 1). However, isolate 
115423 produced less biofilm than 5 other isolates, especially 
at 48 hours and 72 hours, perhaps owing to lack of 1 genomic 
island including virulence genes (flgB, flgC, flgL, flgK, fliD-H, 
flil, and fliS) related to flagellar formation (Supplementary 
Figure 2).

Bacterial Time-Kill Effect

The growth and kill patterns of 6 Lm isolates cultured with 5 
antibiotics at serum and CSF concentrations are shown in Figure 
3. Trimethoprim/sulfamethoxazole can decrease the bacterial 
load >3.5 log10 colony-forming units (CFU)/mL compared with 
the initial count at both serum and CSF concentrations and 
showed bactericidal activity against the 6 isolates at 24 hours. Of 
note, for PEN, VAN, LNZ, and MEM monotherapy at CSF con-
centrations against isolate 26530, regrowth was observed after 
12 hours (Figure 3b and e). Except for 117437, the antibacterial 
effects of PEN, VAN, LNZ, and MEM at serum concentrations 
were better than these drugs at CSF concentrations. In addition, 
PEN at serum concentration showed bactericidal activity (>3 
log10 CFU/mL) against the 4 strains (23949, 34096, 112555, and 
115423). However, this effect has not been achieved at CSF con-
centration. In addition, although all isolates were susceptible to 
VAN, VAN monotherapy resulted in less than 2 log10 CFU/mL 
compared with the initial count. Thus, TMP/SMX showed more 
antibacterial activity than other antibiotics.

DISCUSSION

Listeria monocytogenes isolates could cause severe infections, 
such as septicemia and meningitis [2]. Although listeriosis is 

rare, the high mortality rate associated with this infection makes 
it a significant public health concern [27]. It is unfortunate that 
few randomized clinical trials focus on the system assessment 
for treatment options. In present experiments, we found that 
the ST87 clone was a common ST in clinical Lm isolates in 
China. Although all isolates were susceptible to VAN, the effect 
of VAN was still unsatisfactory. In addition, the strain 26530 
isolated from CSF existed gene recombination phenomena in 
the upstream of fosX, affecting bactericidal efficacy antibiotics. 
It is fortunate that the antibacterial effect of TMP/SMX was 
more distinctive than others antibiotics in vitro.

There are differences in prevalence of Lm clones among dif-
ferent regions and different sources [28]. Based on the MVLST 
results, ST87 clustered in the same lineage. Previous studies 
showed that the 3 most frequent STs among humans in Austria 
were ST1, ST155, and ST451, whereas ST87 was the most 
common in China [29, 30].

Virulence factors usually were the main pathogenicity for Lm 
infections. There were 72 virulence genes found in 6 isolates, 
which participated in different stages of pathogenesis. Listeria 
monocytogenes could enter host cells mediated by binding of 
the bacterial InlA protein to E-cadherin or InlB protein to MET 
receptor tyrosine kinase at the host cell plasma membrane at 
the host cell plasma membrane [31]. Based on in vitro studies, 
InlA and InlB are needed for crossing the blood-CSF barrier 
[32]. However, in our study, 6 isolates were only identified in the 
inlB gene. This might have been due to different pathogenesis 
by a different signaling pathway. In addition to internalin, many 
other virulence factors are also involved in the Lm infection 
cycle. A feature of highly virulent strains is their ability to lyse 
red blood cells by secreting hemolysins [33]. Yin et al [34] re-
ported a hybrid sublineage of Lm comprising hypervirulent iso-
lates, harboring both the Lm Pathogenicity Island (LIPI)-1 and 
a truncated LIPI-2 locus. Eight genes (inlJ, llsB, llsD, llsG, llsH, 
llsP, llsX, and llsY) were found in 26530 isolated from CSF and 
115423 isolated from blood, 7 of which were associated with 
hemolysin. However, the biofilm formation ability of isolate 
115423 was less than 5 other isolates. In further genomic islands 
analysis, researchers found that isolate 115423 lacked 1 genomic 

23 949
dak yhfA rlmD fosX bdlA rimJ zitB vanZ mprF recX     yfhJ    dut yfhP

34 096
112 555
115 423
117 437

23 949

Gene related to
DNA integration

Gene related to DUF3883
domain-containing protein

fosX bdlA rimJ zitB vanZ mprF

78 kb 80 kb 82 kb 84 kb 86 kb 88 kb 90 kb

recX   yfhJ      dut

Figure 2. Schematic diagram of the genetic environment of the fosX and mprF gene in this study. The arrows represent the positions and direction of the elements.
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island, including virulence genes related to flagellar synthesis. 
Previous studies demonstrated that flagellum-mediated mo-
tility could assist adherence to surfaces and differentiation into 
biofilms [35, 36].

