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At the core of research on biological rhythms lies 
the methodological problem of how to detect period-
icities in measured data. This is reflected in the rich-
ness of the literature on this subject as well as in the 
wealth of methods and algorithms devoted to this 
task. Our group investigates circadian rhythms, and 
in this field the demand for rigorous and efficient 
methods for periodicity detection is only increasing 
as more genome- and proteome-wide data accumu-
late. The accuracy of the detection of rhythmic mes-
sages and proteins is crucial in modern circadian 
high-throughput cell biology, since it greatly affects 
the validity of subsequent conclusions about 
function.

Most available methods for periodicity detection 
can be traced back to Fourier methods in some form 

(Halberg et al., 1967; Straume, 2004; Wichert et al., 
2004; Wijnen et al., 2005). These methods generally 
assume an underlying rhythm in the form of one or 
more sine waves. Further, they are often so-called 
parametric methods that make certain assumptions 
about the deviations from the biological signal: These 
deviations are the measurement noise and biological 
noise. One general assumption is that the noise vari-
ance is both Gaussian (normally) distributed and 
independent of measurement magnitude, which, 
however, sometimes is not even close to reality for 
biological data, regardless of, for example, log-trans-
formation. In such cases, it is worthwhile to explore 
nonparametric statistical methods, which then can 
perform much better than parametric methods. It is 
therefore not surprising that a nonparametric method 
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implemented as the program “JTK_CYCLE” (Hughes 
et al., 2010) has had a large impact and has been 
widely adopted in the field.

Another property of biological data that presents a 
problem for classic Fourier-based methods is the 
prevalence of spiky or sawtooth-shaped wave forms 
deviating significantly from sine waves. This also 
highlights a shortcoming of JTK_CYCLE: It assumes 
that any underlying rhythms have symmetric wave 
forms. This means, for example, that (as we demon-
strate later here) sawtooth-shaped rhythms often go 
undetected by this algorithm. The HAYSTACK 
method (Michael et al., 2008) addresses this problem 
but relies on a small set of predefined wave form 
alternatives and is thus not really general.

JTK_CYCLE builds on the nonparametric 
Jonckheere-Terpstra test (Jonckheere, 1954; Terpstra, 
1952), which detects monotonous trends in data con-
sisting of a dependent variable (e.g., mRNA expres-
sion levels) and an independent variable (e.g., time). 
What about instead aiming to detect the case of an 
initial increase and a subsequent decrease in the 
dependent variable? This problem, which is a gener-
alization of the Jonckheere-Terpstra test, was 
addressed and solved by Mack and Wolfe (1981), 
resulting in the so-called rank test for umbrella alter-
natives (the name due to the rising and falling shape 
of the pattern to be detected). The test also allows for 
asymmetry (a variable umbrella peak, in the authors’ 
terminology), for example, a steep rise and slow 
decay or vice versa.

We have leveraged and extended available 
umbrella methods to allow for nonparametric detec-
tion of both symmetric and nonsymmetric rhythms. 
We present here the resulting method, which we have 
dubbed RAIN (Rhythmicity Analysis Incorporating 
Nonparametric methods). This method can detect 
rhythms of any period and makes few assumptions 
about wave forms. We demonstrate the usefulness of 
RAIN for detecting circadian rhythms in gene expres-
sion data, which is our primary research interest. In 
particular, we demonstrate that RAIN detects strong 
but asymmetric circadian rhythms in many genes in 
mouse liver, often obvious to the human eye, that go 
unnoticed by JTK_CYCLE. Furthermore, RAIN sig-
nificantly enlarged the circadian mouse liver pro-
teome compared with the studies that first charted it 
(Mauvoisin et al., 2014; Robles et al., 2014), which led 
us to note a functional enrichment for circadian pro-
teins involved in protein folding and unfolded pro-
tein binding. This functional enrichment had gone 
unnoticed in the original studies. RAIN is available 
as an R/Bioconductor package at www.bioconductor.
org and through a web service (rain.biologie.hu- 
berlin.de/rain) that provides an easy-to-use interface 
to the algorithm.

Methods

RAIN

Nonparametric methods avoid many assumptions 
regarding the experimental noise and the underlying 
model for the generation of rhythms by concentrating 
on the ranks of the measured values, rather than the 
measured values themselves. The program JTK_
CYCLE uses such a method for rhythm detection, 
and it works by comparing the ranks of measured 
values to those of an assumed underlying curve 
shape (a sine curve by default). However, this method 
is not suitable for detecting various nonsymmetric 
wave forms.

