
Physiological Reports. 2021;9:e14690.     | 1 of 9
https://doi.org/10.14814/phy2.14690

wileyonlinelibrary.com/journal/phy2

Received: 9 November 2020 | Revised: 2 December 2020 | Accepted: 3 December 2020

DOI: 10.14814/phy2.14690  

C A S E  R E P O R T

Assessing pulmonary circulation in severe bronchopulmonary 
dysplasia using functional echocardiography

Arvind Sehgal1,2  |   Douglas Blank1,2 |   Calum T. Roberts1,2 |   Samuel Menahem3 |    
Stuart B. Hooper4,5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society

1Monash Newborn, Monash Children’s 
Hospital, Monash University, Clayton, 
VIC., Australia
2Department of Paediatrics, Monash 
University, Clayton, VIC., Australia
3Paediatric and Fetal Cardiac Units, 
Monash Health, Clayton, VIC., Australia
4The Ritchie Centre, Hudson Institute 
of Medical Research, Clayton, VIC., 
Australia
5Department of Obstetrics and 
Gynaecology, Monash University, 
Clayton, VIC., Australia

Correspondence
Arvind Sehgal, Monash Children’s 
Hospital, Monash University, 246, 
Clayton Road, Clayton, VIC 3168, 
Australia.
Email: Arvind.Sehgal@monash.edu

Abstract
Pulmonary hypertension (PH) is common in infants with severe bronchopulmonary 
dysplasia (BPD) and increases the risk of death. The objectives of this preliminary 
study were to compare responses of pulmonary circulation parameters to 100% oxy-
gen (O2) and inhaled nitric oxide (iNO) in infants with BPD and PH using echo-
cardiography. Responses between fetal growth restriction (FGR) and appropriate 
for gestational age infants were compared. Ten infants <28 weeks GA at birth were 
assessed at ≥36  weeks corrected gestation. Baseline echocardiography1 was per-
formed which was repeated (echocardiography2) after 30 minutes of O2. After a gap 
of 2–3 hours, iNO was administered for 15 minutes and echocardiography3 was per-
formed, followed by iNO weaning. The gestation and birthweight of the cohort were 
25.9 ± 1.6 weeks and 612 ± 175 g. Assessments were performed at 38.7 ± 1.4 weeks 
corrected gestational age. Baseline time to peak velocity: right ventricular ejection 
time (TPV/RVETc) increased from 0.24 ± 0.02 to 0.27 ± 0.02 (O2, p =  .01) and 
0.31 ± 0.03 (iNO, p < .001), indicating a decrease in pulmonary vascular resistance 
[PVR]. Baseline tricuspid annular plane systolic excursion (TAPSE) increased from 
8.1 ± 0.6 mm to 9.3 ± 0.7 mm (O2, p = .01) and 10.5 ± 1.1 mm (iNO, p = .0004), in-
dicating improved ventricular systolic performance. Percentage change for all param-
eters was greater with iNO. Significant correlations between cardiac performance and 
PVR were noted. FGR infants noted higher baseline PVR (TPV/RVETc, 0.21 ± 0.02 
vs. 0.25 ± 0.01, p = .002), lower ventricular performance (TAPSE, 7 ± 1.2 mm vs. 
8.6 ± 6 mm, p = .003), and lower percentage change with O2 and iNO. A reactive 
component of pulmonary circulation provides real-time physiological information, 
which could rationalize treatment decisions.
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1 |  INTRODUCTION

Bronchopulmonary dysplasia (BPD) remains the most com-
mon respiratory sequelae of prematurity. The occurrence of 
pulmonary hypertension (PH) in this cohort influences sur-
vival and significantly increases mortality compared to equally 
preterm infants with BPD but without PH (An et al., 2010; 
Bhat et al., 2012; Del Merro et al., 2016; Mourani & Abman, 
2013). Hypoxia-mediated pulmonary vasoconstriction plays 
an important role in the causation of PH in this cohort (Ajami 
et al., 2011; Ambalavanan & Mourani, 2014; Bhatt et al., 2001; 
Coalson, 2006). While this may provide the reversible compo-
nent (reversed by pulmonary vasodilatation), the remodeling of 
pulmonary vasculature (due to chronic hypoxia) may contrib-
ute to the “fixed” or unresponsive component of PH. Among 
the prenatal factors, the evolving pattern of BPD also suggests 
an important pathogenic role for fetal growth restriction (FGR) 
(Bhatt et al., 2001; Coalson, 2006; Sehgal, Gwini, et al., 2019). 
The incidence of FGR is high (approximately 27%) among 
premature births (Sehgal et al., 2019b). Combined, FGR and 
BPD in the same patient, significantly worsen the clinical and 
longer-term respiratory outlook. By way of chronic hypoxia, 
in utero placental insufficiency affects the lung parenchyma 
and vasculature (Maritz et al., 2004, 2005). Data from rats and 
human infants noted thickened pulmonary arteries indicating 
the biological plausibility of FGR affecting the pulmonary cir-
culation (Rabinovitch et al., 1979; Sehgal, Gwini, et al., 2019).

