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Abstract: Recent advances in single-cell transcriptomics have greatly improved knowledge of com-
plex transcriptional programs, rapidly expanding our knowledge of cellular phenotypes and func-
tions within the tumour microenvironment and immune system. Several new single-cell technologies
have been developed over recent years that have enabled expanded understanding of the mech-
anistic cells and biological pathways targeted by immunotherapies such as immune checkpoint
inhibitors, which are now routinely used in patient management with high-risk early-stage or ad-
vanced melanoma. These technologies have method-specific strengths, weaknesses and capabilities
which need to be considered when utilising them to answer translational research questions. Here,
we provide guidance for the implementation of single-cell transcriptomic analysis platforms by
reviewing the currently available experimental and analysis workflows. We then highlight the use of
these technologies to dissect the tumour microenvironment in the context of cancer patients treated
with immunotherapy. The strategic use of single-cell analytics in clinical settings are discussed and
potential future opportunities are explored with a focus on their use to rationalise the design of novel
immunotherapeutic drug therapies that will ultimately lead to improved cancer patient outcomes.

Keywords: melanoma; single-cell; transcriptomics; sequencing; spatial; immunotherapy; cancer;
treatment; diagnosis

1. Introduction

Tumours are made up of a complex mixture of proliferating malignant cells, immune
cells, blood vessels and tumour stroma (Figure 1) [1–3]. A network of pro-tumour and
anti-tumour signals interact within the tumour microenvironment to modulate tumour
growth and influence treatment response [4–6]. Immune checkpoint-based immunother-
apies (ICIs) such as the antibodies that target immunomodulatory receptor, cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1),
or to its ligand, programmed death ligand 1 (PD-L1), have revolutionised the treatment
of a variety of cancer types including melanoma [7–11]. The 5-year overall survival (OS)
for Stage IV metastatic melanoma patients has improved from less than 10% to 50% with
modern anti-PD-1-based immunotherapies when compared with historical data [7,8,12,13].
Despite these improvements, ~30–40% of patients do not respond and a further ~20–30%
eventually relapse, and 50% die from their disease [12,13]. Although bulk genomic and tran-
scriptomic data have provided valuable insights into the biological processes of treatment
responses, the averaging of signals across millions of cells loses information about rare
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and unique cellular subtypes that might be pivotal in determining disease biology [14–17].
Single-cell analyses can provide unique opportunities to gain a deeper mechanistic under-
standing of tumour-intrinsic and -extrinsic mechanisms that drive response and resistance
to immunotherapies [18–20].

Figure 1. Single cell sequencing facilitates the dissection of the tumour microenvironment. The tu-
mour microenvironment (TME), including malignant cells, immune cells and stromal cells, regulates
a range of cellular and molecular signals. Such signals influence the cell states, tumour proliferation,
host immunity and response to systemic therapies. Single cell technologies are providing unique
opportunities for dissecting the orchestration of the TME and understanding the tumour-intrinsic
and -extrinsic mechanisms of immunotherapy response and resistance.

Current approaches for single-cell analysis using immunohistochemistry, in-situ hy-
bridisation, and flow cytometry have been essential tools for detecting the differences be-
tween non-malignant cells and cancer cells in the laboratory, as well as in the clinic [21–24].
These conventional methods examine individual cells and dissect the different subtypes
of cells in the tumour and complement bulk-based genomic analysis [4,25]. However,
such classic approaches often only detect a limited number of analytes in the assay, which
reduces the power to characterise the diversity of cellular subtypes and molecular states in
the TME [25–27].

Advances in single-cell transcriptomics technologies have empowered the unbiased
detection of hundreds or thousands of analytes at single-cell resolution within many cells
at an increasingly cost-effective manner. Likewise continual growth in the number of
highly developed bioinformatics tools has empowered researchers with the opportunity
to utilise single-cell technologies to fully characterise the diversity of different cell types
and cell-to-cell interactions [28,29]. The analytical workflows include the reduction of
high-dimensional data, neighbourhood clustering, phylogeny inference, lineage tracing,
pseudotemporal ordering, RNA velocity, ligand–receptor interaction, and multiple data
integration [28–32]. In addition, the sequencing-based mRNA molecules can be com-
plemented by histological staining to further integrate cell locations and morphological
features [33]. Recent single-cell-based studies of tumour cells and TME in melanoma and
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other cancer types have discovered new cellular subsets, unique transcriptional programs,
and more evidence for “intra-tumoural” and “inter-tumoural” heterogeneity, all of which
impact our understanding of therapeutic response and resistance [34–37]. For instance,
advanced melanomas that have accumulated innate immunosuppressive cells such as
myeloid-derived suppressor subpopulations respond poorly to immune checkpoint in-
hibitors [38–40]. Furthermore, varied infiltration of dysfunctional T cell subpopulations
exhibits different levels of anti-tumour response [16,41,42]. Single-cell approaches offer
great potential to answer many clinically and biologically important questions that persist
in cancer research, including: the contribution of TME and tumour heterogeneity to evade
the anti-tumour response; the temporal relationship between T cell clonotype and tumour
cells during treatment; the interacting network of immune checkpoint molecules in TME;
and the functional roles and spatial relationships between tumour cell subtypes and im-
mune cells [43–47]. Herein, we focus on how single-cell technologies have the potential to
advance understanding of the interplay between tumour cells and their microenvironment,
and response and resistance to anti-cancer immunotherapy.

