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Abstract
Recent research suggests that language acquisition may rely on domain-general learning

abilities, such as structured sequence processing, which is the ability to extract, encode,

and represent structured patterns in a temporal sequence. If structured sequence process-

ing supports language, then it may be possible to improve language function by enhancing

this foundational learning ability. The goal of the present study was to use a novel computer-

ized training task as a means to better understand the relationship between structured se-

quence processing and language function. Participants first were assessed on pre-training

tasks to provide baseline behavioral measures of structured sequence processing and lan-

guage abilities. Participants were then quasi-randomly assigned to either a treatment group

involving adaptive structured visuospatial sequence training, a treatment group involving

adaptive non-structured visuospatial sequence training, or a control group. Following four

days of sequence training, all participants were assessed with the same pre-training mea-

sures. Overall comparison of the post-training means revealed no group differences. How-

ever, in order to examine the potential relations between sequence training, structured

sequence processing, and language ability, we used a mediation analysis that showed two

competing effects. In the indirect effect, adaptive sequence training with structural regulari-

ties had a positive impact on structured sequence processing performance, which in turn

had a positive impact on language processing. This finding not only identifies a potential

novel intervention to treat language impairments but also may be the first demonstration

that structured sequence processing can be improved and that this, in turn, has an impact

on language processing. However, in the direct effect, adaptive sequence training with

structural regularities had a direct negative impact on language processing. This unexpect-

ed finding suggests that adaptive training with structural regularities might potentially inter-

fere with language processing. Taken together, these findings underscore the importance

of pursuing designs that promote a better understanding of the mechanisms underlying
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training-related changes, so that regimens can be developed that help reduce these types

of negative effects while simultaneously maximizing the benefits to outcome measures

of interest.

Introduction
The acquisition of natural language may be one of the more formidable tasks facing human be-
ings, and yet we are exceptionally proficient at it. Understanding the core mechanisms respon-
sible for the ability to learn language has been a particular challenge in cognitive neuroscience.
One long-standing, prominent argument has been that humans have dedicated domain-specif-
ic neural mechanisms that evolved specifically for language acquisition [1]. An alternative hy-
pothesis is that language acquisition may rely heavily on domain-general learning and
processing abilities that allow the learner to utilize the structure inherent in language [2], [3].
One such domain-general mechanism that may support language acquisition has been referred
to as structured sequence processing (SSP), or the ability to extract, encode, and represent
structured patterns occurring in a temporal sequence [4], [5], [6]. If SSP supports language,
then it may be possible to improve language function by enhancing this basic learning ability,
similar to the way that computerized working memory (WM) training has been demonstrated
to transfer to non-trained tasks of executive function, attention, and other aspects of cognition
[7], [8], [9], [10], [11]. The possibility of improving SSP through adaptive training, with im-
provements generalizing to aspects of language processing, has both clinical and theoretical
ramifications as it would not only identify a novel intervention to treat language impairments
but would also identify a more direct relationship between SSP and language.

In this paper, we will first review recent evidence that SSP may underlie language learning,
underscoring the scarcity of literature using experimental manipulations to investigate the two
processes. We will then review relevant findings from the WM training literature, which served
as inspiration for the structure-based sequence training regimen used in the present study.
This background will then lead to a description of our study using a novel computerized se-
quence training task and a mediational analysis to explore the relationship between SSP and
language function.

Previous Evidence Linking SSP to Language
SSP, sometimes referred to as sequential learning or statistical learning, allows people to learn
about structured patterns of information in the environment in a relatively automatic and un-
conscious fashion [12], [13], [6]. Importantly, SSP abilities may be especially crucial for the de-
velopment of social and linguistic knowledge [14], [5]. SSP allows the language learner to
detect and to utilize the structure inherent in phonology [13], syntax [15], and word order [5].
Furthermore, impairments in SSP may contribute to a number of communication disorders,
including dyslexia [16], specific language impairment [17], and language delays observed in
hearing impairment [18].

Research findings have indicated that individual differences in performance on non-linguis-
tic sequential learning tasks are significantly correlated with how healthy typically-developing
adults perform on a degraded speech perception task, in which participants must use preceding
context to predict upcoming units of speech [5], [19], see also [20]. Furthermore, Christiansen
et al. [21] provided a within-subject comparison of the neural mechanisms supporting visual
sequence learning and language processing using event-related potentials (ERPs). The key
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finding was that sequences containing structural irregularities in the SSP task elicited a
P600-like component that was statistically identical to the P600 elicited by syntactic violations
in the natural language task. This outcome suggests that the same neural mechanisms may be
recruited for both SSP and language processing, a finding that is also substantiated by other
neuroimaging studies showing that Broca’s area is active in both language and non-language
SSP tasks e.g., [22], [23]; for reviews, see [24], [6].

Although these studies are highly promising, more direct evidence of a link between SSP
and language is needed. One particularly striking void in the type of approach used thus far is
the pursuit of designs that incorporate experimental manipulations designed to improve SSP,
as a way to help demonstrate an underlying link between SSP and language. Even a first step in
this direction could have potential implications for how to improve language functioning in
typical and atypical development.