While the use of long-term pulmonary vasodilators in 
these cohorts is common, the assessment of pulmonary cir-
culation and its reactivity to pulmonary vasodilators before 
administration may enable risk stratification. Performed with 
cardiac catheterization (CATH) support, it is a standard ap-
proach in many institutions (Abman et al., 2015; Douwes 
et al., 2016; Sharma et al., 2016). A decline in pulmonary 
artery (PA) pressure and pulmonary vascular resistance 
(PVR) indicates a reactive component to PH (Khemani et al., 
2007). In a retrospective study, 13/20 (65%) BPD infants 
demonstrated such response (≥ 20% change in indexed PVR) 
(Steurer et al., 2019). From the clinical outlook perspective, 
a responsive circulation is associated with decreased short/
long-term morbidity, contributing to the clinical outlook 
(Barst, 1986; Douwes et al., 2016; Frank et al., 2019; Sitbon 
et al., 2005). However, cardiac CATH is an invasive proce-
dure, oftentimes requiring the the transport of critically ill 
patients. With wide availability of echocardiography, non-in-
vasive screening for chronic PH is considered a standard of 
care in many perinatal centers (An et al., 2010; Arjaans et al., 
2018; Bhat et al., 2012; Levy et al., 2020; Revanna et al., 
2017). Experience in the assessment of right ventricular (RV) 
performance and PVR opens up possibilities of assessing the 
pulmonary circulation with echocardiography monitoring.

This study aimed to assess the pulmonary circulation with 
echocardiography monitoring, comparing hemodynamic 

responses for 100% oxygen (O2) with inhaled nitric oxide 
(iNO), as well as between FGR and appropriate for gesta-
tional age (AGA) infants. Such assessments with echocardio-
graphic guidance in cohorts of BPD-associated PH have not 
been reported earlier.

2 |  METHODS

Institutional Human Research Ethics Committee approved 
this preliminary hypothesis-generating study (Ref: RES-
19-0000394L – 53603). After informed written parental 
consent, 10 infants’ <28 weeks’ GA and severe BPD and 
PH formed the cohort (severe BPD-need for positive pres-
sure support and ≥30% O2). Normal cardiac anatomy and 
pulmonary venous connections were documented. Infants 
were assessed at ≥36 weeks’ corrected GA. FGR was de-
fined as birthweight <10th centile for GA and sex with ab-
sent/reversed antenatal Doppler's (Fenton & Kim, 2013). 
Echocardiography1 was performed with the infant on its 
baseline respiratory support settings. Echocardiography2 
was performed after 30 minutes of 100% O2 administered 
through continuous positive airway pressure (subsequently 
returned to baseline). After approximately 2–3 hours, iNO 
was administered through continuous positive airway pres-
sure for 15 minutes at 20 ppm (baseline respiratory support 
settings). iNO was subsequently weaned over 15 minutes. 
No pharmacologic sedation was used. The same operator 
using the Vivid E95 Cardiovascular Ultrasound System 
(GE Medical Systems, Milwaukee, WI, USA) performed 
assessments. Previously studied echocardiography param-
eters were assessed which represented assessments of PVR 
and RV systolic performance (Czernik et al., 2012; Evans 
& Archer, 1999; Hayabuchi et al., 2016; Howard et al., 
2012; Jain et al., 2014; Koestenberger et al., 2011, 2016; 
Levy et al., 2015, 2016, 2019; Milnor et al., 1969; Musewe 
et al., 1990; Patel et al., 2019; Sehgal et al., 2019c, 2020; 
Ziino et al., 2010). The exact views and cursor position 
for each assessment and the component of cardiac and pul-
monary function assessed has been summarized earlier in 
our previous publication (Sehgal, Bhatia, et al., 2019). All 
pulse wave Doppler measurements were calculated from 
the average of three consecutive cardiac cycles. Left lower 
pulmonary vein was used uniformly from the “crab-view.” 
Time to Peak Velocity/ Right Ventricular Ejection Time 
(TPV/RVETc) and PA annular peak systolic velocity [s1’] 
were surrogates to assess PVR. Displacement and velocity 
of lateral tricuspid annulus in the form of tricuspid annu-
lar plane systolic excursion (TAPSE) and tissue Doppler 
imaging (TDI) systolic velocity [s’] measured RV systolic 
performance (Badano et al., 2010; Breatnach et al., 2017; 
Koestenberger et al., 2011). The number of infants having 
≥20% change in either of the PVR indices was ascertained.
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2.1 | Statistical analysis