The purpose of RAIN was to build on the strengths 
of JTK_CYCLE but to significantly expand the terri-
tory of detectable rhythms to include nonsymmetric 
wave forms, such as sawtooth-like shapes. The aim 
was to accomplish this in a general way, specifically 
not requiring a library of guessed wave forms to 
match to (which is the case for previous methods 
such as JTK_CYCLE or HAYSTACK). Still, we sought 
to continue the robust nonparametric approach that 
is often necessary when analyzing RNA or protein 
abundances, since these kinds of measurements are 
subject to experimental uncertainties often resulting 
in outliers. The core idea behind RAIN was the real-
ization that a rhythmic time series consists of alter-
nating rising and falling patterns but that the rising 
pattern may be unrelated in shape to the falling pat-
tern: These shapes should not be tested against each 
other. Given an oscillation period to test against, 
RAIN works by organizing the data into groups 
belonging to either the rising part or the falling part 
of an oscillation period (Fig. 1). The rising and falling 
parts are then tested separately using the test against 
umbrella alternatives (Mack and Wolfe, 1981). This is 
a main point of departure of RAIN compared with 
JTK_CYCLE: RAIN does not care about the rising 
part having a particular shape compared with the 
falling part (Fig. 1), whereas JTK_CYCLE by design 
tests measurements in both rising and falling parts 
against each other. In addition, JTK_CYCLE by 
default assumes a perfectly symmetric wave form, 
where the falling part has the mirror-image shape of 
the rising part. Although the user may define any 
one waveform from within the code base of JTK_
CYCLE, the rising and falling parts of the curve 
shape are by JTK_CYCLE always locked into the par-
ticular relationship defined by the one chosen wave-
form (such as one of the triangular or “shark fin” 
shaped examples in the lower part of Fig. 1). This 
limitation is overcome by RAIN, which thus has the 
potential to discover a broader spectrum of rhythmic 
waveforms.

www.bioconductor.org
www.bioconductor.org
http://rain.biologie.hu-
berlin.de/rain
http://rain.biologie.hu-
berlin.de/rain
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As in the original formulation of the test against 
umbrella alternatives, the umbrella peak is allowed 
to vary so that different steepnesses of the rising and 
falling parts are allowed for (Fig. 1). This allows 
RAIN to test against skewed (e.g., sawtooth-like) 
waveforms. Finally, as in JTK_CYCLE, a set of peri-
ods prespecified by the user, as well as all possible 
phases, are tested, and p-values are adjusted for these 
multiple tests of peak shape, period, and phase, to 
obtain a final p-value.

We have implemented RAIN as a freely available 
package for the (also free) statistical software R/
Bioconductor. A web interface for RAIN is also cur-
rently available at rain.biologie.hu-berlin.de/rain. 
The run time of the software for typical data sets is 
relatively short, comparable to JTK_CYCLE. Missing 
values and non-even sampling intervals are 

accommodated for. The user chooses periods to test 
for, steepness of rising and falling parts of the time 
series (umbrella peak locations) to consider, and the 
method for correction for multiple testing due to 
varying umbrella peaks and phases; the default, also 
used for the result of the present report, is the adap-
tive Benjamini-Hochberg method (Benjamini and 
Hochberg, 2000). RAIN computes the null distribu-
tion against umbrella alternatives exactly (Harding, 
1984; Streitberg and Röhmel, 1988), leveraging the R 
package “gmp” to achieve arbitrary precision integer 
arithmetic. The run time of RAIN is comparable to 
that of JTK_CYCLE (on the order of 1-2 min for 25,000 
samples and 24 time points). The exact derivation of 
the particular null distribution assumed by RAIN and 
details regarding the implementation are given in the 
Supplementary online material.