In this review, we summarise the landscape of commonly used single-cell and spatial
transcriptomic technologies in cancer research, whilst discussing their advantages and
shortcomings in terms of their capture efficiency, cell restriction, spatial resolution, and
analytical support. Next, we describe the key discoveries and potential applications of
single-cell techniques for novel biomarker and therapeutic development. Finally, we
discuss the advances made using single-cell techniques in healthcare and clinical research.

2. Single-Cell Transcriptomic Technologies

In recent years, a wide array of single-cell transcriptomic technologies has emerged
with a range of biological and clinical applications in melanoma and cancer immunother-
apy, demonstrating the ability to characterise rare cellular phenotypes and specific cellular
responses in an unbiased manner with precision [46,48–50]. Several recent studies have
highlighted the impact of single-cell transcriptomics for identifying new potential molecular
targets and the effect of checkpoint inhibitors on tumour cells and the TME [3,51–53]. These
studies have fully characterised the cellular composition and function of the TME, T cell and
immunosuppressive cell states, transcriptional programs and checkpoints associated with
disease progression and response to treatment [3,17,51–54]. The single-cell transcriptomic
sequencing technologies are broadly classified by their respective cell isolation methods
(Table 1); (i) droplet encapsulation, (ii) microwell encapsulation, and (iii) fluorescence-
activated cell sorting (FACS). In this section, we outline the following single-cell transcrip-
tomic platforms including 10x Chromium, Fluidigm C1, and SMART-seq2, that have been
widely used in the field of cancer research, thus providing a summarised guide that can
assist a broad range of biomedical researchers to make an informed decision for their
single-cell studies.

2.1. Droplet Encapsulation Technologies

The strength of droplet encapsulation technologies, 10x Genomics Chromium and
Dolomite-Bio Nadia, is the ability to sort a large population of cells into a small volume
of single cells within droplets, offering high-throughput and relatively low-cost analysis
of single cells due to sample and reagent efficiency [55,56]. The Chromium system utilise
GEM (Gel Bead-in-emulsion) technology in which a high diversity pool of gel beads,
each coated with a unique oligonucleotide barcode sequence that are mixed with reverse-
transcription (RT) reagents and cells in an oil environment to form thousands of individual
cell emulsion droplets [57,58]. This GEM-based Chromium instrument can reach 65% cell
capture efficiency (i.e., the proportion of input cells captured for downstream analysis)
with a relatively low doublet rate of 0.9% (two or more cells combined). Additionally,
up to eight samples are processed in a microfluidic chip capturing 100–80,000 cells in
10–20 min [27,55,56], and the subsequent barcoded libraries are pooled for downstream
sequencing. In addition to 10x Chromium, single cells can also be encapsulated with a
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bead coated with oligonucleotides containing unique molecular identifier (UMI) sequences
using the Dolomite-Bio Nadia system. Unlike the GEM-based Chromium system, the
Nadia system reverse transcribes RNA into cDNA after the collection of droplets from
the chip, providing an advantage in reducing the risk of RT inhibition [59,60]. The Nadia
system also provides chips that have integrated stirrers to ensure cells and beads are evenly
distributed throughout the run (2–8 samples in a chip per run) [61]. However, the cell
capture efficiency is lower when compared to the 10x Chromium system, and the Nadia
instrument requires highly trained personnel to operate the run. Wider adoption of these
techniques can be limited by the large volume of data that is generated from the sequencing,
and therefore the companies are now offering an end-to-end solution for biologists with no
prior bioinformatics experience to process, analyse and visualise single-cell expression data.

The Nadia platform does not provide software for data processing and visualisa-
tion and requires users to use a publicly available pipelines for analysis. This may be a
barrier for widespread use and uptake by biologists, as the publicly available pipeline
requires computational skills in R or Unix. For both Chromium and Nadia system, one
should consider the requirement for a high concentration of viable cells to maximise the
throughput of encapsulation of single cells in droplets. Of all the single-cell instruments,
the 10x Chromium system is currently the most popular platform for single-cell analysis in
cancer immunotherapy.

2.2. Microwell Encapsulation Platforms

The commonly available microwell encapsulation platforms are Fluidigm C1, Illumina/
Bio-Rad ddSeq, Takara-Bio ICell8 and BD Rhapsody. Among all the microwell technologies,
Fluidigm C1 system was the earliest generation and is considered the founder of the single-
cell field. Released in 2012, the C1 system was the first machine that allowed researchers to
isolate, select, phenotype and sort single cells for not only whole transcriptome sequencing,
but also targeted DNA or RNA sequencing, whole-genome or exome sequencing, small
RNA profiling, and epigenomics. The C1 system utilises an integrated microfluidic chip
(IFC) to isolate single cells into individual microchannels enabling a cell capture efficiency
of 39% [56]. Although the workflow is laborious including manual pipetting and dislodging
cells, the C1 instrument allows researchers to visually inspect captured cells under the
microscope decreasing doublet rate to 3%. As the IFCs come in the ranges of 5–10, 10–17,
and 17–25 µm, the cost for cartridges and reagents can increase substantially especially in
the studies of tumour immunology as the cell sizes vary across different cell populations.

In comparison to the C1 system, the Takara-Bio ICell8 platform [62] may be more
practical in immuno-oncology studies as ICell8 uses a nano-well chip that captures cells
from 5 to 100 µm in size (37% capture efficiency). The ICell8 also provides a customisable
workflow where users can visually control for empty wells or doublets and select cells of
interest for downstream transcriptomic work. The ICell8 application kit protocol offers the
flexibility of different sequencing kits (including Oxford Nanopore Library Preparation Kit
and Illumina full-length transcriptome kit) and is compatible with the use of barcoding
and UMI for library construction.