The data are presented as mean ±standard deviation. Baseline 
data from echocardiography1 were compared with echocardi-
ography2 (100% O2) and echocardiography3 (iNO), followed 
by comparisons between echocardiography2 and echocardi-
ography3 using Student's two-tailed t test. Differences were 
considered significant if p <  .05. Pearson product-moment 
correlation coefficient, coefficient of determination, the 
slope of the regression line, and the Y intercept of the regres-
sion line were used to describe the relationship between the 
measures of RV performance and measures of PVR.

3 |  RESULTS

Table 1 depicts baseline demographic and clinical informa-
tion. All the infants were receiving non-invasive ventilation 
at the time of the study (continuous positive airway pressure). 
None of the infants were intubated and mechanically venti-
lated or were on pulmonary vasodilators at the time of the 
study. Significant improvement in the measures of PVR and 
RV systolic performance was noted with both O2 and iNO, 
which were accompanied by increased pulmonary blood 
flow (Table 2). “Percentage change” from baseline was sig-
nificantly greater with iNO (Table 3). None of the infants 
dropped PVR by ≥20% with O2 (eight infants for iNO) (by 
TPV/RVETc criteria); the same data for PA annular velocity 

were one and seven, respectively. Comparing baseline data 
between FGR and AGA infants, PVR was higher and RV 
systolic performance significantly lower in the former (Table 
4). RV fractional area change (measure of global contractil-
ity) was similarly reduced in FGR infants (19.3 ± 0.47% vs. 
24.5  ±  1.2%, p  =  .0002). “Percentage change” from base-
line was greater in the AGA infants and significantly higher 
with iNO than O2 (Table 5). All (7/7) AGA infants noted 
a ≥ 20% change to iNO for both parameters, while this was 
noted 1/3 FGR infants for TPV/RVETc and none for PA an-
nular systolic velocity. One infant (AGA) had a patent ductus 
arteriosus; increased flow through the duct with O2 and iNO 
is depicted in Figure 1. Significant correlations between the 
measures of RV performance and PVR as evidence of ven-
triculo-arterial coupling were noted (Figure 2). Six infants 
had measurable tricuspid regurgitation; the maximal velocity 
at baseline was 2.6 ± 0.4 m/s which changed to 2.4 ± 0.4 
with O2 (p = .5) and to 2.15 ± 0.4 with iNO (p = .058), re-
spectively. While not an objective of this study, four infants 
(all AGA) were later administered sildenafil at the discretion 
of the medical team. Temporally, this coincided with success 
in being able to wean respiratory support.

4 |  DISCUSSION

Bedside echocardiography facilitated the assessment of pul-
monary circulation, and both O2 and iNO were significant 
pulmonary vasodilators, although the percentage change 
was greater with iNO. FGR status was a clear discrimina-
tor, indicating the persistence of in utero effects on vascular 
remodeling.

Assessment of pulmonary circulation in response to O2/
iNO facilitates risk stratification in BPD (Atz et al., 1999; 
Krishnan et al., 2017; Mourani et al., 2004). Using CATH, in-
vestigators have previously suggested a significant response 
to be a ≥ 20% drop in mean PA pressure and a decrease in 
PVR to systemic vascular resistance ratio (Barst, 1986). This 
has been recently revised to a drop in PA pressure of at least 
10 mm Hg (Sitbon et al., 2005). Given this is the first study 
using echocardiography to compare pulmonary circulation 
reactivity between iNO versus 100% O2, we used the echocar-
diography PVR indices, while recognizing CATH and echo-
cardiography are two very different modalities. In a study on 
26 BPD infants assessed by CATH, a change of ≥20% in PA 
pressures was noted in nine (35%) infants. This was associ-
ated with decreased subsequent mortality risk (Frank et al., 
2019). However, unlike in our cohort, approximately half the 
cohort was already on pulmonary vasodilators. Use of on-
going pulmonary vasodilator therapy ranges from 33–46%, 
making true interpretation of response difficult (Frank et al., 
2019; Steurer et al., 2019). iNO identifies patients who might 
not be recognized with O2 (Barst et al., 2010; Gan et al., 2014; 