Synthetic Data for Rigorous Benchmarking

One part of assessing the performance of RAIN was 
running the algorithm on synthetic computer-gener-
ated data that include realistic artificial experimental 
noise but where we know the underlying rhythmic 
wave form. We chose to study and simulate the 
experimental noise of microarray mRNA expression; 
specifically, the mouse liver microarray experiment 
by Hughes et al. (2012). These data encompass 25,817 
genes and 24 time points spanning CT0 to CT46, 
where CT stands for circadian time. To the time series 
yg(t) measured for each gene g in this data set, a first 
Fourier harmonic y t k a b tg ( ) ( )( ) ( )= 1+ cos + sinω ωt  
was fitted, and errors were calculated as 
ε −g g gt y t y t( ) ( ) ( )= ; noise variances were estimated 
from the sum of the errors squared. We found that the 
noise standard deviation (SD) scales almost linearly 
with the average magnitude of measured signal; the 
coefficient of variation (SD divided by mean) is con-
stant and ~0.10 (Suppl. Fig. S1). This motivated us to 
formulate the following model for the synthetic data, 
with a normalized mean magnitude of 1:

	 y t f t( ) ( )( ) ( )= 1+ 1+ ,,ω ϕ η 	 (1)

where f tω ϕ,( )  is either a cosine function with ampli-
tude a, frequency ω π= 2 /24  h−1, and phase ϕ: 
f at tω ϕ ω − ϕ, cos=( ) ( ) , or it is a sawtooth function 

of the same frequency (for which a is half the peak-to-
trough distance and ϕ determines the position of the 
maximum), and whereη Ν~ 0,σ( )  is a Gaussian 
noise term with SDσ = 0.1  for all cases in the present 
study (which for all practical purposes rules out neg-
ative values of y(t)). The amplitudes of the normal-
ized oscillatory functions necessarily lie between 
a = 0  and a = 1 , and in one setting, we considered 
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Figure 1.  Description of RAIN. RAIN works by grouping mea-
surements by time point (such as circadian or zeitgeber time). 
The ranks rather than the values are used, and groups are com-
pared with each other against the alternative hypothesis of a ris-
ing pattern followed by a falling pattern. Only groups belonging 
to the same pattern (either rising or falling) are compared with 
each other. This releases many constraints on shape, allowing 
detection of, for example, “shark fin” wave forms. By cyclically 
reordering groups, and by further varying the umbrella peak 
location, further asymmetries and phases are tested against.
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amplitudes of 0, 0.1, 0.2, and 0.3—the latter ampli-
tude being 3 times the noise SD in the microarray 
experiment, as described above. In another setting, 
amplitude-to-noise ratios were sampled from an esti-
mated distribution based on the mouse liver microar-
ray data (Hughes et al., 2012), with amplitudes and 
noise levels estimated as described above. For syn-
thetic data with outliers, an additional large positive 
deviation of 20 was added to one randomly chosen 
time point of each time series, as done by Hughes  
et al. (2010).

ROC Curves and False Discovery Rates

We assessed the quality and performance of the dif-
ferent algorithms using ROC (receiver operator char-
acteristic) analysis, which assays the true positive rate 
(TPR) and false positive rate (FPR) of a classification 
method (our case concerns classification of time series 
as rhythmic or nonrhythmic). The TPR is the fraction 
of truly rhythmic time series also classified as such 
(true positive rate), while the FPR is the fraction of 
truly nonrhythmic time series misclassified as rhyth-
mic by the algorithm. An increasing TPR comes at a 
cost of an increasing FPR, but a good algorithm 
reaches a high TPR already at low FPRs. ROC curves—
plots of TPR on the y-axis versus FPR on the x-axis—
visualize the quality of an algorithm: Random choices 
(“monkey pushing a button”) produce a straight-line 
ROC curve (TPR = FPR) , while the curves are pushed 
toward the upper left corner (TPR FPR)>>  as algo-
rithms improve. A perfect algorithm would yield a 
constant TPR = 1  for all FPRs. In this way, the perfor-
mance of algorithms can be ranked. ROC curves are 
independent of the prevalence, defined as the propor-
tion of actual rhythmic time series, and thus give a 
picture valid for any real-world scenario. This comes 
at the cost of not being able to reflect the fraction of 
truly nonrhythmic time series among all those classi-
fied as rhythmic. This is the false discovery rate (FDR; 
Suppl. Fig. S2), and it is highly dependent on the prev-
alence—that is, the fraction of truly rhythmic time 
series in the data set (between 0 and 1): If a data set 
consists of only a small percentage of truly rhythmic 
time series, a high TPR and low FPR can still result in 
a high FDR (Suppl. Fig. S2). In biological data analy-
sis, it is usually the FDR that is controlled for, often 
using Benjamini-Hochberg adjusted p-values as con-
servative estimates. Fortunately, some algebraic work 
result in the equation