Cognitive Training
If language development relies, at least in part, on SSP, then it may be beneficial to improve
language function by enhancing SSP itself. One strategy for this might be to stimulate neural
regions, such as Broca’s area, that are thought to underlie SSP using magnetic or electrical stim-
ulation e.g., [25]. Another possibility would be to use computerized neurocognitive training
techniques to improve SSP. One cognitive domain that has received much interest in the cogni-
tive training literature and may be relevant to the current endeavor is WM. WM refers to the
temporary storage and manipulation of information necessary for complex cognitive tasks
[26]. While the training tasks and populations have varied, the general goal of a number of re-
cent studies has been to determine whether WM training tasks could improve WM capacity
and show transfer to non-trained tasks of spatial and verbal WM, attention, and other cognitive
functions. Sometimes this distinction is referred to as “near transfer” (transfer effects to con-
structs closely related to the training technique itself) and “far transfer” (transfer effects to
other constructs thought to have a theoretical link with what is being trained). For example,
Klingberg et al. [7], [8] used a WM training task (Cogmed Systems, Stockholm, Sweden) with
children with ADHD. The children performed visuospatial and/or verbal WM tasks over a pe-
riod of 5 weeks. The visuospatial task involved remembering the position of objects on a 4 x 4
grid, and the verbal task involved remembering phonemes, letters or digits [8]. Importantly,
difficulty level of the tasks was adjusted to match each child’s WM ability by changing the
number of elements that had to be recalled. A control group performed the same tasks except
the length of items to recall stayed fixed rather than being adaptively adjusted. At post training
sessions both 5 to 6 weeks and 3 months following the pre measures, children showed signifi-
cant improvement to performance on WM and executive functions (as measured by a visuo-
spatial Span board task, digit span, Stroop task, and Raven’s matrices) compared to a
control group.

Overall, the results from a number of recent WM training studies suggest that WM can be
improved through adaptive training [27], [28], [29]. Furthermore, training on an adaptive vi-
suospatial task can also transfer in a domain-general manner to nontrained tasks of WM (dem-
onstrating near transfer) but also to other cognitive functions such as inhibition [7], [8], [9],
attention [11], and verbal WM [10] (demonstrating far transfer).

Although there have been some questions about the effectiveness of WM training [30], [31],
and especially in relation to the far transfer results, these findings raise the possibility that WM
and other aspects of cognition, perhaps even SSP, can be modifiable by intensive training. The
difference between the standard WM task and SSP is that WM involves recalling a series of sti-
muli that have no structural relationship to each other; that is, the stimuli are presented in a
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random order. On the other hand, many of our interactions with the world involve encoding,
storing, and processing structural regularities, in which SSP is recruited. For this reason, we
propose that to target and train SSP it is necessary to embed structured rather than random se-
quences into the training protocol.

To summarize, the previous evidence suggests that language functions may rely, at least in
part, on SSP. Furthermore, recent findings from the WM training literature are promising be-
cause they offer the possibility that SSP could be improved, which if successful, could possibly
lead to improvements to language processing. Finally, it may be beneficial to use the results
from this type of intervention design in conjunction with process modeling techniques to pro-
vide more insight about the putative underlying relations among the constructs. We will now
describe the present study, which combines all of these elements to specifically test whether
adaptive training with structural regularities has a contributory impact on language via the me-
diation of SSP.

The Present Study
The goal of the present study was to investigate the putative underlying relationship between
domain-general structure-based learning mechanisms (i.e., SSP) and language functions by ex-
ploring the effect of adaptive sequence training with structural regularities (SSP training) ver-
sus adaptive sequence training without structural regularities (WM training), relative to a
control or reference group. Participants in the SSP training group engaged in a 4-day comput-
erized sequence training regimen that involved viewing and then reproducing visual-spatial
structured sequences. This type of training is similar to previous WM training studies; howev-
er, our novel manipulation for this group was the introduction of sequences containing struc-
tural regularities. Thus, rather than having those participants trained with random sequences
(as in the case of all previous WM training studies), they were trained with non-random, struc-
tured patterns. For the second group, which we refer to as the WM training group, these partic-
ipants engaged in the same computerized sequence training task but instead of using
structured sequences, the sequences contained no structure, consistent with all other previous
WM training studies.

Participants received a battery of cognitive tests on the first day, then four days of either the
SSP training condition, the WM training condition, or the control condition (which, similar to
the control groups used in previous WM training studies, consisted of a non-adaptive comput-
erized training that is not expected to result in cognitive improvements). On the sixth day par-
ticipants received the same battery of cognitive tests that were administered on the first day in
order to measure changes to non-trained tasks. The group of participants engaging in the adap-
tive sequence training with structural regularities (SSP training, Group 1) and the group of par-
ticipants engaging in the adaptive sequence training without structural regularities (WM
training, Group 2) were both compared to a control group that engaged in nonadaptive, un-
structured sequences (Group 3).

1. Thus, the first hypothesis for this study was simply that only the SSP training would result
in improvements to both a non-trained SSP task and a language processing task. This hy-
pothesis was examined through the use of multivariate analysis of variance (MANOVA)
comparing group means of SSP and language processing.