T A B L E  1  Baseline demographic and clinical parameters (n = 10)

Variable

Gestational age (weeks) 25.9 ± 1.6

Birthweight (g) 612 ± 175

Apgar score at 5 minutes (median, interquartile 
range)

8 (7, 9)

Antenatal steroids, n (%) 10 (100)

Mode of delivery, cesarean n (%) 6 (60)

Male sex, n (%) 5 (50)

Fetal growth restriction, n (%) 3 (30)

Postnatal age (days) 92 ± 14

Corrected gestational age (weeks) 38.7 ± 1.4

Weight at study (g) 2350 ± 490

Ventilation mean airway pressure (cm of water) 8.3 ± 1

Oxygen requirement (%) 35 ± 8

Baseline capillary blood gas

pH 7.3 ± 0.02

pCO2 62 ± 5

pO2 31 ± 3

*Data presented as mean ± standard deviation, except where indicated 
otherwise. 
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Hill et al., 2010; Mourani et al., 2004). The dose of iNO used 
in pediatric cohorts has been variable (10–80  ppm). Both 
drugs have been generally administered for a variable period 

(≥10 minutes); in many cases, O2 and iNO have been ad-
ministered together (Frank et al., 2019; Khemani et al., 2007; 
Steurer et al., 2019). In spite of limitations, these findings 

T A B L E  2  Echocardiographic variables after interventions (oxygen [O2]/inhaled nitric oxide [iNO]), n = 10

Variable Baseline 100% O2

iNO 
20 ppm

p (baseline vs.
100% O2)

p (baseline 
vs. iNO)

p (100% 
O2 vs. 
iNO)

Pulmonary vascular resistance

TPV/RVETc 0.24 ± 0.02 0.27 ± 0.02 0.31 ± 0.03 .01 <.001 .02

TDI Pulmonary Artery Annular Peak 
Systolic Velocity [s1’] (cm/s)

6.2 ± 0.2 7.1 ± 0.5 8.1 ± 0.8 .003 <.001 .2

Right ventricular contractility

TAPSE (mm) 8.1 ± 0.6 9.3 ± 0.7 10.5 ± 1.1 .01 .0004 .056

TDI tricuspid peak systolic velocity [s’] 
(cm/s)

7.9 ± 0.6 9.2 ± 0.9 10.3 ± 0.8 .011 <.001 .046

Fractional area change (%) 23 ± 2 27.6 ± 2.7 32 ± 3.5 .005 <.001 .04

Pulmonary blood flow

LPA flow (VTI, cm) 9.9 ± 0.5 11.9 ± 1.1 14 ± 2 .002 .0002 .053

Pulmonary venous flow (VTI, cm) 10.8 ± 0.7 12.2 ± 0.9 13.8 ± 1.5 .01 .0006 .052

Abbreviations: LPA, left pulmonary artery; RVET, right ventricular ejection time; TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging; 
TPV, time to peak velocity; VTI, velocity time integral.

Variable 100% O2 iNO (20 ppm) p

Pulmonary vascular resistance

TPV/RVETc
Reactive pulmonary bed*

13 ± 4
0

23 ± 4
8

<.001

Pulmonary artery annular systolic 
velocity [s1’]

Reactive pulmonary bed*

12 ± 6
1

22 ± 7
7

.006

Right ventricular contractility

TAPSE 13 ± 2 22 ± 4 <.001

TDI systolic s’ velocity 14 ± 4 24 ± 5 .0001

Abbreviations: TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging, TPV/RVET, 
time to peak velocity/right-ventricular ejection time
*Change by ≥20% from the baseline 

T A B L E  3  Comparison of % change 
from baseline for parameters with 100% 
oxygen (O2) versus inhaled nitric oxide 
(iNO), n = 10

Variable FGR (n−3) AGA (n = 7)
p 
value

Pulmonary vascular resistance

TPV/RVETc 0.21 ± 0.02 0.25 ± 0.01 .002

Pulmonary artery annular systolic 
velocity [s1’] (cm/s)

5.7 ± 0.1 6.4 ± 0.15 .0001

Right ventricular contractility

TAPSE (mm) 7 ± 1.2 8.6 ± 6 .003

TDI systolic s’ velocity (cm/s) 6.8 ± 0.7 8.3 ± 0.3 .002

Abbreviations: AGA, appropriate for gestational age; FGR, fetal growth restriction; TAPSE, tricuspid annular 
plane systolic excursion; TDI, tissue Doppler imaging; TPV/RVET, time to peak velocity/right-ventricular 
ejection time.