	 TPR =
1 1 FDR

FDR
FPR,

rhythmic

rhythmic

− × −

×
×

f

f

( ) ( ) 	 (2)

where frhythmic  is the prevalence. This means that a 
given FDR threshold and prevalence are manifested 

as a straight line in the ROC diagram, in which the 
TPR is plotted against the FPR. Where this straight 
line crosses the ROC curve of an algorithm, the TPR 
achieved by the algorithm can be read off the y-axis 
(Fig. 2). This combination of ROC curves and straight 
lines gives a complete bird’s-eye view of the quality 
of algorithms as well as their detection power at dif-
ferent FDR thresholds. To obtain the ROC curves in 
Figure 2, 100,000 synthetic time series were generated 
for each wave form and amplitude-to-noise ratio; any 
irregularities in the ROC curve shapes were due to 
the intrinsic granularities of the null distributions 
rather than the effects of small sample sizes.

Analysis of Microarray and Mass Spectrometry 
Data

Microarray data were obtained from the Gene 
Expression Omnibus, accession numbers GSE30411 
(Hughes et al., 2012) and GSE11923 (Hughes et al., 
2009), and were normalized using RMA and GCRMA, 
respectively, grouping transcripts using ENSEMBL 
gene annotations (Dai et al., 2005). Amplitudes and 
SDs of the noise (residuals) were estimated as described 
above using harmonic regression (Cornelissen, 2014); 
amplitudes of transcript groups with a Benjamini-
Hochberg-adjusted p ≤ 0.05 were used to sample 
amplitudes for the synthetic data (described above). 
The amplitude-to-noise distribution of these estima-
tions is shown in Supplementary Figure S3.

Present/absent calls were possible for the older 
microarray data due to the earlier platform used in 
that study (Hughes et al., 2009); transcript groups 
were considered present if more than half of the sam-
ples produced an MAS5 present call. Harmonic 
regression p-value correction was performed for pres-
ent transcripts only.

Protein mass spectrometry data were obtained 
from the supplementary material of the original pub-
lications (Mauvoisin et al., 2014; Robles et al., 2014).

RAIN and JTK_CYCLE (version 2) were in all cases 
run to detect oscillations of a period of 24 h. RAIN 
was further set to allow an umbrella peak between 
30% and 70% of a whole period when analyzing 
microarray and mass spectrometry data and between 
10% and 90% when analyzing the synthetic data.

Results

RAIN Detects Both Sawtooth-shaped and 
Sinusoidal Wave Forms

We first aimed to rigorously study the power of 
RAIN for rhythm detection. For this, we applied the 
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algorithm to synthetic data. The synthetic data were 
designed to have a random error component that is 
representative of the biological data that RAIN is sup-
posed to analyze. To achieve this, we carefully studied 
the noise characteristics of 2 microarray studies of 
mouse liver and were able to extract a good noise 
model from those data (Methods). With this model, 
we generated synthetic time series of 3 types. The first 
one consisted of noise only; the second type was noise 
plus sine curves with amplitudes 1, 2, and 3 times as 
large as the noise SD, respectively, or with amplitude-
to-noise ratios sampled from mouse liver microarray 

data (Methods); the third type consisted of noise plus 
sawtooth-shaped curves with amplitudes 1, 2, and 3 
times as large as the noise SD, respectively, or with 
amplitudes sampled from microarray data. We then 
ran both RAIN and JTK_CYCLE with the synthetic 
data as inputs and used ROC curves (Methods) of the 
results to investigate the power of RAIN to detect 
rhythms. These curves allow an assessment of the 
power for rhythm detection of RAIN versus JTK_
CYCLE while controlling for the FDR. The expecta-
tion was that RAIN, due to its design, should show a 
clear advantage when the rhythms are sawtooth-like, 
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Figure 2.  RAIN benchmarking. Synthetic data and ROC curves were used to assess the power and accuracy of RAIN compared with 
those of JTK_CYCLE. (A) ROC curve showing results for 100,000 sine curves and sawtooth-shaped curves, respectively, with an ampli-
tude-to-noise ratio of 0.2 and sampled every 3 h for two full 24-h periods. The straight lines correspond to an FDR of 0.1 with (from 
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are provided in Supplementary Figure S4.
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while both methods should readily be able to detect 
rhythms shaped as sine curves.