However, regardless as to the results of the MANOVA, there is a second and perhaps more
useful way to analyze these data. Whereas all of the previous WM training studies used as their
primary analyses a comparison of the means on non-trained task from pre- to post-training,
the present study also used a mediation model. This analysis approach has the ability to explore
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the core mechanisms or processes underlying any such relation between cognitive training and
language processing by investigating whether there exists a mediating relationship among the
variables. It can also help tease apart the separate influences relating to near and far transfer ef-
fects, and help explain why one or the other might be present. With the mediation model tech-
nique, we may be better able to understand the effects of cognitive training on SSP and
language processing. A MANOVA or other regression technique does not allow for the identi-
fication of mediating variables and, thus, is unable to help clarify the nature of the relations
among training, SSP, and language processing.

A mediation analysis allows one to explain the mechanism by which one variable influences,
or has an effect, on another [32], [33]. Both “direct” and “indirect” effects can be tested [32],
[33]. Direct effects are when the independent variable (IV) directly impacts the dependent vari-
able (DV). Indirect effects are when the IV impacts the DV through the mediation of a third
variable, called the mediator (M). Hayes and Preacher [33] introduced a technique for conduct-
ing a mediation analysis when the IV is multicategorical, as in the case of the present study
comparing two experimental groups to a control group. Since the effects of being in one of the
experimental groups are in comparison to the effects of being in a reference group, they suggest
using the terms “relative direct effects” and “relative indirect effects” [33]. In the present study,
the IV is training type [i.e., whether participants receive SSP training (Group 1), or WM train-
ing (Group 2), with both compared to the control participants (Group 3]. The DV is language
processing (measured at post-training). The M is SSP ability (also measured at post-training).
Thus, our aim is to test the relative direct and indirect effects through which cognitive training
might affect language processing. Specifically, does cognitive training have a relative direct im-
pact on language processing? And, does cognitive training have a relative indirect effect on lan-
guage processing by impacting SSP ability?

The untested model is presented in Fig 1. For both experimental training groups (i.e.,
Group 1 and Group 2), path a x b represents the relative indirect effect of the IV (training type)
on the DV (language) via the mediator, M (SSP) (relative to the reference group, Group 3).
Path a represents the effect of the IV on M, whereas path b represents the effect of M on the
DV. On the other hand, path c' represents the relative direct effect of the IV on the DV (relative
to the reference group, Group 3). The relative total effect (path c, not depicted in the untested
model) would represent the sum of the direct and indirect effects (compared to the reference
group). Again, our focus was testing, for Group 1 and Group 2, the relative indirect and relative
direct effects, represented by path a x b and path c', respectively. Additionally for both groups,
we tested the individual components of the relative indirect effect, represented by path a and
path b. We did not make an a priori hypothesis about the relative total effect for both groups,
represented by path c.

Thus, in association with the mediation model, we assessed the following hypotheses:

1. We predicted that there would be a significant relative indirect effect (path a x b) only for
the SSP training group (Group 1). That is, we predicted that adaptive sequence training
with structural regularities would have an underlying impact on language processing by way
of the mediating variable, SSP. In terms of the individual components of this indirect path,
we predicted a significant (positive) effect of path a; that is, adaptive sequence training with
structural regularities would have a significant positive impact on SSP. We also predicted a
significant (positive) effect of path b; that is, SSP would have a significant positive impact on
language processing.

2. We also predicted that there would be a significant relative direct effect (path c') only for the
SSP group (Group 1). That is, we predicted that adaptive sequence training with structural
regularities would have a positive effect overall on language processing.
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Method

Ethics Statement
The study was approved by the Indiana University Institutional Review Board. Participants
provided written consent prior to participation.

Participants
Sixty-six participants (38 males and 28 females, ages 18–30) were recruited at Indiana Univer-
sity to participate in this study for monetary compensation. All participants were native speak-
ers of English and reported no history of a hearing loss, speech impairment, or other cognitive/
perceptual/motor impairments at the time of testing.

Materials
All visual stimuli/sequences were presented using aMagic Touch touch-sensitive monitor and
a Macintosh Power PC G4. Responses were made on theMagic Touch touch-sensitive monitor.
For the measure of language, the auditory stimuli were presented using Beyer dynamic DT100
headphones. All experimental tasks for this experiment took place in a sound-attenuated booth
(Industrial Acoustics Company).

Fig 1. Untestedmediation model. The untested model predicting a significant indirect effect (patch a1 x b) suggesting that adaptive sequence training with
structural regularities would have a significant overall positive impact on language processing by way of the mediating variable, SSP. It also predicts a
significant direct effect (path c'1), suggesting adaptive sequence training with structural regularities would have a positive impact directly on
language processing.

doi:10.1371/journal.pone.0127148.g001
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Procedure
Participants took part in the experiment for 6 days, with no more than 2 intervening days be-
tween sessions. On Day 1 they were assessed on several measures, two of which we focus on in
the present manuscript: a measure of SSP and a measure of language (speech recognition in
noise). During the next 4 days participants received either adaptive sequence training with
structural regularities (Group 1, SSP training), adaptive sequence training without structural
regularities (Group 2, WM training), or the control condition of non-adaptive unstructured se-
quences (Group 3, reference group)). On Day 6 participants were re-assessed on the same mea-
sures as Day 1. An overview of the study design is given in Table 1.