T A B L E  4  Comparison of baseline PVR 
and RV contractility parameters between 
FGR and AGA cohorts
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contribute significantly to the clinical outlook and have prog-
nostic significance (Barst, 1986; Douwes et al., 2016; Frank 
et al., 2019; Sitbon et al., 2005). CATH and bedside echocar-
diography are performed under very different physiological 
conditions. The former requires intubation, sedation/analge-
sia, and anesthesia, which could influence real-time physio-
logical hemodynamics. It may also reflect the effects of acute 
changes in lung volume/gas-exchange during ventilation with 
anesthesia. Echocardiography assessments are performed in 
awake infants with no/minimal sedation and may arguably 
better reflect the physiological state.

4.1 | Mechanistic linkage

Reduced vessel density, abnormal vascular architecture, 
and the hypoxic pulmonary vasoconstriction play impor-
tant roles in PH as well as overall BPD pathophysiology. 
Reversibility of hypoxic pulmonary vasoconstriction 
is key but adverse vascular remodeling could blunt the 
response. Intermittent or chronic hypoxia increase PVR 
via vasoconstriction, reinforcing the utility of testing the 
pulmonary vasoconstriction in disease severity assess-
ment, and management of BPD associated PH. The pul-
monary arterial vascular smooth muscle cells and alveolar 
endothelium are targets for O2 mediated response. In the 
main, the vasodilatory effects of iNO are mediated via 

cyclic GMP, by inhibiting calcium entry into the cell and 
activation of K+ channels.

4.2 | Echocardiography facilitates 
physiological testing of the pulmonary 
circulation

We utilized previously studied echocardiographic param-
eters. While both TAPSE and TDI velocities are afterload 
dependant, all parameters of RV systolic performance (lon-
gitudinal [assessed by TAPSE and TDI velocity]) and global 
(fractional area change]) noted significant changes during 
pulmonary circulation reactivity testing. This suggests a 
close inter-play/ coupling between cardiac contractility and 
afterload (Figure 2). TPV/RVETc and PA annular peak sys-
tolic velocity provide a reliable estimate of invasive PVR and 
compliance in children (Hayabuchi et al., 2016; Levy et al., 
2016); the latter has also been studied in preterm infants 
receiving surfactant therapy (Sehgal, Bhatia, et al., 2019; 
Sehgal et al., 2020). Combination of the above indices has 
been used to characterize ventriculo-arterial coupling for risk 
stratification and long-term monitoring in children with PH 
(Levy et al., 2016, 2018, 2019). The association between el-
evated PVR and the RV dysfunction, and its association with 
sequelae in BPD infants and other clinical situations is known 
(Blanca et al., 2018; Levy et al., 2019; Schäfer et al., 2018; 

T A B L E  5  Comparison of FGR versus AGA cohorts for % change from baseline with 100% oxygen (O2) versus inhaled nitric oxide (iNO)

Variable
FGR
100% O2

AGA
100% O2 p

FGR
iNO

AGA
iNO p

Pulmonary vascular resistance

TPV/RVETc 10.3 ± 2 13.6 ± 4 0.25 19.3 ± 6 25.1 ± 3 .13

Pulmonary artery annular 
systolic velocity [s1’]

5.3 ± 2 15.1 ± 3.9 0.006 11.6 ± 0.4 25.8 ± 3.9 .0005

Right ventricular contractility

TAPSE 11.3 ± 2.6 13 ± 1.7 0.32 17 ± 2.1 24.2 ± 2.4 .003

TDI systolic [s’] velocity 9.6 ± 3.8 16.1 ± 1.6 0.01 18 ± 3 24.7 ± 2.7 .015

Abbreviations: AGA, appropriate for gestational age; FGR, fetal growth restriction; TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging; 
TPV/RVET, time to peak velocity/right-ventricular ejection time.

F I G U R E  1  Flow through ductus arteriosus on color Doppler: Baseline (a), 100% oxygen (b), 20 ppm inhaled nitric oxide (C)
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Sehgal, Gwini, et al., 2019; Sehgal et al., 2016; Yates et al., 
2008). A recent study on pediatric PH patients using CATH 
and echocardiography noted that the Doppler Echo–derived 
TAPSE/ (TPV: RVET) relationship inversely correlated with 
invasive systolic pulmonary pressure and PVR (Levy et al., 
2018). It is an important prognostic indicator, as pulmonary 
vascular stiffness predicts mortality in pediatric PH patients 
(Douwes et al., 2013; Friesen et al., 2019; Schäfer et al., 2018).