This expectation turned out to be valid in all cases. 
Figure 2 shows representative ROC curves for RAIN 
and JTK_CYCLE applied to computer-generated sine 
and sawtooth-shaped time series, respectively. The 
null background consisted of pure noise (Methods). 
Figure 2A gives results for synthetic data consisting 
of 16 samples taken every 3 h with an amplitude-to-
noise ratio of 2. RAIN was able to detect a significant 
fraction of sawtooth-shaped wave forms that largely 
went undetected by JTK_CYCLE: For a prevalence 
for true positives of 25% and with an FDR of 0.1, 
RAIN recovered almost 60% of the sawtooth wave 
forms compared with less than 10% for JTK_CYCLE 
(Fig. 2B). For the sine curves, the difference between 
the methods was very small. This is the pattern of 
other sampling rates and amplitudes as well—exam-
ples are shown in Figure 2C also for cases where sam-
ples were taken every 2, 3, and 4 h, with a distribution 
of the oscillation amplitude-to-noise ratio sampled 
from estimates based on mouse liver microarray data 
(Methods). A complete survey of different sampling 
rates and amplitude-to-noise ratios is given as 
Supplementary Figure S4, including results for a set 
of synthetic time series with outliers.

In summary, RAIN was able to recover significant 
fractions of asymmetric sawtooth-shaped wave 
forms, in contrast to the previous comparable method, 
without losing power to detect symmetric sine waves.

The Circadian Transcriptome of Mouse Liver 
Exhibits a Wealth of Sawtooth-shaped Wave Forms

Considering the design and benchmarking of 
RAIN, we expected the method to discover hitherto 
undetected rhythms in biological data, in particular 
rhythms with nonsymmetric waveforms. The mouse 
liver microarray study by Hughes et al. (2012), con-
sisting of 24 samples taken every 2 h, served to put 
this expectation to the test. Under a strict Benjamini-
Hochberg corrected p-value cutoff of 0.01, RAIN 
detected 2014 rhythmically transcribed genes, com-
pared with 810 genes detected by JTK_CYCLE. All 
genes detected by JTK_CYCLE were also detected by 
RAIN, whereas, in contrast, RAIN exclusively identi-
fied 1204 rhythmic transcripts (Fig. 3). Using a more 
liberal cutoff of 0.05 for JTK_CYCLE, while staying 
with the strict cutoff for RAIN, still resulted in 564 
rhythmically transcribed genes that were exclusively 
detected by RAIN (with no genes exclusively detected 
by JTK_CYCLE under the same criteria). A visual 
inspection of the top hits (Fig. 3) confirms strong cir-
cadian rhythmicity and, indeed, markedly nonsym-
metric and often sawtooth-like wave forms.

We next sought to systematically assess the gen-
eral quality of the time series exclusively detected by 
RAIN: Are these time series really rhythmic? To this 
end, we analyzed a control study: an earlier mouse 
liver microarray study consisting of 48 samples taken 
every hour (Hughes et al., 2009). We assessed rhyth-
micity in these control data using an unrelated 
method (harmonic regression with an adjusted 
p-value cutoff 0.01), which due to the much higher 
sampling rate used in this earlier study should be 
able to detect nonsinusoidal wave forms. We rea-
soned that if those transcripts of the primary study 
(Hughes et al., 2012) that were detected exclusively 
by RAIN are truly rhythmic, many of these should 
also be detected by harmonic regression in the control 
data. Our results confirmed this conjecture: of the 
1204 rhythmic transcripts that only RAIN detected in 
the primary data set (Fig. 3), 946 were present in the 
control data set. It turned out that 65% of these 946 
transcripts were flagged by the harmonic regression 
method as being rhythmic in the control data. For 
comparison, only 40% of expressed genes in that 
study were classified as rhythmic by the same method 
and criteria. This indicates that rhythms detected 
exclusively by RAIN are indeed reproducible biologi-
cal phenomena rather than computational or mea-
surement artifacts.