Another platform that provides flexibility for single-cell workflow is the Illumina/Bio-
Rad ddSeq instrument. The ddSeq scalable kits accommodate both sample size experiments,
where one kit is formatted to process hundreds to thousands of cells and the other kit
is designed for tens of thousands of cells [63,64]. The protocols for ddSeq are straight-
forward, and captured cells are encapsulated into droplets for cDNA synthesis and library
preparation for sequencing [65]. Support for end-to-end workflow, including bioinformatics
and user-friendly visualisation tools, are provided and are useful to inexperienced users in
assisting them to analyse and interpret single-cell data.

More recently, the latest microwell-based instrument, Rhapsody, produced by BD
Biosciences claims that its system enables high singlet capture efficiency of up to 80%
depending on the cell types and user handling. However, a few studies demonstrated
that the overall cell capture rate is 65% especially samples with different cell types and
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sizes [66,67]. The Rhapsody platform uses UMI-barcoded magnetic beads capturing up to
40,000 single cells on an array of 200,000 microwells, and is a well-based system similar
to Microwell-seq [68,69]. Protocols by Rhapsody offer visual inspection of cartridges and
microwells to ensure the quality of the samples is adequate for downstream analysis. An
additional feature of the workflow is that the remaining beads can be retained for later
use, allowing subsample beads to be used for multiple library preparations and thus
reducing the sequencing costs. The Rhapsody platform can be incorporated with BD
AbSeq to provide absolute quantification of both protein and mRNA expression levels
in single cells [70]. The measurement of both protein and mRNA expression is critical to
understanding complex regulation of cells because most of the cell surface markers such as
CD4 in T cells have thousands of protein molecules per cell but are only driven by a small
number of mRNA transcripts [71–73]. A common issue in transcriptomic experiments is
the dynamic range of mRNA expression levels [72]. Highly expressed genes such as the
ribosomal genes will dominate the reads in the sequencing run, while the lowly expressing
transcripts including immune genes will be sparse, thus affecting accurate quantification
and resulting in unnecessary sequencing costs. The BD Rhapsody workflow provides an
option for users to select a specific panel of mRNAs (for instance, BD Rhapsody Immune
Response Panel) and allows enrichment of targets to provide higher sensitivity for detecting
rare molecules that may be missed with whole-transcriptome profiling [67,70]. A targeted
RNA approach is recommended for validation experiments and not for discovery studies.

2.3. Fluorescence-Activated Cell Sorting (FACS)

Aside from the modern technologies for single-cell isolation as described earlier,
the traditional FACS-based single-cell approach such as SMART-seq2 [74,75] and MARS-
seq [76] is a well-established and standardised technique in the laboratory. Both SMART-
seq2 and MARS-seq sort individual cells from the target population into 96- or 394-well
plates containing lysis buffer, and the plates can be kept for long periods prior to sequenc-
ing [77,78]. These techniques are not restricted by the size or morphology of the cells or the
total cell numbers, facilitating experiments with very rare cell populations of interest [79].
While the single-cell protocol of MARS-seq is automated, the assays in SMART-seq2 require
manual pipetting into individual wells, thereby making it more tedious, and increasing
the technical variability [74–76]. SMART-seq2 is not suitable for experiments that require
thousands of individual cells, unless liquid handling robots are incorporated into the
workflow to reduce pipetting issues. Another distinct difference between SMART-seq2
and MARS-seq is the length of cDNA synthesis [75,79]. SMART-seq2 generates full-length
cDNAs and produces improved sequencing coverage across the entire transcriptome,
whereas MARS-seq employs a 3’ end of single-cell RNA sequencing method where partial
cDNAs are tagged with barcodes and UMIs during the reverse transcription step. Com-
pared to 3’ end-counting mRNA, the full-length transcript se-quencing has advantages in
detecting lowly expressed genes and isoforms, and allows for allele-specific expression
analysis [80,81]. When adopting SMART-seq2 or MARS-seq in the experiments, users
should note that the FACS-based approach provides neither visual imaging inspection of
cell quality nor the option to select cells for downstream sequencing. As both techniques
generally require pre-defined markers, the phenotype of a rare subpopulation requires a
wide range of different markers in multiple combinations that can help to better identify
subpopulations and strategies for downstream analysis.
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Table 1. Specifications of common single-cell sequencing technologies.

Platform Company/ Academic Method of Single-Cell
Capture Capture Efficiency Doublet Rate Number of Captured

Cells Cell Size Restrictions Analytical Tool Advantages Relative Limitations References

Chromium 10x Genomics Droplet encapsulation 65% 0.90% 100–80,000 Independent of cell size,
but generally up to 50 µm

10x analysis suite
including Cell Ranger and
Loupe Browser; Seurat R

package

Easy to operate; cost effective;
intensive support for end-to-end

solution; flexible options for
multiple applications

High concentration of viable cells
required; Little control over cell input [59,78]

DropSeq (Nadia) Dolomite-bio Droplet encapsulation 10% 1.80–11.3% 103–104 None for mammalian cells Open platform High throughput; low cost

High concentration of viable cells
required; low cell capture efficiency;
skills required to operate; minimal

support for data processing and
analysis.