Pre-training measures. Although several other pre-training measures were administered
as part of a separate study reported in Conway et al. [5], in the present analysis we focus on
only the measures of SSP and language. Participants in each of the three groups completed the
measure of SSP first, the measure of language second, and the other cognitive assessments last.
Below we briefly describe each measure; further details are provided in Conway et al. [5].

Measure of structured sequence processing. The measure of SSP was identical to the
“Simon” visual statistical-sequential learning task used in previously published work, see [5],
[34] for full details. Performance on this task has been shown to be significantly correlated with
language processing skills in healthy adults [5] and in language-delayed children [18]. In this
task, participants viewed a series of 4 colored squares that light up on the touchscreen and were
asked to reproduce each sequence they had just observed by touching the appropriate color.

The task consisted of two phases, a learning phase and a test phase. In both phases, the par-
ticipant’s task was the same: to reproduce each sequence immediately following presentation
by touching the colored squares displayed on the touch-sensitive monitor in the correct order.
No feedback was given. However, unbeknownst to participants, the phases differed in terms of
the types of temporal sequences that were presented. In the learning phase, the sequences were
not random but rather were generated according to an underlying artificial grammar that spec-
ified the probability of a particular element in a sequence occurring given the preceding ele-
ment (see Table 2). In the learning phase, 48 sequences generated from the grammar were
presented once each, in random order. In the test phase, 40 new sequences were presented: 20
sequences generated from the artificial grammar and 20 sequences that were pseudo-random
(i.e., the occurrence of each element in the sequence was random except that no element could

Table 1. Overview of study design.

Day 1 Pre-Training Days 2–5 Sequence Training Day 6 Post-Training

Speech Recognition In Noise Group 1 Adaptive, Structural Regularities Speech Recognition In Noise

Statistical-Sequential Learning Group 2 Adaptive, No Regularities Statistical-Sequential Learning

Group 3 Non-adaptive, No Regularities

doi:10.1371/journal.pone.0127148.t001

Table 2. Artificial grammars used to generate the order of stimuli.

Constrained Grammar (n+1) Unconstrained Grammar (n+1)

Colors/locations (n) 1 2 3 4 1 2 3 4

1 0.0 0.5 0.5 0.0 0.0 0.33 0.33 0.33

2 0.0 0.0 1.0 0.0 0.33 0.0 0.33 0.33

3 0.5 0.0 0.0 0.5 0.33 0.33 0.0 0.33

4 1.0 0.0 0.0 0.0 0.33 0.33 0.33 0.0

doi:10.1371/journal.pone.0127148.t002
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follow itself). The participants were not told that this was a test phase or that there were differ-
ent types of sequences used in the experiment. From the perspective of the participant, the test
phase was just the same sequence reproduction task they had been doing as before.

Scoring. In the test phase, a sequence was scored as correct if a participant correctly repro-
duced it. A score was given for each correctly reproduced sequence based on its length (i.e., a
correctly reproduced sequence of length 5 was given a score of 5). As in previous studies [5],
[18], [34] a learning score was then obtained by subtracting the total score for the ungrammati-
cal sequences in the test phase from the grammatical sequences in the test phase. A higher
learning score indicates better performance on novel statistically-structured sequences com-
pared to random ones, suggesting that successful statistical-sequential learning has occurred.

Measure of language. The measure of language was a speech recognition in noise task
that required participants to listen to 50 spectrally degraded sentences and then to write down
the last word that they heard in each sentence, see [5] for full details. The sentences varied in
terms of the final word’s predictability: high-predictability sentences (N = 25) had a final word
that was highly predictable given the sentence context (e.g., “Greet the heroes with loud cheers”);
whereas anomalous sentences (N = 25) had a final word that was not predictable given the sen-
tence context (e.g., “The burglar was parked by an ox”). Sentences were presented in random
order using a self-paced format.

Scoring. Responses were scored based on the number of correct final words for each of the
two sentence types (high-predictability and anomalous). As in Conway et al. [5], a difference
score was computed as the number of final words identified in high-predictability sentences
minus the number of final words in anomalous sentences. This difference score reflects how
well a participant is able to use sentence context to help perceive the final word in the sentence,
a form of top-down language processing that has been argued to depend on how well one is
able to track statistics in language [5]. For this reason, we expected that any improvements to
SSP might carry over to improvements in how well participants are able to use sentence context
to perceive words under poor listening conditions.