To further gauge the performance of RAIN with 
time series sampled every 4 h (a common experimen-
tal design), we down-sampled the primary microar-
ray time series (Hughes et al., 2012) to comprise 12 
measurements every 4 h. Also in this case, even when 
we used a stringent adjusted p-value cutoff for RAIN 
(0.1) and a less stringent cutoff for JTK_CYCLE (0.25), 
RAIN detected significantly more rhythmically tran-
scribed genes than did JTK_CYCLE (1590 vs. 701 
genes). Among those transcripts uniquely detected 
by RAIN that were also present in the control study, 
66% were independently classified as rhythmic in the 
control study using harmonic regression, compared 
with the overall 40% rhythmic transcripts.

In summary, RAIN was able to detect much more 
rhythmically transcribed genes than was JTK_
CYCLE. Detected rhythms exhibited nonsymmetric 
waveforms and were confirmed using a control data 
set and an independent method.

An Expanded Circadian Proteome

Mass spectrometry (MS) approaches have been 
used to quantify circadian rhythmicity in protein 
abundances on a proteome-wide scale (Mauvoisin  
et al., 2014; Robles et al., 2014). However, MS cannot 
presently quantify the entire mouse liver proteome 
but is biased in its detection capability to abundant, 
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long-lived proteins. Since amplitudes of rhythms 
inevitably decrease with increasing protein lifetimes 
(Lück et al., Forthcoming), oscillations in protein 
abundances observed in these studies tend to have 
small amplitudes. In addition to this, significant non-
Gaussian experimental noise is inherent to MS mea-
surements. Rhythm detection is thus challenging for 
these data, and it is therefore not surprising that only 
195 and 186 proteins were flagged for rhythmic abun-
dances in the Mauvoisin et al. (2014) and Robles et al. 
(2014) studies, respectively (both with an experimen-
tal design of 16 tissue samples pooled from several 
mice and taken every 3 h). These calls were made 
using methods based on harmonic regression and 
with quite high Benjamini-Hochberg adjusted p-value 
cutoffs: 0.25 and 0.33, respectively (serving as FDR 
estimates).

We applied RAIN to these data and detected 316 
and 384 proteins with circadian rhythms in their 
abundance, respectively, using an adjusted p-value 
cutoff of 0.25. This represents a significant expansion 
on previous results, with the caveat of having the 
same relatively high FDR as in the original studies. 
Instead using a lower adjusted p-value cutoff of 0.15, 
we detected 181 and 196 circadian proteins—almost 
the same numbers as in the original studies but with 
much improved FDRs. One should note, however, 
that these numbers must not be used as estimates for 
the total number of circadian proteins; rather, for this, 
methods such as the lowest slope estimator are appro-
priate (Benjamini and Hochberg, 2000).

Time series of the top 12 rhythmic proteins (lowest 
Benjamini-Hochberg adjusted p-values) that were not 
detected in the original studies are plotted in Figure 
3, and circadian patterns are obvious by visual inspec-
tion. Noteworthy also are the peculiar experimental 
noise characteristics of these data, manifested as 
missing values and outliers, which particularly call 
for robust nonparametric methods such as RAIN and 
JTK_CYCLE. The latter method, however, was only 
able to detect 35 and 25 proteins from the Mauvoisin 
et al. (2014) and Robles et al. (2014) studies, respec-
tively, with a high FDR of 0.25.

Further analysis of the functions of proteins whose 
abundances were classified as rhythmic illustrates 
that the method of rhythm detection matters for con-
clusions about biological function. The proteins clas-
sified as rhythmic in the original study (Mauvoisin et 
al., 2014) are highly enriched for secreted proteins, 
according to the functional annotation service 
DAVID. We recovered this result also with the pro-
teins that RAIN classified as rhythmic, but addition-
ally we found previously unnoticed functional 
characteristics of the circadian proteome. This 
includes enrichment for proteins associated with the 
mitochondrion, as well as chaperones and binding to 

unfolded proteins, lysosomal proteins, and proteins 
involved in iron and drug metabolism. If we expand 
the analysis to the proteins with abundances classi-
fied as rhythmic in both studies, a different picture 
emerges. Cofactor and vitamin binding are enriched 
functions in the smaller set of proteins resulting from 
the detection methods in the original studies (31 pro-
teins). In contrast, RAIN detects a considerably larger 
overlap of rhythmic proteins between the studies (61 
proteins, FDR 0.25), and here again, protein folding 
and unfolded protein binding are overrepresented 
functions. The DAVID results for these 61 circadian 
proteins are given in Supplementary Table S1. These 
protein numbers could be compared with the mere 5 
common proteins detected by JTK_CYCLE, FDR 0.25.