[60,61]

C1 Fluidigm Microwell encapsulation 39% 3–30% 96 or 800 5–10, 10–17, or 17–25 µm Fluidigm Singular
Analysis Toolset Software

Full-length transcript; customisable
workflow (able to exclude empty

wells and doublets)

Limited cell capture; low throughput
(up to 96 or 800 cells); high cost of

cartridges; relatively long preparation
time (two runs per day); fresh tissue or

cells required

[56,82]

ddSeq Illumina/Bio-Rad Microwell encapsulation 3–4% 5.80% 103–104 None for mammalian cells Illumina BaseSpace or
ddSeeker R package

Easy to operate; flexibility of kits for
different number of cells; intensive

support for end-to-end solution

High concentration of viable cells
required; no users modification; single

application (RNA-seq)
[56,78]

ICell8 Takara-Bio Microwell encapsulation 37% 1.3–4% 1800 5–100 µm CELLSTUDIO software

Easy to operate; full-length
transcript; customisable workflow
(able to exclude empty wells and

doublets)

Specialised bioinformatic tools
required; single application (RNA-seq) [62,78]

Rhapsody BD Biosciences Microwell encapsulation 65% 2–10% 100–40,000 5 to 30 µm
BD Rhapsody

Analysis Pipelines and
SeqGeq Software

Easy to operate;
intensive support for end-to-end
solution; simultaneously measure

protein and mRNA expression;
optimise costs based on

subsampling and targeted panels

Low sequencing throughput; custom
panel of up to 500 targets [56,66,67,83]

Smart-Seq2 [75,76] FACS 80% 1% No limitation None for mammalian cells Open platform

No limitations of cell size, shape or
homogeneity; simultaneously
measure DNA and RNA; high
practicality (uses off the shelf

reagents); full-length transcript

No options for barcoding and UMI (no
multiplexing and gene quantification
of samples); laborious worflow due to

numerous pipetting steps

[74,75,84]

MARS-Seq [77] FACS 92% 2% No limitation None for mammalian cells Open platform
Automated process; suitable for

rare cell sorting; No limitations of
cell size, shape or homogeneity

Specialised bioinformatic tools
required [76,78]

Abbreviation: FACS—fluorescence-activated cell sorting.
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3. Spatially Resolved RNA Technologies

Mapping the subcellular position of the RNA molecule in an intact tissue section
is an important step to capture the landscape of intra-cellular functions and biological
signalling with single-cell techniques. This facilitates deeper understanding of data and
tumour biology such as understanding tumour progression and treatment resistance. Sev-
eral novel high-dimensional spatially resolved RNA technologies include STARmap [85],
seqFISH [86], MERFISH [87], FISSEQ [88,89], Slide-seq [90], Nanostring GeoMx [91], 10x Vi-
sium/Spatial transcriptomics [33] and High-definition Spatial Transcriptomics (HDST) [92]
are summarised in Table 2. There are different methods available for spatially re-solved
transcriptomic approaches and the comparison of each method has been reviewed ex-
tensively elsewhere [91,93,94]. Therefore, this section focuses on a subset of these in situ
capture-based platforms that are becoming increasingly important and widely ac-cessible
for biomarker and therapeutic studies in cancer research.

3.1. NanoString GeoMx Digital Spatial Profiler (DSP)

The NanoString GeoMx DSP platform allows multiplexed profiling of RNAs and/or
proteins at a single spot in 10–600 µm resolution [91]. This instrument uses antibodies
labelled with oligonucleotide barcodes and the probes are spatially barcoded with tags for
different RNA species to carry out transcriptional profiling from a sample tissue region.
GeoMx DSP depends on fluorescent markers to visually guide the selected regions re-
vealing morphology (cell sizes and shapes) and/or transcripts of interests. The collected
data can be processed, analysed and visualised using GeoMx Data Centre software. GeoMx
DSP has gained wider adoption to date due to the robustness of workflow and support
for data visualisation and analysis. Another key advantage of this technology is that,
unlike the traditional lapser-capture microdissection, GeoMx does not result in de-struction
of tissue and hence RNAs from a series of tissue sections can be re-analysed [91,95–97].
As GeoMx is designed to analyse spatial expression of a comprehensive panel of RNAs
within user-defined regions of interest (ROI) in a tissue section at a single-cell level, the
platform requires prior knowledge of targets (up to 18,000 genes) and its sensitivity limits
the resolution of ROI at the level of 20–200 cells [93,98]. Although the workflow of selecting
ROI is largely automated, analysis of the whole tissue section is not feasible making
unbiased regional analysis difficult.

3.2. 10x Genomics Visium

The 10x Genomics Visium Spatial Gene Expression system adapted the Spatial Tran-
scriptomics (ST) concept [33] that combines formalin-fixed paraffin-embedded (FFPE) or
fresh-frozen tissue imaging with high-throughput sequencing. The company im-proved ST
technology by reducing barcode spacing and improving the spatial resolution to 55 µm.
Visium consists of a glass pathology slide, embedded with probes with a spatial UMI
and a poly(dT) anchor that allows the binding of the poly(A)-tailed mRNA molecules on
the solid surface upon permeabilization [45]. The reverse transcription is performed in
situ directly on the slide and the subsequent cDNA complexes are extracted for library
generation and sequencing. Of note, the Visium assays currently offers 3’ RNA se-quencing
for gene identification [65]. Similar to NanoString GeoMx platform, us-er-friendly graphic
interface software (Space Ranger) is available for data analysis and visualisation. Visium
also allows co-detection of immunofluorescent protein with whole transcriptome spatial
analysis. Although Visium provides spatially resolved whole transcriptome data, the cur-
rent barcoded regions of 55 µm in diameter may include from 1 to 10 cells [33,99]. Similar
to the NanoString GeoMx technology, the Visium limits the detection range from a few
to hundreds of cells within a given region. Users should note that this may pose some
difficulties in profiling certain regions of the TME as cancer cells are frequently adjacent to
a combination of immune and stromal cells.
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3.3. Slide-Seq