Sequence training task. The training task began in a separate session (on a different day)
after the completion of the pre-training assessments. The sequence training task consisted of
several blocks of sequence-reproduction trials that either adaptively increased in length as par-
ticipants’ performance improved (Groups 1 and 2) or were non-adaptive (Group 3). On each
trial, participants saw a series of green circles light up on the touchscreen monitor and were
asked to reproduce the sequence they had just seen (see Fig 2). Sixteen circles were arranged on
a 4x4 grid, inspired by the type of computerized training programs used by Klingberg et al. [7],
[8]. Individual circles on the 4x4 grid were illuminated for 250ms and were off for 250ms be-
tween elements in the sequence. The participants’ task was to reproduce each sequence imme-
diately following presentation by touching the green circles displayed on the touch-sensitive
monitor in the correct order. As participants made their responses, each circle they pressed
stayed illuminated for 250ms. At the end of the presentation of a sequence if the participant
did not make a response within 2 seconds a new sequence was presented. Each session of the
training task consisted of 3 blocks of 50 trials.

The order that the circles lit up either was dependent upon embedded structural regularities
(Group 1) or was pseudorandom and did not follow structural regularities (Groups 2 and 3).
The sequences with underlying structural regularities were generated so that each element in
the sequence could be followed by 3 others in the set with equal likelihood. The sequences with-
out underlying structural regularities were generated so that each element in the sequence
could be followed by any other in the set with equal likelihood (that is, any of the 15 other ele-
ments). The underlying sequences themselves were the same for all participants (within each
group). However, the actual mapping between each sequence element and each circle on the
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screen was randomly determined for each participant. Thus, while the underlying sequences
were the same for each participant (within the same group), the spatial representation was dif-
ferent between participants. Moreover, mapping was re-randomized for each participant at the
onset of each new daily training session in order to encourage generalizability.

Participants were randomly assigned to 1 of 3 groups. Group 1 received adaptive training
using sequences with underlying structural regularities. Group 2 received adaptive training on
sequences without underlying structural regularities. Group 3 received non-adaptive training
on sequences without underlying structural regularities. For Groups 1 and 2, sequence lengths

Fig 2. Training task. Touch screen of 16 circles arranged in a 4 x 4 display for visuospatial sequence training task.

doi:10.1371/journal.pone.0127148.g002
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in the adaptive conditions were based on a 2 up 2 down staircase procedure. For example, if a
participant started at sequence length 4 and correctly reproduced all items in that sequence
then their next trial would be a sequence of length 4. If the participant correctly reproduced all
elements in the second sequence of length 4 then they would move up to a sequence of length 5
in the next trial. If they incorrectly reproduced this sequence of length 5 then their next trial
would be of a sequence of length 5. If they responded incorrectly to this sequence as well, then
their next sequence would be moved down to length 4.

Whereas both Groups 1 and 2 incorporated the 2-up 2-down adaptive training staircase
procedure, only Group 1 received sequences with structural regularities. Group 2 instead re-
ceived adaptive training on sequences without any underlying structural regularities. In other
words, this condition used the same 2 up 2 down staircase procedure as previously described;
however, the sequences themselves were pseudo-randomly determined on each trial and were,
therefore, without underlying structural regularities.

Finally, participants in Group 3 received training that did not adapt to their performance
level. At each trial, the sequence lengths were determined randomly (varying in length from 4
to 16 elements). Like Group 2, the sequences in Group 3 were pseudo-randomly determined
on each trial and, therefore, did not contain any underlying structural regularities.

Post-training measures. The post-training measures were identical to the pre-training
measures. The post-training measures were administered in a separate session on the final day
of the study, Day 6.

Statistical Analysis

Comparison of Group Means
A 3x2 mixed-designMANOVA with group (1, 2, 3) as the between-subjects factor and time of
testing (pre, post) as the within-subjects factor was used to assess whether the training condition
affected mean performance on the non-trained measure of SSP and the non-trained measure of
language processing (both DVs described above). For the MANOVA, a given participant’s data
was excluded if it was missing for either the pre or the post measure. This process resulted in
data used in the analysis of both SSP and language processing for a total of N = 60. The MAN-
OVA was performed using SPSS (IBM SPSS Statistics 21, Release Version 21.0.0.0).

Mediation
In addition to the MANOVA, we used a mediational model analysis to estimate the relative
direct and indirect effects of cognitive training. The IV was training type (Group), defined as
the SSP training received by Group 1 (described above) and the WM training received by
Group 2 (described above), both relative to the control, or reference, group (Group 3, de-
scribed above). The DV was language processing (Language), defined as the correct number
of degraded spoken target words for high-predictability sentences (H) minus the correct num-
ber of target words for anomalous sentences (A) at post-measure. The mediator (M) was
structured sequence processing (SSP) defined as the span score for the grammatical sequences
minus the span score for the ungrammatical sequences in the sequence learning task test
phase at post-measure.

The process of dummy coding was used in order to enter the multicategorical, group-mem-
bership based IV (Group) into the model. Two dummy coded variables labeled D1 and D2 were
created from observations in Group 1 and Group 2, respectively. The reference group was
Group 3. No transformations were done on the continuous variables SSP and Language prior
to entering them into the model. Variables were uncentered, and the data contained no outliers
beyond +/- 3 standard deviations. Six subjects were excluded from the analysis due to missing
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data pertaining to the variables in the model. Thus, the final analysis included a total of N = 60
participants (Group 1 N = 21, Group 2 N = 19, Group 3 N = 20).