Thus, with RAIN, the circadian proteome was sig-
nificantly expanded. Studying this expanded group 
of proteins, we recovered previous results but also 
discovered previously unidentified functions of pro-
teins with rhythmic abundances.

Discussion and Outlook

We have presented RAIN, a robust nonparametric 
method for detection of rhythms in time series, that 
makes few assumptions about wave form shape. We 
have shown rigorously that the method has a sensi-
tivity that is superior to previous methods while con-
trolling the false discovery rate. This largely stemmed 
from an ability to detect nonsymmetric wave forms, 
such as sawtooth-like shapes, while preserving a 
robust sensitivity for symmetric wave forms. 
Consequently, a result of RAIN when applied to 
mouse liver transcriptome- and proteome-wide data 
was significantly expanded sets of transcripts and 
proteins with circadian rhythms in abundance, com-
pared with previous studies.

Although RAIN was designed for research on cir-
cadian rhythms, the method is applicable for rhythm 
detection in any time series. We do, however, recom-
mend sampling over more than one period in order to 
readily discriminate between sawtooth-shaped wave-
forms and linear trends. A practical limitation could 
be time series length: The algorithm was developed 
and tested for time series with moderate numbers of 
time points (on the order of 10-100), for which rhythm 
detection is challenging when the experimental noise 
characteristics are complex. We point out that the run 
time of the algorithm can be significant for very long 
time series (the same is true for JTK_CYCLE). 
Fortunately, for these cases, classic parametric meth-
ods, such as harmonic regression or periodogram-
based methods, often perform very well also when 
the noise is non-Gaussian. Another limitation to RAIN 
and JTK_CYCLE, but also to harmonic regression, is 
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the assumption of uncorrelated or at least only weakly 
correlated noise. This assumption is certainly justified 
for data coming from experimental designs where dif-
ferent animals are sacrificed at each time points, such 
as those data analyzed here. However, for certain 
types of experiments, for example where all samples 
are taken from one cell culture that in addition exhib-
its strongly correlated fluctuations in the readout, 
simulations of more realistic null models may be 
required (Futschik and Herzel, 2008).

RAIN readily detects symmetric wave forms (Fig. 2), 
but there is still a small but measurable advantage of 
using JTK_CYCLE if the underlying wave form is 
perfectly symmetric. This is because RAIN does not 
make comparisons between measurements in the ris-
ing and falling parts of the time series. Thus, when 
the goal is to explicitly detect symmetric rhythms 
only, JTK_CYCLE will still be the method of choice. 
The same is true if the goal is to detect one known 
particular curve shape, since this can be implemented 
as a minor modification of the JTK_CYCLE code base.

RAIN does not measure periods, amplitudes, and 
phases, although naive estimates would be easy to 
obtain. The reason for this is that such so-called point 
estimation should preferably fulfill the criteria of 
consistency (estimates converging to the true values 
as the number of time points sampled goes to infin-
ity) and unbiasedness (the expected estimate for a 
finite number of time points sampled should be 
equal to the true value). These criteria are not met 
when one is using the results of RAIN to estimate 
periods, amplitudes, and phases. The algorithm was 
designed for hypothesis testing rather than for point 
estimation. For this reason, we also recommend 
against using the period and phase estimates pro-
vided by JTK_CYCLE, which are not consistent or 
unbiased. However, JTK_CYCLE does implement an 
interesting and promising amplitude estimation 
method. We furthermore recommend complement-
ing hypothesis testing with amplitude estimation 
when selecting genes or proteins of interest, since it 
is safe to assume that biological function of rhythms 
requires reasonable amplitudes. Classic harmonic 
regression is still well suited for this, although there 
is also a need in the field for new point estimation 
methods more robust to outliers.

Acknowledgments

We thank S. Hertel for a critical reading of the manuscript 
and A. Kramer, B. Maier, H. Herzel, E. Herzog, A. Granada, 
C. Romualdi, R. Costa, E. Farre, and M. S. Robles for discus-
sions and testing of the software. Funding from BMBF (FKZ 
0315899, Circage/GerontoSys) is gratefully acknowledged.