4.3 | Relevant clinical constructs

Sildenafil administration in infants who demonstrated re-
activity led to significant clinical improvements (wean-
ing of respiratory support). Identification of such a subset, 
where reversible pulmonary vasoconstriction is a signifi-
cant contributor to BPD pathophysiology, has important 
therapeutic constructs. Pulmonary vasodilators are in vari-
able use for chronic PH although are not approved by the 
Food and Drug Administration for use in infants. Sildenafil 
has been used extensively off-label for the treatment of 
PH in neonates, infants as well as children. Clinically, 
such therapies may be administered for months before/
after discharge. Pulmonary vasoreactivity testing prior to 

long-term oral pulmonary vasodilator treatment may ra-
tionalize therapy. Current guidelines do not use such as-
sessments as a determining factor whether a patient should 
be placed on sildenafil (or other pulmonary vasodilators) 
or not. Our results note the useful biological plausibility 
of such a strategy, based on which a physiologic argu-
ment of such non-invasive, bedside testing could be made. 
Therapeutics commonly used in adult patients should not 
be simply extrapolated. Pediatric PH, especially in the neo-
natal population, has many unique clinical features due to 
complex maturational influences related to lung vascular 
development and related factors. Physiologic assessments, 
including cardiac CATH, echocardiography and serum 
biomarkers, while associated with clinical outcomes, have 
not been tested as sufficient endpoints for clinical trials. 
Bedside echocardiography, using well-studied parameters, 
opens up the possibilities of precision medicine and physi-
ology driven approach. This is well placed to potentially 
personalize the care of patients with pre-term lung disease, 
ensuring that treatment decisions are based on underlying, 
demonstrable pathophysiology, and not in a “one-size fits 
all approach.” While ductus arteriosus is mostly closed by 
36 weeks corrected GA, patency in one infant provided an 
immediate visual portrayal of sudden hemodynamic shift.

F I G U R E  2  Correlations between RV systolic performance and pulmonary vascular resistance
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4.4 | Impact of fetal growth restriction

FGR infants stood out (lower baseline RV systolic perfor-
mance and elevated PVR) as well as reduced vasoreactivity 
(percentage change). FGR infants made up a substantial part 
(46%) of a previous CATH assessed cohort. In another study, 
FGR infants were significantly more likely to have systemic 
or supra-systemic baseline RV pressures than AGA infants 
were. However, the reactivity of this sub-cohort was not re-
ported separately in either study (Frank et al., 2019; Khemani 
et al., 2007). The differential response may be explained 
by way of muscularization of precapillary vessels, stiff ar-
teries (elastin degradation and its replacement by collagen 
[100 times stiffer]), reduced endothelial cell function, and 
impaired eNOS signaling (Gebb & Jones, 2003; McGillick 
et al., 2016; Rabinovitch et al., 1979). Greater thickening and 
reduced PA pulsatility are noted in human FGR newborns 
(Sehgal, Gwini, et al., 2019). Preterm FGR infants also have 
increased baseline PVR on the first postnatal day (Sehgal 
et al., 2020). These findings align with the concept of “fetal 
programming”; disruptions in fetal nutrition/oxygenation 
may have long-lasting physiological impact. Lack of reac-
tivity may also indicate that this sub-cohort may not benefit 
from long-term pulmonary vasodilation strategies, but this 
needs prospective longitudinal analysis.

5 |  CONCLUSIONS

The limitation of small numbers overall and in each group 
is acknowledged. Infants were not followed up with sub-
sequent echocardiography. Despite limitations, we iden-
tified key knowledge gaps that require further study. 
Assessment of the pulmonary circulation using echocar-
diography provided real-time physiological information 
of the reactivity in response to pulmonary vasodilators. 
Such assessments may facilitate physiology-focussed 
management and pulmonary vasodilator use, providing 
additional important information for risk stratification 
and/or response to therapeutic interventions. A pro-
spective study assessing the clinical/echocardiography 
impact of ongoing vasodilator therapy comparing the 
responsive/non-responsive cohorts is better placed to as-
certain its role as a therapeutic target. Follow-up data of 
survivors of vasodilator therapies are needed to assess 
effectiveness and long-term safety.
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