Slide-seq, a recently established non-commercial capture-based technique, provides an
experimental design similar to that of 10x Genomics Visium, however with a higher cellular
resolution of 10 µm [90]. The Slide-seq approach uses a glass coverslip containing uniquely
barcoded 10 µm beads that are randomly overlayed. The positions of barcoded beads are
decoded in situ by sequencing-by-ligation prior to the sample preparation procedure [94].
Slide-seq technology is useful for profiling large tissue sections as this approach is not
bounded by the ROIs [100]. The spatial transcriptomic data generated from Slide-seq
requires open-source tools for computational processing and data interpretation, and thus
it requires specialised analytics and expertise for data analysis. A key limitation of Slide-
seq is that the experimental procedure starting from tissue permeabilization to cDNA
extraction for library preparation is relatively time-consuming, which results in the loss
of gene expression information due to confounding effects [90]. The reduced sensitivity
impacts the ability to detect lower expressed genes, which could impact the biological
questions that can be interrogated, particularly those relating to intra- and inter-tumour
heterogeneity, rare immune subsets, and their contributions to immunotherapy resistance
and tumour relapse.

3.4. High-Definition Spatial Transcriptomics (HDST)

HDST has a similar strategy as Slide-seq but instead uses high-definition spatial
barcoding beads of 2 µm in size [92]. Each bead contains barcoded mRNA capture primers,
and these beads are randomly deposited in an ordered high-density bead array using a
split-pool approach. HDST uses smaller beads than Slide-seq and thus has better spatial
resolution from 10 µm to 2 µm when compared to Slide-seq [33,92]. Initial protocols before
sample preparation in HDST are similar to Slide-seq, where the locations of the beads are
decoded by sequential hybridisation. The shortcomings of HDST are similar to Slide-seq
and include the requirement for specialised analytics and bioinformatic expertise and low
sensitivity of mRNA capture.
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Table 2. Specifications of in situ capture spatial transcriptomic technologies.

Platform Company/
Academic

Detection
Efficiency Resolution Number of

Captured Cells Sample Type Analytical Tool Advantages Relative
Limitations References

GeoMx NanoString Not reported 10–600 µm 20–200 cells per
ROI

Fresh-frozen or
FFPE

GeoMx Data
Centre Software

Easy to operate (high
level of automation);
intensive support for
end-to-end solution;

Ability to profile
protein/RNA; single-cell

level

Low efficiency of
cell capture when

using smaller ROIs;
Require

user-defined ROIs

[91]

Slide-seq [87] 0.30% 10 µm ~70,000 Fresh-frozen Open platform or
Seurat R package

Relatively high
resolution; scalability;
spatial resolution for
large tissue volumes

Low sensitivity;
minimal support for
data processing and

analysis

[90]

Visium 10x Genomics >6.9% 55 µm 1–10 cells per ROI Fresh-frozen or
FFPE 10x Space Ranger

Intensive support for
end-to-end solution;

coverage across a large
area of tissue

User-defined
regions contain
multiple cells

[99]

High-definition
spatial

transcriptomics
[89] 1.30% 2 µm ~160,000 Fresh-frozen Open platform High resolution

Low sensitivity;
minimal support for
data processing and

analysis

[92]

Abbreviations: ROI—region of interest; FFPE—formalin-fixed, paraffin-embedded.
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4. Dissecting the Tumour Immune Microenvironment Using Single-Cell Approaches

Cancer often begins with errors in the genome that result in the dysregulation of nor-
mal cellular behaviour and promotion of a malignant phenotype. Different transcriptional
programs and various stages of cell fate contribute to the establishment of intratumoural
heterogeneity (ITH), where subpopulation of tumour cells in the same patient appears
between different regions of a tumour or gain clonal advantages and evolve overtime to
metastasize and emerge immune escape variants [101]. Further complexity is introduced
into the evolutionary processes during metastasis and under the selective pressure of
systemic therapies. The tumour must establish a TME with a vasculature and stromal
framework to support for its growth, whilst recruiting regulatory and immunosuppressive
cells through aberrant intercellular and cytokine signalling to evade the immune system.
The selective pressure not only dictate the stromal and immune context of the TME, but
also elicit selection pressures on the tumour that mitigate the effects of systemic therapies.
To fully understand the biology of tumourigenesis, cancer progression, and response to
cancer therapies, one requires investigating the dynamics of both tumoural and TME evo-
lution and their interactions. The application of single-cell techniques in immuno-oncology
research is demonstrating promising potential for characterising the features of the TME
that influence immunotherapy response and resistance in melanoma and other cancer
types as summarised in Tables 3 and 4.

Table 3. Translational insights of immuno-oncology in melanoma from single-cell analyses.

Key Findings Single-Cell Platforms Identified Cell Types References

CD8 T cells associated with TCF7 transcription
factor were predictive of immunotherapy response;

exhausted T cells with abnormal activation of
metabolic pathways are correlated with

unfavourable prognosis

Smart-Seq2
CD8+ T cell subtypes
(exhausted, naïve and

cytotoxic)
[16]

Dysfunctional CD8 T cells form a proliferative
compartment within human melanoma; the

abundance of dysfunctional T cells is associated
with tumour recognition

MARS-Seq Intratumoural CD4 and CD8
T cells [4]

B cells and tertiary lymphoid structures promote
ICB response and improve patient survival Smart-Seq2 B cells [102,103]

Monocyte-derived APCs are central to the
response of PD-1 checkpoint blockade and

anti-CD40 is a potential novel treatment
Smart-Seq2 Monocyte-derived

dendritic cells [104]

Macrophage and γδ T cell subtypes are
overrepresented in non-responders to

immunotherapy; gene expression signature of
these innate cells can help predict

treatment response.