CONFLICT OF INTEREST STATEMENT

The author(s) have no potential conflicts of interest with 
respect to the research, authorship, and/or publication of 
this article.

Notes

Supplementary material is available on the journal’s web-
site at http:// jbr. sagepub. com/ supplemental.

References

Benjamini Y and Hochberg Y (2000) On the adaptive con-
trol of the false discovery rate in multiple testing with 
independent statistics. J Educ Behav Stat 25:60-83.

Cornelissen G (2014) Cosinor-based rhythmometry. Theor 
Biol Med Model 11:16.

Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, 
Bunney WE, Myers RM, Speed TP, Akil H, et al. (2005) 
Evolving gene/transcript definitions significantly alter 
the interpretation of GeneChip data. Nucleic Acids Res 
33:e175.

Futschik ME and Herzel H (2008) Are we overestimating 
the number of cell-cycling genes? The impact of back-
ground models on time-series analysis. Bioinformatics 
24:1063-1069.

Halberg F, Tong YL, and Johnson EA (1967) Circadian sys-
tem phase—an aspect of temporal morphology; proce-
dures and illustrative examples. In The Cellular Aspects 
of Biorhythms, von Mayersbach H, ed, pp 20-48. Berlin 
and Heidelberg: Springer.

Harding EF (1984) An efficient, minimal-storage procedure 
for calculating the Mann-Whitney U, generalized U 
and similar distributions. J R Stat Soc Ser C Appl Stat 
33:1-6.

Hughes ME, DiTacchio L, Hayes KR, Vollmers C, 
Pulivarthy S, Baggs JE, Panda S, and Hogenesch JB 
(2009) Harmonics of circadian gene transcription in 
mammals. PLoS Genet 5:e1000442.

Hughes ME, Hogenesch JB, and Kornacker K (2010) 
JTK_CYCLE: an efficient nonparametric algorithm for 
detecting rhythmic components in genome-scale data 
sets. J Biol Rhythms 25:372-380.

Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS, Han 
M, Takahashi JS, and Hogenesch JB (2012) Brain-specific 
rescue of Clock reveals system-driven transcriptional 
rhythms in peripheral tissue. PLoS Genet 8:e1002835.

Jonckheere AR (1954) A distribution-free k-sample test 
against ordered alternatives. Biometrika 41:133-145.

Lück S, Thurley K, Thaben PF, and Westermark PO 
(Forthcoming) Rhythmic degradation explains and uni-
fies circadian transcriptome and proteome data. Cell Rep.

http://jbr.sagepub.com/supplemental


400  JOURNAL OF BIOLOGICAL RHYTHMS / December 2014

Mack GA and Wolfe DA (1981) K-sample rank tests for 
umbrella alternatives. J Am Stat Assoc 76:175-181.

Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel 
P, Quadroni M, Gachon F, and Naef F (2014) Circadian 
clock-dependent and -independent rhythmic  
proteomes implement distinct diurnal functions in 
mouse liver. Proc Natl Acad Sci U S A 111:167-172.

Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout 
JD, Hazen SP, Shen R, Priest HD, Sullivan CM, et al. 
(2008) Network discovery pipeline elucidates conserved 
time-of-day–specific cis-regulatory modules. PLoS Genet 
4:e14.

Robles MS, Cox J, and Mann M (2014) In-vivo quantitative 
proteomics reveals a key contribution of post-tran-
scriptional mechanisms to the circadian regulation of 
liver metabolism. PLoS Genet 10:e1004047.

Straume M (2004) DNA microarray time series analysis: 
automated statistical assessment of circadian rhythms 
in gene expression patterning. Methods Enzymol 
383:149-166.

Streitberg B and Röhmel J (1988) Exact nonparametrics for 
partial order tests. Comput Stat Q 1:23-41.

Terpstra T (1952) The asymptotic normality and consis-
tency of Kendall’s test against trend, when ties are 
present in one ranking. Indagationes Mathematicae 
14:327-333.

Wichert S, Fokianos K, and Strimmer K (2004) Identifying 
periodically expressed transcripts in microarray time 
series data. Bioinformatics 20:5-20.

Wijnen H, Naef F, and Young MW (2005) Molecular and 
statistical tools for circadian transcript profiling. 
Methods Enzymol 393:341-365.