In the present study, except for fosfomycin and daptomycin, 
the antibiotic resistance of clinical Lm remains low. The resistant 
genes fosX, mprF, and vanZ in the same contig were identified 
in all isolates. vanZ and mprF were downstream genes of fosX. 
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Figure 3. In vitro time-kill assays using serum and cerebrospinal fluid (CSF) concentrations of meropenem, linezolid, penicillin, vancomycin, and trimethoprim/sulfamethox-
azole. (a) and (d) The 5 antibiotics at serum and CSF concentrations against isolate 23949, respectively; (b) and (e) the 5 antibiotics at serum and CSF concentrations against 
isolate 26530, respectively; (c) and (f) the 5 antibiotics at serum and CSF concentrations against isolate 34096, respectively; (g) and (j) the 5 antibiotics at serum and CSF con-
centrations against isolate 112555, respectively; (h) and (k) the 5 antibiotics at serum and CSF concentrations against isolate 115423, respectively; (i) and (l) the 5 antibiotics 
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penicillin; TMP/SMX, trimethoprim/sulfamethoxazole; VAN, vancomycin. 
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Listeria monocytogenes are intrinsically resistant to cephalo-
sporins and fosfomycin [37]. FosX, as the fosfomycin resistance 
protein, catalyzes the hydration of fosfomycin. Previous studies 
showed that fosX-mediated resistance could be suppressed 
by hpt and prfA [38]. In addition, Scortti et al [38] suggested 
that Lm isolates could become susceptible to fosfomycin de-
spite that fosX confers high-level resistance. Although hpt and 
prfA were identified, all isolates in our study were resistant to 
fosfomycin in vitro.

As reported previously, a high daptomycin MIC was ob-
served in all isolates [39]. Daptomycin resistance has already 
been described in Staphylococcus spp and Enterococcus spp to 
involve certain genes (mprF, yycG, yycH, dltABCD, rpoB, rpoC, 
vraSR, and graSR), acquired mutations that have homologs in 
Lm [40]. It is notable that mprF is the most frequently described 
mutation in clinical isolates, including in our present study [41]. 
In addition, two efflux pumps genes (norB and vgaALC) were 
identified as well, resulting in the resistance by active export of 
antibiotics. Thus, additional research would be needed to assess 
the clinical efficacy and safety of current available antibiotics.

In general, PEN along with aminoglycosides is generally 
considered the preferred agent for treatment of listeriosis [7]. 
However, PEN, VAN, and imipenem have demonstrated de-
layed in vitro bactericidal activity at levels that are obtainable 
in the CSF [8, 42]. Listeria monocytogenes is highly susceptible 
to MEM in vitro, but data on the efficacy of MEM in clinical 
cases of listeriosis are scarce. In addition, MEM therapy failure 
in Lm has been reported [43]. Furthermore, an observational 
study showed that definitive therapy with MEM against Lm 
was associated with significantly higher 30-day mortality [44]. 
Likewise, VAN has been used successfully in a few patients with 
listeriosis who are allergic to PEN, but other patients have de-
veloped listerial meningitis [45–47]. Our study found that the 
bactericidal activity of VAN was less than 2 log10 CFU/mL, and 
those may be related to vanZ. However, the gene vanZ showed 
no effect on the phenotype of VAN resistance.

Trimethoprim/sulfamethoxazole is thought to be the best 
alternative single agent for patients intolerant of PEN as well. 
Our in vitro data showed that TMP/SMX had more anti-
bacterial activity than PEN, VAN, LNZ, and MEM at both 
serum and CSF concentrations. Appleman et  al [42] found 
that PEN, VAN, ampicillin, and imipenem with 2 mg/L and 
10  mg/L and TMP/SMX with 2/38  mg/L exhibited bacteri-
cidal activity for 48 hours. However, for 26530 isolated from 
CSF, PEN, VAN, LNZ, and MEM monotherapy at CSF con-
centrations showed regrowth after 12 hours. This is probably 
because gene recombination was found upstream of fosX in 
26530. There are many agents that are worthy of further re-
search and exploration of this finding. It is interesting to note 
that the concentrations for TMP/SMX depended on the clin-
ical therapeutic dose, which was lower than previous studies, 
and could also achieve durable bactericidal effect. In addition, 

clinical studies reported that 10 patients were treated with 
TMP/SMX alone and only 1 died [9, 48]. Together with pre-
vious studies, TMP/SMX could be an efficacious and inex-
pensive therapeutic option.

The study has several limitations, including the relatively 
small numbers of Lm- and in vitro-relative static time-kill ex-
periments. However, a system evaluation for treatment options 
is mandatory. Therefore, a further large-scale study is needed 
for better evaluation of the treatment options, to improve the 
prognosis of Lm infections.

CONCLUSIONS

In conclusion, clinical Lm infections remained sporadic in 
China. Virulence factors, associated with flagellar synthesis, 
could influence biofilm formation. Vancomycin has not yet 
shown promising antibacterial effect against VAN-sensitive 
LM. The most interesting observation is that TMP/SMX 
shows great potential as a therapeutic option for Lm infec-
tions. Further investigations and prospective randomized 
clinical trials will be required to evaluate the clinical cure 
rates.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
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