Smart-Seq2 and 10x
Genomics Chromium

TREM-high macrophages and
γδ T cells [105,106]

A cancer-associated transcriptional program
promotes T cell exclusion and resistance to

checkpoint immunotherapies
Smart-Seq2

Melanoma cell (resistance
signature associated with T

cell exclusion and
immune evasion)

[43]

Genetic heterogeneity in Stage III melanoma;
coexistence of multiple melanoma signatures

within a single tumour region
10x Genomics Visium Gene expression profiles of

melanoma and lymphoid cells [107]

Seven major subpopulations of CD8+ T cells are
identified, of which, the exhausted T cell

subpopulation is associated with unfavourable
prognosis and increased in later-stage melanoma

samples, while favourable naïve/memory and
cytotoxic subpopulation cells are decreased

10x Genomics Chromium
7 representative

subpopulations of CD8+
T cells

[17]

Abbreviations: APCs—antigen-presenting cells; ICB—immune checkpoint blockade; PD-1—programmed cell death 1; γδ—γ delta.
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Table 4. Translational insights of immuno-oncology of other cancer types from single-cell analyses.

Cancer Type Key Findings Single-Cell Platforms Identified Cell Types References

Breast

Trajectory analysis on longitudinal samples
demonstrated distinct T cell states

associated with activation, hypoxia and
terminal differentiation

10x Genomics
Chromium

CD45+ immune cells
(Clusters of T cell,

myeloid cell, B cell and
NK cell)

[108]

Tumours with high TILs contained CD8+ T
cells with features of TRM T cell

differentiation and these CD8+ TRM cells
expressed high levels of immune

checkpoint molecules and effector proteins;
CD8+ TRM gene signature significantly

associated with improved patient survival

10x Genomics
Chromium

TREM-specific CD8+ T
cells [109]

Cancer associated fibroblast clusters are
linked to immunotherapy resistance,

promote cancer cell differentiation and T
cell exclusion

10x Genomics
Chromium

Cancer-associated
fibroblast subsets [110]

Ovarian

Immune-desert tumours demonstrated low
antigen presentation and enrichment of
monocytes and immature macrophages;

immune-infiltrated and -excluded tumours
differ markedly in their T cell composition
and fibroblast subsets; chemokine-receptor

interactions were identified as potential
mechanisms mediating immune

cell infiltration

10x Genomics
Chromium

Tumour, stromal and
immune cells [111]

Lung

A high ratio of tumour-infiltrating
“pre-exhausted” T cells to exhausted T cells
was associated with better prognosis; a gene

signature of activated tumour Tregs
correlated with poor prognosis in lung

adenocarcinoma

Smart-Seq2
Peripheral blood,
peritumoural and

intratumoural T cells
[112]

Liver

Tumour-associated macrophages suppress T
cell infiltration in hepatocellular carcinoma
and TIGIT-NECTIN2 interaction regulates

the immunosuppressive environment;
transition of immune cells towards a more
immunosuppressive and exhaustive status
exemplifies the overall cancer-promoting

immune landscape

10x Genomics
Chromium

Tumour and immune
cells [113]

Abbreviation: TRM—tissue-resident memory.

4.1. Dissecting Intra-Tumoural Heterogeneity (ITH)

ITH is a major contributor to therapy resistance and cancer progression [114–116].
Subclonal variation in oncogenic alterations is hypothesised to be one of the major causes
of therapeutic evasion of certain clones and subsequent relapse [117–121]. For instance,
the rare therapy-resistant melanoma cells expressing high levels of AXL (receptor tyrosine
kinase) are positively selected after treatment with kinase inhibitors contributing to the
development of drug resistance [3]. In addition, a minority of highly specialised cells,
such as the cancer-like stem cells, is generally in the quiescent cell states that enable a
beneficial environment for tumour cells to maintain tumour growth, metastasise, and resist
immune and treatment control [122]. The stem-like tumour phenotype is characterised by
the high expression of CD133 and CD44, these cells can also evade immune surveillance by
upregulating PD-L1 and CD80 through WNT activity, making them resistant to immune-
based therapies [51,123–125].
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The single-cell RNA-seq (scRNA-seq) platform is capable of detecting tumour sub-
clones and determining the transcriptional states and phenotypic differences between
individual cells [126–129]. An example is the scRNA-seq study on uveal melanoma [46],
where primary and metastatic tumours were sampled and single cells were processed via
the droplet Chromium system. Using trajectory analysis which infers genetic changes
during tumour and immune cell evolution, the transcriptional clonal branches were recon-
structed to identify the clonal selection of ploidy and transcriptional programs that enabled
immune evasion. These approaches hold great promise in understanding immunotherapy
resistance under the selective pressures of treatment. The construction of phylogenetic
trees of treated patients will allow the identification of different cell lineages that confer
resistance to immunotherapy [127,128].

4.2. Diversity of the Tumour Immune Microenvironment

Multi-omics heterogeneity is not a feature limited to tumour cells. In fact, being
an immunogenic cancer type, various immune cells make up the TME of melanomas,
which imposes microenvironmental selection pressures on tumour evolution and mediate
responses to some systemic therapies. Unbiased exploration of the TME with genetic
sequencing is increasingly utilised to study the cellular interactions and molecular changes
in the TME and as well as the tumour.