Mediation was based on an ordinary least squares regression approach [see [32] for a de-
scription] and was determined by a test of significance of the indirect effect of the IV on the
DV through M, as this approach is preferred in contemporary mediation analyses [35], [36].
Because it is particularly appropriate for small sample sizes, we used the bootstrapping tech-
nique suggested by Preacher and Hayes [37], [38], [33] in which a point estimate of the indirect
effect was obtained from the mean of 10,000 estimates of path a x b and 95% percentile-based
confidence intervals were computed using the cut-offs for the 2.5% highest and lowest scores of
the empirical sampling distribution, and adjusted for bias in the bootstrap distribution. The in-
direct effect was considered statistically significant if this bias-corrected confidence interval did
not include 0.

All analyses of the mediation model were performed using SPSS (IBM SPSS Statistics 21, Re-
lease Version 21.0.0.0) with the Hayes and Preacher [33] macro MEDIATE that can be used
for bootstrapped mediation models with a multicategorical variable.

Results

Comparison of Group Means
A 3x2 mixed-design MANOVA contrasting group (1, 2, 3) and time of testing (pre-post re-
vealed a significant multivariate main effect on the linear composite of the DVs SSP and Lan-
guage for time of testing (pre-post) [Wilks’ λ = .357, F(2, 56) = 50.534, p< .001, partial eta
squared = .643] and no interaction with group [Wilks’ λ = .963, F(4, 112) = .539, p = .707, par-
tial eta squared = .019].

Univariate follow-up analyses indicated there was no significant main effect for time of test-
ing (pre-post) on SSP [F(1, 57) = .066, p = .799, partial eta squared = .001] and no interaction
with group [F(2, 57) = 1.06, p = .353, partial eta squared = .036]. Looking at Table 3 at the
mean values for the measure of SSP, only Group 1’s scores were higher from pre to post test.
Both Group 2 and 3’s scores on the measure of SSP were worse from pre to post test. However,
the univariate tests on the measure of SSP by itself indicated none of these changes
were significant.

There was a significant main effect for time of testing (pre-post) on Language, [F(1, 57) =
102.155, p< .001, partial eta squared = .642] and no interaction with group [F(2, 57) = .031, p
= .969, partial eta squared = .001]. The univariate follow-up tests on Language by itself indicat-
ed all 3 groups showed significantly lower scores at the post-test on the measure of language, a
finding that is further illustrated by the mean values in Table 3.

In summary, the MANOVA findings suggest overall lower language scores at post-training,
but no effects or interactions that would suggest that the SSP training had significant effects on
SSP or language. Therefore, Hypothesis 1 predicting that adaptive sequence training with

Table 3. Mean performance pre vs. post onmeasures of SSP and language processing.

Group 1 Group 2 Group 3

M S.D. M S.D. M S.D.

SSP (Pre) 19.71 16.18 20.74 16.75 16.00 19.75

SSP (Post) 26.81 21.54 18.47 17.42 13.55 21.19

Language (Pre) 3.52 2.04 4.68 2.63 4.20 2.19

Language (Post) -0.86 2.24 0.32 2.50 0.05 2.21

doi:10.1371/journal.pone.0127148.t003
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structural regularities would result in improvements to both a non-trained SSP task and a lan-
guage processing task, as compared to the other experimental group and the control group,
was not supported.

Mediation
Although the group means did not demonstrate an effect of training, there is still utility in
using the mediation analysis to determine whether there are underlying relationships among
the constructs of interest. The final mediation model is presented in Fig 3. The results pre-
sented first pertain to the relative indirect effect of SSP training (Group 1) on Language, via
SSP, compared to the control group and represented by path a1 x b of D1. From a mediation
analysis conducted using bootstrapping, SSP training indirectly improved language processing
through its enhancement of SSP. A 95% bias-corrected bootstrap confidence interval for the in-
direct effect (a1 x b = 0.42, SE = 0.29) based on 10,000 bootstrap samples did not include zero
(0.03 to 1.25). What this shows is that participants in Group 1 who received adaptive sequence
training with structural regularities were on average 13.26 units higher on SSP following train-
ing than participants in the control group, who received non-adaptive training on randomly-
presented sequences (p = .04; see Table 4, path a1). Furthermore, holding type of training con-
stant, those participants who were higher on SSP were also higher on Language (p = .03, path
b). Given the relative indirect effect is a1 x b, participants in Group 1 who received adaptive se-
quence training with structural regularities performed 0.40 units better on Language as a result

Fig 3. Final testedmediationmodel with unstandardized coefficients and significance values. Adaptive sequence training with structural regularities
indirectly improved language processing through its enhancement of SSP (path a1 x b); whereas, adaptive sequence training with structural regularities
directly worsened language processing (path c'1).

doi:10.1371/journal.pone.0127148.g003
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of the increase in SSP performance. In contrast, adaptive sequence training without structural
regularities (Group 2) had no indirect effect on language processing. A 95% bias-corrected
bootstrap confidence interval for the indirect effect (a2 x b = 0.15, SE = 0.21) based on 10,000
bootstrap samples did include zero (-0.17 to 0.71).