One of the most common applications of scRNA-seq is to characterise the repertoire
and quantity of tumour-infiltrating lymphocytes (TILs). Distinct subpopulations of T cells
and the proportion of TILs defined by scRNA-seq analysis of metastatic melanoma have
been correlated with immunotherapy response and patient outcomes [17]. Notably, a
higher proportion of exhausted T cells with abnormal activation of metabolic pathways,
was correlated with unfavourable prognosis, whereas higher proportions of naïve/memory
cells and cytotoxic T cells were associated with good prognosis. In a separate study, anal-
ysis on transcriptomic profiles of over 16,000 immune cells from 48 melanoma patients
receiving immunotherapy identified two distinct CD8+ T cell states. The association of
CD8+ T cells with a specific transcription factor, TCF7, was identified as a predictive marker
of response [16]. Furthermore, Li et al. identified the formation of dysfunctional T cell
compartments in melanoma where early effector CD8+ T cells transition to exhausted
states within the TME, and the intensity of the dysfunctional signature was reflective of
tumour reactivity to immune response [94]. In contrast, the formation of B cell dominant
tertiary lymphoid structures was shown to reverse T cell exhaustion and lead to improved
tumour responsiveness to immune checkpoint inhibitors [102,103]. Predictive and prog-
nostic immune effector cell populations were also identified in scRNA-seq analyses of the
breast [109], ovarian [111], lung [112,129], and liver cancers [130].

Recent studies have extended the analysis of immune cell heterogeneity to the myeloid-
derived populations in the TME. The tumour resident, monocyte-derived dendritic cells
was found to be significantly enriched in melanoma patients who respond to anti-PD-
1 [104]. Targeting this antigen-presenting cell population with agonist anti-CD40 antibody
in mouse models led to the expansion of effector T cells and implementation of anti-tumour
immunity [104]. The scRNA-seq analysis of melanoma patients subjected to checkpoint-
based immunotherapies also detected upregulation of γδ T cells and TREM2+ macrophages
in non-responders [105]. By characterising innate immune cells, we are gaining greater
understanding of immunological priming, which guides the anti-tumour T cell response.

The single-cell techniques are also useful for the investigation of cellular interactions.
The scRNA-seq of 33 melanoma tumours interrogated malignant cell states that promoted
T cell exclusion, and characterised the genomic features of the cold immunological niche as-
sociated with poor immunotherapy response [43]. Single-cell sequencing of over 4600 cells
from 19 melanoma patients (including malignant, immune, stromal, and epithelial cells)
revealed that the TME greatly influenced the gene expression programs of melanoma
cells [3]. Analysis of the T cell receptor (TCR) sequences of 2000 T cells from 15 melanoma
samples revealed that the expression of co-inhibitory receptors was correlated with T cell
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activation and was enriched in expanded T cell clones. The study also identified a link
between the abundance of cancer-associated fibroblasts (CAFs), a non-malignant stromal
cell type, and the expression of tumour gene signatures. Furthermore, a subset of genes
expressed by CAFs was found to increase the proportion of CD4+FOXP3+ regulatory T
cells (Tregs) creating an immunosuppressive tumour microenvironment that prevent the
tumour-reactive immune responses [131,132]. A mechanism of immunotherapy resistance
mediated by subtypes of CAFs was also observed in breast cancer, where clusters of CAFs
exhibited upregulation of checkpoints in Tregs, in turn increasing the abundance of other
potentially suppressive subtypes of CAF within the TME [110,131]. Together, these stud-
ies highlight the opportunities for identifying novel immunotherapy targets offered by
single-cell sequencing.

5. Use of Single-Cell Analysis to Identifying Biomarkers of Response to
Immunotherapies and Novel Drug Targets

Studies have begun to explore the systemic effects of immune checkpoint inhibitors
using scRNA-seq to gain a more holistic perspective of their mechanisms of action, and to
identify biomarkers of treatment response and resistance.

One popular approach is the pairing of single-cell RNA sequencing and TCR sequenc-
ing [133]. scRNA-seq of circulating and intra-tumoural T cells allows for the definition of T
cell phenotypes, while TCR sequencing reveals the expansion of matching clonotypes in
the blood and TME after immunotherapy treatment [134]. This approach has been used
to identify expanded T cell clones that correlate with treatment response and resistance.
Specifically, T cells that expressed shared TCR sequences can be present as tissue resident T
cells (Trm) or as effector memory T cells (Tem) for at least 9 years after a patient has had
a lasting response to immunotherapies [133]. This method of investigating matching T
cell populations in blood and tumours has provided novel understanding of the cellular
mechanisms of response to immunotherapy. However, the expansion of matching clones is
suggestive of extravasation of circulating T cells at the tumour site, and hence recognition
of tumour neoantigens cannot be directly derived with this method.

By combining patient-specific scRNA-seq analysis of peripheral immune cell phe-
notypes and clinical data, Griffith et al. presented a method for estimating the degree of
anti-tumoural immune attack and predicting clinical response with a dynamic mathemati-
cal model [135]. The novel model provided insights into the immune regulation of tumour
growth in responders and non-responders to immunotherapy, demonstrating differences in
peripheral interferon signalling and cytotoxic T cell differentiation, and hence recognising
them as peripheral blood indicators of anti-PD-1 response. The study was able to uncover
the evolution of patient-specific responses during treatment by using samples derived from
a cohort of clinical trial patients who had the same treatment regimen and timepoints of
sample retrieval. The temporal analysis of peripheral blood samples revealed a lower T cell
abundance in non-responders to immunotherapy, and the lack of expansion and effector
phenotype differentiation after treatment. Additionally, in line with the theory that the
host immune system needs time for establishing antigen recognition and developing the
adaptive response, the authors observed a delay in cellular response to immunotherapy
compared to chemotherapy, which suggested the time required for immunological changes
to occur. This highlights the importance of timepoint selection for immunotherapy research
and informs future studies and clinical trials.

Blood sampling is a non-invasive source to explore potential biomarkers for im-
munotherapies. The use of blood bypasses the limitations of bulk tissue biopsy that may
account for inter-tumoural heterogeneity, while offering insights into the systemic immune
response [136]. Initial reports of melanoma patients treated with ipilimumab showed
that improved overall survival and progression-free survival (PFS) were associated with
peripheral immune cell counts from routine blood counts at baseline, including low reg-
ulatory immune cell frequencies and high lymphocyte frequencies; clinical benefit was
also associated with the dynamic changes in blood markers during immune checkpoint
treatment, including the reduction in regulatory T cell population and increased lympho-
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cyte counts [137]. Recent single-cell genomic studies using liquid biopsies also revealed
associations between the expansion of peripheral T cell subtypes in greater and response
to immunotherapy [106,136]; while scRNA-seq of melanoma cells identified immunother-
apy resistant to cells harboured mutational programs that translated to mechanisms of
T cell exclusion [43], a separate study identifying memory T cell populations persisted for
years in patients with durable responses to immunotherapy [134]. These studies show
the exciting opportunities to define the properties and evolution of systemic immunity in
immunotherapy responders with non-invasive tissue sourcing. Future prospective studies
are required to validate the prediction of clinical benefits in larger cohorts.

The spatially resolved transcriptomics method [33] has been used to study and visu-
alise the distribution of mRNAs within tissue sections of melanoma. This emerging field
offers the ability to place cell phenotypes of interest within their spatial context, allowing
for analysis of intra-cellular communications and TME niches. The visualisation of the
transcriptional landscape within stage III lymph node melanoma metastases identified
unique gene expression profiles of distinct histological entities, in particular, special ex-
pression patterns of lymphoid cells closely located to the tumour margin is potentially
reflective of the genetic profile of the melanoma TME [107]. This technology also offered
new insights into B cell functional states, suggesting that tertiary lymphoid structures
are involved in immunotherapy response [102]. Likewise, the technology can be used to
detect the interaction of ligand and receptor pairs in the TME, as the resolution of these
analyses increases, the ability to locate individual cells and their ligand-receptor pairing
could provide vital information to the rationalisation of novel immunogenic agents [138].
These spatial techniques have not been widely used in research and clinical assessments
due to the high cost and throughput considerations. Nevertheless, the results from recent
studies as well as the ongoing technological improvements hold promising potential for
their future application.

6. Future Perspectives in Incorporating Single-Cell Analysis into Clinical Trials and
Routine Care of Cancer Patients

In modern cancer treatment, accurate diagnosis and therapeutic decisions are based on
the anatomical origin of the primary tumour and its specific features [139,140]. Single-cell
analysis by flow cytometry and immunohistochemistry have been utilised for subclassify-
ing haematological malignancies for many years. They are indispensable tools for differen-
tiating non-malignant cells and cancer cells both in the laboratory and in the clinic [21,23].
Single-cell transcriptomic techniques provide a more powerful approach to extensively
characterise the entire molecular phenotype of cell populations within biopsies, which
could lead to more accurate diagnoses and phenotyping of a patient’s disease. For example,
Cohen et al. employed scRNA-seq (MARS-seq) as part of the KYDAR trial (a single-arm
prospective trial of daratumumab, carfilzomib, lenalidomide, and dexamethasone (DARA-
KRD). The co-authors reported that the transcriptional programs and resistance signatures
identified by MARS-seq could assist in the prediction of resistance and guide therapeutic
selection based on the specific phenotype of the patients disease [141]. Although single-cell
transcriptomic technologies have not been utilised in melanoma clinical trials to date,
the insights arising from TME profiles and the tracking of immune cell populations will
provide a blueprint for optimising treatment selection and verifying therapeutic effects
may improve patients management in the future.

There are still several obstacles that need to be overcome before making these single-
cell platforms more readily accessible in the clinic. Firstly, the high dimensionality of single-
cell transcriptomic and spatial data requires specialised teams to generate and perform
the subsequent bioinformatics analysis. Secondly, sample collection which often requires
tumour dissociate especially for scRNA-seq is often limited and logistically challenging.
However, spatial transcriptomics on FFPE samples is improving which could mitigate
these limitations. Thirdly, the ability to use single-cell transcriptomic platforms to detect
low levels of gene expression and transcripts from somatic copy number variants in each
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cell remains challenging. Lastly, the costs and turnaround times of the current technologies
will need to be reduced to operate within clinical expectations.

7. Conclusions

Single-cell transcriptomics has uncovered new crucial factors and phenotypic alter-
ations that not only promote tumour progression but also result in therapeutic resistance.
In addition, identifying rare subpopulations of cells through single-cell profiling have
provided useful insights into response and resistance to treatments. In respect to melanoma
and other cancer types, single-cell transcriptomic approaches have paved the way for the
discovery of multi-dimensional biomarker signatures associated with immunotherapy
response and resistance, and will assist in the development of next-generation immunother-
apies which may improve survival outcomes in cancer patients.
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