The results presented next pertain to the relative direct effect of SSP training (Group 1) on
Language, compared with the control group and represented by path c'1 (see Fig 3). The results
of the analysis revealed that SSP training directly lowered language processing. Specifically,
when considering the direct path in isolation, participants who received adaptive sequence
training with structural regularities were on average 1.32 units worse on Language than partici-
pants who received non-adaptive, randomly-presented sequences (p = .07; see Table 4, path
c'1). Thus, Hypothesis #3, predicting that adaptive sequence training with structural regularities
would have a positive effect on language processing, was not supported. Furthermore, the di-
rect effect of WM training (Group 2) on Language, compared with the control group, was not
significant (c'2 = .11, p = .88; see Table 4).

According to the approach implemented by Zhao, Lynch, and Chen [36], since the product
of a1 x b x c'1 is negative (-0.53), this indicates that the model corresponding to SSP training
(Group 1) is one of competitive mediation. These authors point out that if the direct effect c' is
substantially larger than the indirect effect a x b, then the total effect c would also be negative
[given the formula for the total effect is c = (a x b)+ c')] [36]. Potential implications of this
unpredicted finding will be addressed in the Discussion.

Discussion
The results of the comparison of group means (using MANOVA) did not support our first hy-
pothesis. That is, adaptive sequence training with structural regularities did not lead to a signif-
icant improvement to SSP or language processing. There are a number of reasons why a non-
significant result might have been obtained. For instance, it is possible that the training regi-
men was not strong or consistent enough to lead to significant improvements overall, even if
the training itself has the potential to have a causal effect on SSP and language. Thus, even
though the MANOVA resulted in non-significant effects of SSP training, using the mediation
model allows us to better understand the potential underlying relationships among the vari-
ables of interest.

Along these lines, the results of the mediation model did show that there was a significant
relative indirect effect of adaptive sequence training with structural regularities on language via
SSP, compared with the control condition, supporting Hypothesis #2. This relative indirect
path shows that SSP training has an underlying impact on language––specifically, the ability to

Table 4. Unstandardized coefficients.

Unstandardized coeff S.E. t p

Path a1 indirect 13.26 6.31 2.10 .04

Path b indirect 0.03 .01 2.13 .04

Path c'1 direct -1.32 .73 -1.81 .07

Path c1 total -.91 .72 -1.25 .22

Path a2 indirect 4.92 6.47 .76 .45

Path c'2 direct .11 .72 .15 .88

Path c2 total .27 .74 .36 .72

Note. R2 = 0.12, Adj. R2 = 0.07; F(3,56) = 2.52, p = .07 (DV Model, Outcome Variable: Language)

doi:10.1371/journal.pone.0127148.t004
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use knowledge of word order statistics to improve speech recognition in noise––through the
mediator SSP. Previous research using an individual differences approach has established an
empirical association between SSP and language ability [21], [5], [20]. Furthermore, there is ev-
idence that language impairments are associated with impairments to SSP, e.g., [17]. However,
the present findings are the first results that we know of that demonstrate a more direct con-
nection between SSP and an aspect of language processing as revealed through experimental
manipulation of SSP training itself. Likewise, these are also the first findings demonstrating
that cognitive training techniques can potentially modify SSP.

The mediation model demonstrates that adaptive sequence training with structural regulari-
ties has the potential to generalize to improvements on a non-trained statistical-sequential
learning task, as shown in path a1. This finding itself has remarkable implications about the
plasticity of SSP and statistical learning processes and the potential for using such sequence
training tasks to improve fundamental learning (and language) abilities. Thus, even though an
examination of the group means revealed no significant effects of SSP training, the mediation
model suggests that underlying relationships among these variables exist, providing the basis
to further develop such training techniques to improve SSP and language.

In terms of Hypothesis #3, the significant indirect effect of a1 x b was accompanied by a sig-
nificant––and opposite, or competing––direct effect (path c'1). Thus, Hypothesis #3 was not
supported. According Zhao, Lynch, and Chen [36], our model is one of competitive mediation,
in which the total effect c1 is negative (-0,91, p = .22, see Table 4), [given the formula for the
total effect is c = (a x b)+ c')] [36]. It is possible that there is an unexplained mediator(s) in the
direct path, thereby contributing to a negative relationship between SSP training and language.
Although this is a valid possibility, it is also possible that SSP training directly negatively im-
pacts language (through some as yet unexplained mechanism), and is thereby responsible for
the negative total effect c1. This second possibility would not require an additional mediator,
only an additional explanatory construct to explain how the variables already in the model be-
have on each of the different paths.

Why does SSP training have a positive underlying relationship with language performance
via the indirect effect through the mediator SSP, but overall a negative underlying relationship
with language performance via the direct effect? One intriguing possibility is that training on
visual structural regularities––apart from any effect it has on SSP––might actually interfere
with one’s knowledge or use of the structural regularities in spoken language. Recall that the
measure of language was derived from a difference score: performance with high-predictability
sentences (containing language regularities) minus performance with anomalous sentences
(containing fewer regularities). An examination of the means on the high-predictability and
anomalous sentences suggests that only in Group 1 does performance on the highly-predictable
sentences get substantially worse from pre- to post-training. Performance on the anomalous
sentences on the other hand does not worsen for any of the three groups. Thus, knowledge (or
expression of) language regularities as measured by the highly-predictable sentences appears to
be attenuated following sequence training with structural regularities. A similar type of inter-
ference was recently observed when participants engaged in a non-linguistic visual-motor SSP
task concurrent with a sentence comprehension task [39]. This interference between the pro-
cessing of visual structural regularities (contained in the sequence training task) and processing
spoken language regularities (contained in the highly-predictable sentences) could be the
mechanism driving the negative direct effect of path c'1. With these two competing pathways––
an indirect benefit to language processing by strengthening SSP, but a simultaneous direct neg-
ative effect on language due to interference––the final effect in our case is an overall negative
total effect or decrease in language processing. Theoretically, this is quite enlightening, and fur-
thermore underscores the complex relationship between SSP and the processing of language
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regularities and sheds light upon why in some cases a near transfer effect but not a far transfer
effect might be observed. In this case, the near transfer effect (improvement to SSP) would nor-
mally result in a far transfer effect (improvement to language), but because the training regi-
men itself has a negative direct effect on language, it cancels out the potential beneficial
improvement to language.

As the above discussion helps illustrate, these findings accentuate the importance of pursu-
ing designs that allow one to better understand the mechanisms underlying training-related
changes to outcome measures. Some recent literature has been more critical of computerized
WM training studies and has brought into question the generalizability of the findings e.g.,
[31]. The advantage of our design is that it helps inform the process of change, rather than sim-
ply comparing means of the changes to the outcomes themselves; we believe this may help ad-
dress the concerns pertaining to the effectiveness of cognitive training techniques and possibly
provide answers as to why near and far transfer effects are observed. In turn, this can serve to
maximize the potential of these interventions. With a growing number of reports claiming the
promise of cognitive training techniques, as well as other more recent studies that are more
critical of their validity, our findings might offer clarity into the mechanisms of change them-
selves. For instance, given the present results suggesting the existence of two independent path-
ways for how sequence training might affect language, it is possible that previous training
studies have used protocols that inadvertently emphasize one or the other pathway, leading to
very different and inconsistent results across studies. In fact, a given experimental manipula-
tion, such as changing the sensory modality or duration of the training task, may have different
effects on the strength of each pathway. Discovering what the key manipulations are and how
each affects different mechanisms of change is an important next step. With such knowledge, it
may be possible to design a training regimen that better capitalizes on the indirect path in
order to yield the greatest chance of demonstrating far transfer, in this case, enhancement to
language performance. Importantly, the existence of these two competing paths would not
have been known had one relied solely on the MANOVA analyses comparing the
group means.

Likewise, it is possible that there may be ways to modify the training task to alleviate the
negative, direct path between training and language performance. For instance, having a longer
training regimen could provide an opportunity for participants to adapt to the novel structural
regularities that they are exposed to, reducing the interference between the training task and
language processing. If this is true, then with additional training trials, the direct (negative) ef-
fect of adaptive training with structural regularities on language might decrease, resulting in
even stronger enhancements to language. Another possibility might be to modify the type of
structural regularities that are present in the training sequences. For example, rather than hav-
ing only adjacent sequential dependencies as was the case here, incorporating long-distance,
non-adjacent dependencies into the training task might prove beneficial for improving the
mechanisms that are recruited when processing long-distance dependencies in natural lan-
guage [40],[41].

Although the positive underlying relationship between SSP and language (illustrated in path
b shown in Fig 3), may seem relatively small (b = .03), it is still encouraging. It is true that the
overall indirect path a1 x bmay at first suggest that it takes a substantial improvement to SSP
to see a small improvement to language processing; however, a few considerations are impor-
tant to mention. First, the present design incorporated only 4 training sessions, a small number.
It seems highly possible that with more training sessions, or by modifying the training task in
some other way, even greater enhancement to SSP might be obtained, which could in turn
boost the language score even more. Second, considering the long-term applied goal of how
these types of cognitive training regimens might be used to improve language in typical and
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atypical development, even a small gain could have a major impact, especially if such an inter-
vention was targeted early in development.

Conclusions
In conclusion, using a mediation model analysis, we have demonstrated that adaptive sequence
training with structural regularities has an underlying impact on language through the media-
tor SSP. More concretely, adaptive sequence training with structural regularities has a very
large impact on SSP while changes to SSP, in turn, have a more modest impact on language
processing. In competition with this indirect effect, our sequence training regimen appeared to
have a negative direct effect on language performance as well, resulting in overall a more damp-
ened effect on language ability and no overall improvements to language as assessed by MAN-
OVA. Additional work is currently underway to understand this negative direct effect, with the
aim of reducing its impact to improve the efficacy of such sequence training programs.

These findings have two implications. At a practical level, these findings show how funda-
mental learning abilities and language processing skills might be improved in typical and atypi-
cal development. At a theoretical level, these findings not only highlight the plasticity of
statistical-sequential learning and SSP but they also show an underlying link between SSP and
language, which in turn lends additional weight to the view that language acquisition is based
in large part on domain-general learning mechanisms rather than language-specific modules
or neural structures that solely mediate language alone.
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